最新MCS51单片机的输入输出通道接口
- 格式:ppt
- 大小:613.52 KB
- 文档页数:7
MCS-51【1】单片机输入输出口8051有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线:·P0口和P2口:右图为P0口和P2口其中一位的电路图,由图可见,电路中包含一个数据输出锁存器和两个三态数据输入缓冲器,另外还有一个数据输出的驱动和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
参考图2。
P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为216=64k,所以8051最大可外接64kB的程序存储器和数据存储器。
·P1口:右图为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况,其一是:首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
其二是:读P1口线状态时,打开三态门G2,将外部状态读入CPU。
·P3口:P3口的电路如上图所示,P3口为准双向口,为适应引脚的第二功能的需要,增加了第二功能控制逻辑,在真正的应用电路中,第二功能显得更为重要。
MCS51单片机的结构MCS-51单片机是Intel公司设计开发的一种高度集成的8位微控制器(microcontroller),主要应用于嵌入式系统中。
它采用了Harvard 架构,包含一个CPU核心、片内存储器、外围接口和定时器/计数器等功能模块。
在本文中,我将详细介绍MCS-51单片机的结构。
MCS-51单片机的结构主要分为以下几个部分:1.中央处理器(CPU)核心:MCS-51单片机的CPU核心采用了8位的数据总线和地址总线,以及一组功能强大的指令集。
该CPU支持多种指令,包括数据传送指令、算术逻辑指令、位操作指令和条件跳转指令等。
它还包括一个累加寄存器和标志寄存器,用于存储操作数和标志位信息。
2.存储器部分:MCS-51单片机包含片内存储器和片外存储器。
片内存储器主要用于存储程序代码和数据,包括ROM(只读存储器)和RAM(随机存储器)。
ROM用于存储程序代码,RAM用于存储数据和临时变量。
片外存储器通过地址线和数据线与单片机连接,可以扩展存储器容量。
3.输入输出(I/O)接口:MCS-51单片机通过多个I/O口与外部世界进行数据交互。
每个I/O 口包含一组引脚,可以用作输入或输出。
这些引脚可以通过配置寄存器来选择其功能。
MCS-51单片机还支持中断输入,可以用于实现外部设备的中断功能。
4.定时器/计数器(Timer/Counter):MCS-51单片机内置了多个定时器/计数器模块,用于生成精确的时间延迟或测量外部事件的时间间隔。
定时器可以产生周期性的中断信号,用于实现定时任务。
计数器可以计数外部事件的脉冲数量,用于测量时间间隔。
5.串行通信接口:MCS-51单片机内置了一个串行通信接口,可以用于与其他设备进行数据传输。
该接口支持异步串行通信协议,如UART(通用异步收发器)或SPI(串行外围接口)等。
它可以通过配置寄存器来设置通信参数,如波特率和数据格式等。
6.时钟电路:MCS-51单片机需要一个精确的时钟源来驱动内部运算和外设操作。
51单片机IO端口的四种输入输出模式知识讲解51单片机I O端口的四种输入输出模式51单片机IO端口的四种输入输出模式 (by wuleisly)单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O口吗?你真的能按你的需要配置I O口吗?一、准双向口输出准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。
这是因为当口线输出为1时驱动能力很弱,允许外部装置将其拉低。
当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。
(准双向口有3个上拉晶体管适应不同的需要)准双向口读外部状态前,要先锁存为‘1’,才可读到外部正确的状态.二、强推挽输出推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时提供持续的强上拉。
推挽模式一般用于需要更大驱动电流的情况。
三、仅为输入(高阻)输入口带有一个施密特触发输入以及一个干扰抑制电路。
四、开漏输出配置(若外加上拉电阻,也可读)当口线锁存器为0时,开漏输出关闭所有上拉晶体管。
当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V cc。
如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。
这种方式的下拉与准双向口相同。
开漏端口带有一个施密特触发输入以及一个干扰抑制电路。
关于I/O口应用注意事项:1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。
因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.有些实际没有损坏,加上拉电阻就O K了有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强推挽输出.2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MO S电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上拉口在由0变为1时,会有2 时钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在软件处理上,不要出现按键两端的I/O口同时为低.一种典型三极管控制电路:如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3.3K~10 K),建议R2的值在15K以上,或用强推挽输出。
单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。
51单片机的基本端口单片机是一种集成电路芯片,具有微处理器核心、存储器、I/O端口和各种外设接口等功能。
其中,基本端口是单片机最常用的功能之一,用于与外部设备进行数据交互和信号传输。
本文将介绍51单片机的基本端口及其使用方法。
一、引脚功能51单片机的引脚一共有40个,其中包括了多个基本端口引脚。
这些引脚的功能可以根据实际需要进行配置,比如作为输入端口、输出端口、中断源等。
以下是常用的几个基本端口引脚和其功能描述:1. P0口:P0.0~P0.7分别对应引脚号32~39,可用作通用I/O端口。
默认情况下,P0口是上拉输入模式,需要通过对应的寄存器设置为输出模式。
2. P1口:P1.0~P1.7分别对应引脚号1~7和40,同样可用作通用I/O端口。
在默认情况下,P1口是上拉输入模式,也需要通过寄存器进行配置。
3. P2口:P2.0~P2.7分别对应引脚号21~28,是可编程的8位I/O端口。
与P0和P1不同,P2口默认是输出模式,不需要进行配置。
二、使用方法在使用51单片机的基本端口之前,需要理解相关的寄存器和位控制。
以下是基本的使用方法:1. 配置端口模式:通过相应的寄存器设置,将需要使用的引脚设置为输入模式或输出模式。
2. 引脚输入:通过读取相应端口的寄存器,可以获取引脚的输入状态。
3. 引脚输出:通过写入相应端口的寄存器,可以控制引脚的输出状态。
4. 端口中断:通过对应的中断使能设置,可以使端口引脚成为一个中断源,触发中断服务程序。
需要注意的是,在编写代码时,应根据实际需要选择合适的端口和引脚进行配置和操作,以达到所需的功能。
三、示例代码下面是一个简单的示例代码,演示了如何使用51单片机的基本端口来控制LED灯的亮灭:```c#include <reg52.h>sbit LED = P1^0; // 将P1.0引脚定义为LEDvoid delay(unsigned int count){unsigned int i, j;for(i = 0; i < count; i++)for(j = 0; j < 1000; j++);}void main(){while(1){LED = 0; // LED亮delay(1000); // 延时LED = 1; // LED灭delay(1000); // 延时}}```通过以上示例代码,可以看到将P1.0引脚定义为LED,并通过改变LED引脚的输出状态来控制LED的亮灭。
51单片机IO端口的四种输入输出模式(by wuleisly)单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O 口吗?你真的能按你的需要配置I O口吗?一、准双向口输出准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。
这是因为当口线输出为1时驱动能力很弱,允许外部装置将其拉低。
当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。
(准双向口有3个上拉晶体管适应不同的需要)准双向口读外部状态前,要先锁存为‘1’,才可读到外部正确的状态.二、强推挽输出推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时提供持续的强上拉。
推挽模式一般用于需要更大驱动电流的情况。
三、仅为输入(高阻)输入口带有一个施密特触发输入以及一个干扰抑制电路。
四、开漏输出配置(若外加上拉电阻,也可读)当口线锁存器为0时,开漏输出关闭所有上拉晶体管。
当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V c c。
如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。
这种方式的下拉与准双向口相同。
开漏端口带有一个施密特触发输入以及一个干扰抑制电路。
关于I/O口应用注意事项:1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。
因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.有些实际没有损坏,加上拉电阻就O K了有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强推挽输出.2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MO S电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上拉口在由0变为1时,会有2时钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在软件处理上,不要出现按键两端的I/O口同时为低.一种典型三极管控制电路:如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3. 3K~10K),建议R2的值在15K以上,或用强推挽输出。
2.3 MCS-51单片机输入/输出(I/O)口在MCS-51单片机中有4个双向的8位I/O口P0~P3,在无片外存储器的系统中,这四个I/O口的每一位都可以作为准双向通用I/O口使用。
在具有片外存储器的系统中,P0口作为地址线的低8位以及双向数据总线,P2口作为高8位地址线。
这4个口除了按字节寻址外,还可以按位寻址。
2.3.1 P0口图2.6给出了P0口的逻辑结构,它由一个锁存器、两个三态输入缓冲器、一个多路复用开关以及控制电路和驱动电路等组成。
图2.6 P0口位结构P0口可以作为输入输出口,在实际应用中它通常作为地址/数据复用总线。
在访问外部存储器时,P0口为真正的双向口。
由图2.6,当P0口输出地址/数据信息时,此时控制信号为高电平“1”,模拟开关MUX将地址/数据线与场效应管T2接通,同时与门输出有效,于是输出的地址/数据信息通过与门后将去驱动T1,同时通过反相器后驱动T2。
若地址/数据线为“1”,则T1导通,T2截止,P0口输出为“1”,反之T1截止,T2导通,P0口输出为“0”。
当数据从P0口输入时,读引脚使三态缓冲器打开,端口上的数据经缓冲器后送到内部总线。
当P0口作为通用I/O口时,CPU向端口输出数据,此时MUX开关与锁存器的相连,写信号与触发器的时钟线相连,于是内部总线上的数据经反相后出现在端,再经T2反相后输出到P0端口,输出数据经过两次倒相后相位不变,但是由于T2为漏极开路输出,故此时必须外接上拉电阻。
当P0口作输入时,由于信号即加载在T2上由被送入三态缓冲器,若该接口此前刚锁存过数据“0”,则T2是导通的,T2的输出被钳位在“0”电平,此时输入的“1”无法读入,所以当P0口作为通用I/O口时,在输入数据前,必须向端口写“1”,使T2截止。
不过当在访问外部存储器时,CPU会自动向P0口写“1”。
有时我们需要先将端口的数据读入,经过修改后再输出到端口,如果此时P0口的负载正好是晶体管的基极,并且其输出为“1”,这必然导致该引脚为低,若此时读取引脚信号,则会将刚输出的“1”误读为“0”,为了避免这类误读的错误,于是单片机还提供了读锁存器的功能。
51单片机各引脚及端口详解51单片机引脚功能:MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。
l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。
l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。
l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。
这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。
P0口有三个功能:1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。
P1口只做I/O口使用:其内部有上拉电阻。
P2口有两个功能:1、扩展外部存储器时,当作地址总线使用2、做一般I/O口使用,其内部有上拉电阻;P3口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。
有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,即:编程脉冲:30脚(ALE/PROG)编程电压(25V):31脚(EA/Vpp)接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。
在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。