设备振动测量方法共60页
- 格式:ppt
- 大小:4.76 MB
- 文档页数:60
工程振动测试方法工程振动测试方法在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。
1、机械式测量方法震动传感器将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。
但在现场测试时较为简单方便。
2、光学式测量方法将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。
如读数显微镜和激光测振仪等。
3、电测方法将工程振动的参量转换成电信号,经电子线路放大后显示和记录。
电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。
这是目前应用得最广泛的测量方法。
上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。
1、拾振环节。
把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。
2、测量线路。
测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。
比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。
3、信号分析及显示、记录环节。
从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录仪等)等。
也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。
机械振动的测量方法机械振动是指物体在其中一固定点或者固定坐标系中围绕其中一平衡位置作周期性的往复运动。
机械振动测量的目的是为了评估物体的振动特性,找到振动源,分析振动原因,以进一步改进设计和提供振动控制措施。
机械振动的测量方法有很多种,下面就几种常用的机械振动测量方法进行介绍。
1.声学振动测量方法:这种方法是通过采集并分析物体产生的声音来测量机械振动。
它可以通过一个或多个声音传感器将机械振动转化为声音信号,然后借助声学仪器进行分析和处理。
这种方法可以用来确定振动的频率、振幅、振动模式和振动源的位置等。
它适用于非接触式测量,测量范围广,且具有较高的灵敏度。
2.惯性振动测量方法:这种方法是通过安装加速度传感器或振动传感器,直接感知机械振动的加速度或位移,然后根据牛顿运动定律计算出振动的频率、幅值和相位等参数。
这种方法适用于测量低频振动,测量结果更加准确,但需要对传感器进行定期校准。
3.光学振动测量方法:这种方法是通过光学传感器来测量机械振动。
光学传感器可以分为接触式和非接触式两类。
接触式的光学传感器通常是基于拉普拉斯原理,测量物体表面的位移或变形。
非接触式的光学传感器则通常是采用激光干涉或干涉测量的原理,利用激光束来测量物体的位移或振动速度。
光学振动测量方法精度高,分辨率高,适用于测量微小振动。
4.功率谱测量方法:这种方法是通过对机械振动信号进行频谱分析,测量不同频率成分的能量或功率,以评估振动的特性。
功率谱测量方法可以使用FFT(快速傅里叶变换)等算法将时域信号转化为频域信号,进而获取功率谱图。
功率谱图可以提供振动的频率分布、主要振动频率和传递函数等信息。
这种方法适用于复杂的振动分析和频谱分析。
值得注意的是,以上所述的机械振动测量方法仅为常用方法之一,还有一些其他的测量方法,如微机械系统(MEMS)传感器、电容式传感器、压电传感器等,这些传感器可以通过物理效应来感知机械振动。
不同的测量方法有不同的适用范围和测量精度,需要根据具体的测量需求和实际情况选择合适的方法。
设备振动测量方法
1. 贴片加速度计法:将加速度计贴在被测物体表面,测量其振动加速度,通过微积分可计算出振动速度、位移等参数。
2. 光电测微法:利用激光光束射向被测物体表面,测量反射光的位移量,通过计算可得到振动速度、位移等参数。
3. 振弦法:将一条细弦贴在被测物体表面,当被测物体振动时,弦也会振动,通过测量弦的振动频率和振幅,可求出被测物体振动的频率和振幅等参数。
4. 麦克风测量法:利用麦克风测量被测物体振动时产生的声音,通过分析声波的频率和振幅等参数来推算被测物体的振动情况。
5. 应变计测量法:将应变计贴在被测物体表面,当被测物体发生振动时,应变计也会受到应变,通过测量应变计的变化,可以分析出被测物体的振动情况。
振动测量方法和标准(一)振动测量方法和标准概述•振动测量是工程领域中常用的一种测试方法,用于评估物体振动的强度和频率。
通过振动测量,可以帮助我们分析和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
常用的振动测量方法1.加速度法:通过测量物体在特定点上的加速度来评估振动。
这种方法可以用于结构的动态响应分析和冲击问题。
2.速度法:通过测量物体在特定点上的速度来评估振动。
速度法适用于精密设备和需要高精度的振动测量。
3.位移法:通过测量物体在特定点上的位移来评估振动。
位移法适用于机械系统和结构的频率响应分析。
4.功率谱法:通过将振动信号转换为频谱来评估振动。
功率谱法可以帮助我们了解在不同频率下振动的能量分布情况。
国际标准和规范•ISO 10816:该标准是国际上最常用的用于评估机械设备振动的标准。
它包含了振动级别的分级标准以及对振动测量的方法和仪器的要求。
•ISO 2372:该标准适用于旋转机械的振动测量。
它提供了用于评估旋转机械振动的标准指导,并包含了振动级别的分级标准。
•ISO 7919:该标准适用于机组振动测量和评估。
它为机组振动评估提供了详细的指导,并包含了对测点位置和振动级别的要求。
•DIN 4150:该规范适用于建筑物振动的评估和控制。
它提供了对建筑物振动的测量和评估的标准指导,并包含了对振动限值的要求。
结论•振动测量是一种重要的工程技术方法,可以帮助我们评估和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
在进行振动测量时,可以选择适合具体应用场景的测量方法,并遵循相应的国际标准和规范进行评估。
通过合理的振动测量,我们可以提高工程项目的质量和可靠性,减少潜在的风险和故障发生。
振动测量仪的使用方法振动测量仪作为一种重要的测试仪器,广泛应用于各个领域的测量与监测工作中。
它能够准确地测量物体的振动强度和频率,帮助人们了解物体的运动状态和结构健康程度。
本文将介绍如何正确使用振动测量仪,以及它在不同领域的应用。
一、仪器准备首先,在使用振动测量仪之前,需要对仪器进行准备工作。
检查测量仪的电池电量,确保有足够的电量进行测量。
同时,检查传感器的连接是否良好,确保传感器与仪器之间没有松动或损坏。
对于测量仪器的台面,应保持平整,避免干扰数据准确性。
二、选择正确的测量模式振动测量仪通常有多个测量模式可供选择,根据实际需求选择最合适的模式十分重要。
例如,对于机械设备的振动测量,可以选择频域分析模式;对于建筑结构的振动测量,可以选择时域分析模式。
不同的模式会提供不同的数据和分析方法,因此需要根据具体情况进行选择。
三、测量位置选择在进行振动测量时,需要选择适当的测量位置来获取准确的数据。
一般来说,测量位置应处于振动源附近,并且应尽量避免干扰源的存在。
同时,需要确保测量位置与传感器之间的距离适中,既要保证测量信号的强度,又要避免过度接近而对传感器造成损坏。
四、数据采集和记录在进行振动测量时,需要进行数据采集和记录工作。
通过振动测量仪器上的记录功能,可以实时记录振动信号的强度和频率。
同时,可以根据需要进行数据采样频率的调整,以获取更为精确的数据。
在记录数据时,需要注意记录时间、测量位置以及测量条件等关键信息,以便后续数据分析和处理。
五、数据分析和处理测量完毕后,需要对所获得的数据进行分析和处理。
一种常见的方法是使用计算机上的数据分析软件,例如MATLAB或Python。
通过对数据进行频谱分析、滤波处理等操作,可以提取出振动信号的特征,进一步了解物体的振动状态。
同时,还可以与历史数据进行比较,判断物体的结构健康程度。
六、振动测量仪的应用领域振动测量仪广泛应用于机械工程、建筑工程、电力工程等领域。
在机械工程中,振动测量仪常用于检测机械设备的振动情况,判断设备的故障和维护需求。
振动的测量方法摘要本文主要介绍了振动的测量方法与分类,并简要说明了各测量方法的原理及优缺点,以及在测量过程中所使用的传感器。
并且详细的介绍了加速度传感器与磁电式速度传感器的工作原理。
简要介绍了振动量测量系统的原理框图关键词:加速度传感器、振动、磁电式速度传感器1引言机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。
各种机器、仪器和设备在其运行时,由于诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起力的变化、各部件之间的碰撞和冲击,以及由于使用、运输和外界环境条件下能量的传递、存储和释放等都会诱发或激励机械振动。
2振动概述2.1振动测量方法分类振动测量方法按振动信号转换的方式可分为电测法、机械法和光学法。
各测量方法的原理及优缺点见表1.表1振动测量方法分类2.2振动测试的内容:1. 振动基本参数的测量。
测量振动物体上某点的位移、速度、加速度、频率和相位。
其目的是了解被测对象的振动状态、评定振动量级和寻找振源,以及进行监测、诊断和评估。
2. 结构或部件的动态特性测量。
以某种激振力作用在被测件上,对其受迫振动进行测试,以便求得被测对象的振动力学参量或动态性能,如固有频率、阻尼、阻抗、响应和模态等。
这类测试又可分为振动环境模拟试验、机械阻抗试验和频率响应试验等。
2.3振动测量的基本原理与方法振动检测按测量原理可分为相对式与绝对式(惯性式)两类。
振动检测按测量方法可分为接触式与非接触式两类。
2.3.1相对式振动测量相对式振动测量是将振动变换器安装在被测振动体之外的基础上,它的测头与被测振动体采用接触或非接触的测量。
所以它测出的是被测振体相对于参考点的振动量图1 相对式测振仪的原理1测量针与笔 2 被测物体 3 走动纸2.3.2绝对式振动测量采用弹簧—质量系统的惯性型传感器(或拾振器),把它固定在振动体上进行测量,所以测出的是被测振动体相对于大地或惯性空间的绝对运动。
振动频率测试方法一、引言振动频率是描述物体振动状态的重要参数,广泛应用于机械、电子、航空航天等领域。
准确测量振动频率对于确保设备的正常运行和故障诊断具有重要意义。
本文将介绍几种常用的振动频率测试方法,包括机械式测试方法、电子式测试方法和光学式测试方法,并对其优缺点进行分析。
二、机械式测试方法机械式测试方法是一种传统的测量振动频率的方式。
其基本原理是通过将被测物体与一个质量块相连,使其形成一个等效质量系统,并通过改变质量块的位置来改变系统的固有频率。
通过观察系统在不同位置下产生共振现象时的固有频率,即可得到被测物体的振动频率。
机械式测试方法具有简单易行、成本低廉等优点。
然而,由于其需要改变质量块位置来进行测量,因此需要较长时间来得到准确结果,并且在实际应用中存在一定难度。
三、电子式测试方法电子式测试方法利用传感器将被测物体产生的振动转化为电信号,通过电子测量设备进行信号处理,得到振动频率的测量结果。
常用的电子式测试方法包括加速度传感器法、速度传感器法和位移传感器法。
加速度传感器法是最常见的电子式测试方法。
其基本原理是通过将加速度传感器安装在被测物体上,测量物体在不同频率下产生的加速度信号,并通过频谱分析得到振动频率。
加速度传感器法具有响应快、准确性高等优点,广泛应用于工程领域。
速度传感器法和位移传感器法则是通过测量物体产生的速度和位移信号来得到振动频率。
这两种方法相对于加速度传感器法来说具有更高的准确性,但在实际应用中受到安装位置限制。
四、光学式测试方法光学式测试方法利用光学原理进行振动频率测量。
其基本原理是通过将激光束照射在被测物体上,并利用激光干涉仪等设备来检测物体表面反射回来的激光信号,根据干涉现象得到振动频率。
光学式测试方法具有非接触式、高灵敏度等优点,适用于对高精度振动频率的测量。
然而,光学设备的价格较高,使用起来较为复杂,需要专业的操作技术。
五、优缺点比较综合以上介绍的三种振动频率测试方法,它们各自具有不同的优缺点。
振动监测方法1、常规监测设备正常运转时,使用笔式测振仪检测设备旋转部位的振动值,主要是振动速度,测量轴向、垂直方向和水平方向的振速并记录作为参考值。
岗位巡检人员在日常检测发现测量值发生变化时,通常先检查连接部件是否松动,能停机的设备可检查轴对中、轴承游隙或轴承与轴和轴承座的配合间隙等,不能停机的设备则使用振动频谱仪进行精密检测,分析振动频谱,找出是否为动平衡原因或其他原因。
据有关资料统计,利用简易诊断仪器可以解决设备运行中50%的故障。
由此可见,简易诊断在设备管理与维修中具有重要作用。
2、精密监测精密监测是通过振动频谱仪检测设备振动频谱图,分析各频率对应的振动速度分量,如某一频率的振动速度分量超限,可对比常见振动故障识别表判断故障点。
振动频率的计算:设备运转部位的工频振动频率(HZ)=转速(r∕min)∕60,如某风机的转速为960r∕min,则其工频振动频率为16HZo工频振动频率通常称为转动频率。
振动监测技术常用的振动监测方法有波形、频谱、相位分析及解调分析法。
频谱图显示振动信号中的各种频率成分及其幅值,不同的频率成分往往与一定的故障类别相关。
波形图是对振动信号在时域内进行的处理,可从波形图上观察振动的形态和变化,波形图对于不平衡、松动、碰摩类故障的诊断非常重要。
双通道相位分析通过同时采集两个部位的振动信号,从相位差异中可以对相关故障进行有效的鉴别。
解解是提取低幅值、高频率的冲击信号,通过包络分析,给出高频冲击信号及其谐频,此技术在监测滚动轴承故障信号方面较为有效。
1、不平衡转子小平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。
结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。
转子不平衡的主要振动特征:⑴振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动;⑵波形为典型的正弦波;⑶振动频率为工频,水平与垂直方向振动的相位差接近90。
振动测量方法和标准振动测量是一种用于评估机械设备运行状况和故障诊断的重要工具。
通过测量机械设备产生的振动信号,可以获得有关设备结构的信息以及潜在故障的迹象。
正确选择适当的振动测量方法和遵循相应的标准,对于准确评估设备状况和制定维护计划至关重要。
本文将探讨振动测量方法和标准的相关内容。
1、振动测量方法1.1 加速度传感器加速度传感器是一种广泛用于振动测量的传感器。
它可以测量垂直方向和水平方向的加速度。
该传感器将振动转化为电信号,进而分析并显示振动特性。
加速度传感器具有高频响应和较低的成本,适用于连续振动监测和机械故障诊断。
1.2 速度传感器速度传感器可以测量振动的速度。
它适用于低频振动测量和对振动的整体评估。
速度传感器可以直接测量振动,并提供振动速度的输出信号。
与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应,但在某些应用中仍然具有一定的实用价值。
1.3 位移传感器位移传感器可以测量振动的位移。
它适用于低频振动测量和对机械设备结构变化的评估。
位移传感器可以直接测量振动的位移,并提供相应的输出信号。
位移传感器通常具有较低的频率响应和较高的灵敏度,适用于对振动幅值的精确测量。
2、振动测量标准2.1 ISO 10816系列标准ISO 10816系列标准是振动测量中最常用的国际标准之一。
该系列标准规定了振动测量的一般要求,以及根据不同类型的机械设备和应用的振动限值。
这些标准提供了一种测量和评估机械设备振动水平的一般方法,并提供了用于判断机械设备运行状况的准则。
2.2 ASME标准ASME标准适用于美国机械工程师学会制定的振动测量标准。
这些标准更加具体和详细,适用于各类机械设备和应用。
ASME标准提供了更为细致的振动测量方法和评估准则,有助于更准确地判断设备的运行状况,并制定相应的维护计划。
2.3 DIN标准DIN标准是德国国家标准组织制定的振动测量标准。
这些标准被广泛用于欧洲地区。
DIN 标准与ISO标准相似,提供了一种测量和评估机械设备振动的方法和准则。
测振仪现场测量方法测振仪是一种用于测量物体的振动和震动指标的仪器。
它广泛应用于工程、建筑和机械行业中,用于评估和监测结构物的安全性和稳定性。
以下是测振仪现场测量的方法。
1.准备工作:在进行现场振动测量之前,我们需要进行一些准备工作。
首先,我们需要确定测量目标,即我们要测量的结构或设备。
然后,我们需要选择适当的测振仪和传感器,根据需要选择不同的传感器类型(例如加速度传感器、速度传感器或位移传感器)。
2.安装传感器:在安装传感器之前,我们需要清理并检查测量位置,确保其光滑、干净并没有明显的缺陷。
然后,我们可以使用黏合剂、螺丝或磁性底座将传感器固定在测量位置上。
确保传感器与被测物体的接触牢固且稳定。
3.连接仪器:将测振仪与传感器连接起来。
根据实际情况,我们可以使用电缆连接传感器和测振仪,或者使用无线传感器和蓝牙连接测振仪。
无论使用哪种方式,都应确保连接良好。
4.设置参数:根据测量要求和被测物体的特性,我们需要在测振仪上设置适当的参数。
常见的设置包括测量频率范围、采样频率和滤波器设置等。
确保设置的参数与实际测量需求相匹配。
5.进行测量:一切就绪后,我们可以开始进行测量。
在进行现场测量时,需要尽可能减少外界干扰。
例如,可以将测量区域附近的大型机器或设备停止运行,以避免其振动对测量结果的干扰。
同时,确保测量位置不受外界因素的干扰。
6.数据采集:测振仪将定期采集传感器测量到的振动数据,包括振动幅度、频率和相位等指标。
可以将这些数据记录在测振仪内存中,或通过无线连接将数据传输到计算机或数据记录设备中。
确保数据采集的持续性和准确性。
7.数据处理和分析:测振仪通常具有数据处理和分析功能,可以对采集到的数据进行处理和分析。
通过使用测振仪自带的软件或其他专门的数据处理软件,我们可以提取出有用的振动特征,比如振动模态、共振频率和阻尼比等。
8.结果报告:最后,根据测量结果生成报告。
报告应包含测量的目的、测量数据、数据分析结果和建议措施等内容。