上海交大工程热力学(第四版)课件 第9章 气体动力循环
- 格式:ppt
- 大小:6.90 MB
- 文档页数:45
习题提示与答案 第九章 气体动力循环9-1 活塞式内燃机定容加热循环的参数为:p 1=0.1 MPa 、t 1=27 ℃,压缩比ε=6.5,加热量q 1=700 kJ/kg 。
假设工质为空气及比热容为定值,试求循环各点的状态、循环净功及循环热效率。
提示:1-2过程为等熵压缩过程,压缩比21v v =ε;2-3过程为定容加热过程,过程热量q =c p 0ΔT ;3-4过程为等熵膨胀过程;4-1过程为定容放热过程。
循环净功: w 0=q 1-│q 2│;循环热效率:111-κt εη-=。
答案: v 1=0.861 m 3/kg ;p 2=1.37 MPa ,v 2=0.132 m 3/kg , T 2=634.3 K ;p 3=3.48 MPa ,v 3=0.132 m 3/kg ,T 3=161 2 K ;p 4=0.253 MPa ,v 4=0.861 m 3/kg ,T 4=762.4 K ;kJ/kg 9.3680=w ;527.0=t η。
9-2 若上题活塞式内燃机定容加热循环的压缩比由6.5提高到8,试求循环热效率的变化及平均吸热温度和平均放热温度的变化。
提示:循环热效率1t 11-εηκ-=;平均温度sq T Δ=m 。
答案:ΔT m1=58.8 K ,ΔT m2=14.3 K ,t η∆=3.8%。
9-3 根据习题9-1所述条件,若比热容按变比热容考虑,试利用气体热力性质表计算该循环的热效率及循环净功。
提示:w 0=q 1-│q 2│,121q q η-=t ,q =Δu ,工质可看做理想气体;热力过程终态与初态的比体积之比等于其相对比体积之比,即r1r212v v v v =,相对比体积为温度的单值函数。
答案:w 0=342.24 kJ/kg ,t η=0.489。
9-4 在活塞式内燃机中,为了保证气缸的机械强度及润滑,总是在气缸壁外面加以冷却。
如果考虑定容加热循环的T -s 图压缩过程和膨胀过程中工质与气缸壁间的热交换,根据习题9-1所给条件,则膨胀过程可近似为n =1.37的多变过程,压缩过程可近似为n =1.38的多变过程,试据此计算其状态变化及过程的功。
工程热力学讲义第9章[1].doc第9章气体和蒸汽的流动基本要求:1.深入理解喷管和扩压管流动中的基本关系式和滞止参数的物理意义,熟练运用热力学理论分析亚音速、超音速和临界流动的特点。
2.对于工质无论是理想气体或蒸汽,都要熟练掌握渐缩、渐缩渐扩喷管的选型和出口参数、流量等的计算。
理解扩压管的流动特点,会进行热力参数的计算。
3.能应用有摩擦流动计算公式,进行喷管的热力计算。
4.熟练掌握绝热节流的特性,参数的变化规律。
基本知识点:9.1 绝热流动的基本方程一、稳态稳流工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化。
二、连续性方程由稳态稳流特点, ====m m m .......21const而 vfc m =得:0=-+vdv fdf cdc 该式适用于任何工质可逆与不可逆过程三、绝热稳定流动能量方程sw gdz dcq dh δδ---=221对绝热、不作功、忽略位能的稳定流动过程得:dh cd-=22说明:增速以降低本身储能为代价。
四、定熵过程方程由可逆绝热过程方程 k pv =const得:0=+vdv kpdp五、音速与马赫数音速:微小扰动在流体中的传播速度。
定义式: sp a )(ρ=注意:压力波的传播过程作定熵过程处理。
特别的,对理想气体:kRTa = 只随绝对温度而变马赫数(无因次量):流速与当地音速的比值ac M =M>1,超音速M=1 临界音速 M<1 亚音速9.2 定熵流动的基本特性一、气体流速变化与状态参数间的关系对定熵过程,由dh=vdp ,得到:vdpcdc -= 适用于定熵流动过程。
分析:1。
气流速度增加(dc>0),必导致气体的压力下降(dp<0)。
2。
气体速度下降(dc<0),则将导致气体压力的升高(dp>0)。
二、管道截面变化的规律联立vdp cdc -=、连续性方程、可逆绝热过程方程得到:cdc Mfdf )1(2-=分析:对喷管:当M<1,因为dc>0,则喷管截面缩小df<0,称渐缩喷管。
9-6 燃气轮机装置循环用途:航空发动机尖峰电站移动电站大型轮船燃气轮机装置燃气轮机的利用燃气轮机装置简介燃气轮机示意图和理想化(布雷顿循环)23燃烧室工质:数量不变,定比热理想气体2)闭口⇒3)布雷顿循环(Brayton Cycle )图示s12341234布雷顿循环的计算Ts1234吸热量:()1p 32q c T T =−放热量:()2p 41q c T T =−热效率:12241t 1113211w q q q T T q q q T T η−−===−=−−布雷顿循环热效率的计算s1234热效率:t 12111k kp p η−=−⎛⎞⎜⎟⎝⎠循环增压比21p p π=111k kπ−=−πtηktη布雷顿循环净功的计算s1234循环增温比31T T τ=()()324134211111p p p w c T T c T T T T T c T T T T =−−−⎛⎞=−−+⎜⎟⎝⎠净1111k k k kp c T ττππ−−⎛⎞=−−+⎜⎟⎝⎠对净功的影响s123431T T τ=1111k k kkp w c T ττππ−−⎛⎞=−−+⎜⎟⎝⎠净3’4’当不变π不变τw 净但T 3 受材料耐热限制111t k kηπ−=−τ对净功的影响s31T T τ=1111k k kkp w c T ττππ−−⎛⎞=−−+⎜⎟⎝⎠净当不变τ太大πw 净π3T 太小πt ηt ηw 净存在最佳,使最大πw 净111t k kηπ−=−1T最佳增压比(w 净)的求解s1111k k kkp w c T ττππ−−⎛⎞=−−+⎜⎟⎝⎠净令opt π3T 2(1)opt ()k k w πτ−=净1T 0w π∂=∂净最大循环净功()211opt p w c T τ=−9-7 燃气轮机装置的定压加热实际循环s1234压气机:绝热压缩燃气轮机:绝热膨胀2’4’'21c 12h h h h η−=−定义:'34oi 34h h h h η−=−燃气轮机的实际循环的净功Ts12342’4’()()'''314221oi 34cw h h h h h h h h ηη=−−−−=−−净净功吸热量''2113312ch h q h h h h η−=−=−−'21c 12h h h h η−=−'34oi 34h h h h η−=−'21c 12h h h h η−=−燃气轮机的实际循环的热效率s12342’4’1'''111111oik ckk c kw q τηηπητηπ−−−==−−−净t 热效率影响燃气机实际循环热效率的因素1'''111111oik ckk c kw q τηηπητηπ−−−==−−−净t·oi ηc η'tη·π一定,τ't η·τ一定,有最佳()'opt t πη·τ()'opt t πη右移和的关系()'opt tπη()'optw π净()'optw π净()'opt tπη()'opt wπ净tητπ受材料耐热限制取最佳()'opttπη有无其它途径2T 4T 4 500o C 1344p T 4>T 2回热一、回热9-8 提高燃气轮机装置循环热效率的措施布雷顿循环回热示意图234压气机燃气轮机燃烧室回热器4R2A回热在Ts 图上的表示21344R2R2A回热度2222A R h h h h σ−=−0.6~0.9t t 1w q ηη=>净回简2R 4R 2A压气机间冷的图示23燃气轮机燃烧室间冷器5压气机62’压气机间冷在Ts 图上的表示21342’65AB t 1w q η=净间1234162’256联合工作?压气机间冷热效率的推导A B tA 1A tB 1B t 1A 1B 1A 1B 1A 1B tA tB 1A 1B 1A 1Bw w q q q q q q q q q q q q ηηηηη++==++=+++净净间tA tBηη>tA tBt ηηη>>间tA tB ηη<tA tB t ηηη<<间tA tBηη=tA tBt ηηη==间间冷+回热示意图3燃气轮机燃烧室间冷器5压气机62’回热器4R 2R间冷+回热在Ts 图上的表示21342’65t t 1w q ηη=>净间+回简4R2R再热示意图23压气机燃气轮机燃烧室1燃烧室23’5再热在Ts 图上的表示2133’4’4t t ηη<再简w w >再简5结论:再热+回热示意图123压气机燃气轮机燃烧室2回热器燃烧室14R2R53’再热+回热在Ts图上的表示2 133’4’454R2R2t+t11qqηη=−>再回回w w>再+回回再热+间冷+回热示意图1234压气机燃气轮机燃烧室2回热器间冷器燃烧室12R4R结论:再热+间冷+回热在Ts 图上的表示3T s 214t t +1w q ηη=>净再+间+回再回t t t t ηηηη>>>再+间+回再+回回简w w w w >>=再+间+回再+回回简+w w >再+间+回再回2R4R无穷多级的极限情况2 13 4两个等温过程两个等压过程+回热概括性卡诺循环2~3第9章小结活塞式内燃机循环:燃气轮机循环:提高热效率的手段:t ηη=简124w 净1’2’0 w=净动力循环的一般规律:热能代价以作功为目的升压是前提加热是手段作功是目的放热是必须顺序不可变步骤不可缺。