鲁棒控制与鲁棒控制器设计..
- 格式:ppt
- 大小:1.33 MB
- 文档页数:38
鲁棒控制理论第六章引言鲁棒控制是一种应对系统参数变化、外部干扰、测量噪声等不确定性因素的控制方法。
在工程控制中,系统的不确定性是常见的,对系统的稳定性和性能造成了挑战。
鲁棒控制理论通过设计具有鲁棒性的控制器,可以保证系统在存在不确定性的情况下仍能满足一定的性能要求。
本文将介绍鲁棒控制的基本概念、设计方法和应用示例等内容。
鲁棒性分析鲁棒性分析是鲁棒控制的基础,通过分析系统的不确定性对控制器性能的影响,评估控制器的鲁棒性。
鲁棒性分析一般包括稳定性分析和性能分析两个方面。
稳定性分析稳定性是控制系统最基本的要求。
对于鲁棒控制系统,稳定性分析主要关注系统的稳定性边界,即系统参数变化在何种范围内仍能保持稳定。
常用的鲁棒稳定性分析方法包括结构化奇異值理论和小结构摄动方法等。
性能分析除了稳定性,控制系统的性能也是重要的考虑因素。
性能分析通常包括鲁棒性能和鲁棒鲁棒性能两个方面。
鲁棒性能是指系统在存在不确定性的情况下,能否满足一定的性能指标。
通过分析不确定性对闭环系统传递函数的影响,可以评估系统的鲁棒性能。
鲁棒鲁棒性能是指系统在存在不确定性的情况下,能够满足给定的鲁棒鲁棒性能规范。
鲁棒鲁棒性能设计方法包括鲁棒饱和控制器设计方法和鲁棒H-infinity控制器设计方法等。
鲁棒控制设计鲁棒控制设计是鲁棒控制理论的核心内容。
鲁棒控制设计方法包括鲁棒控制设计和鲁棒控制设计方法。
鲁棒控制设计方法鲁棒控制设计方法是通过设计鲁棒控制器来实现鲁棒控制的方法。
鲁棒控制设计方法通常分为线性鲁棒控制和非线性鲁棒控制两类。
线性鲁棒控制设计方法中,常用的方法包括μ合成方法、玛尔科夫参数跟踪方法,以及基于奇異值方法的设计等。
非线性鲁棒控制设计方法中,常用的方法包括滑模控制、自适应控制、模糊控制和神经网络控制等。
鲁棒控制设计鲁棒控制设计是指将鲁棒控制理论应用于实际控制系统中,并进行控制器设计的过程。
鲁棒控制设计需要考虑系统的性能要求、鲁棒性要求和控制器结构等因素。
鲁棒控制原理及应用举例摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。
关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统经典的控制系统设计方法要求有一个确定的数学模型。
在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。
但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。
对许多要求不高的系统,这样的数学模型已经能够满足工程要求。
然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。
因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。
由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。
随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。
设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U中的每一对象都保持不变,则称系统具有鲁棒性。
鲁棒控制原理及应用举例摘要:本文简述了鲁棒控制的由来及其发展历史,强调了鲁棒控制在现代控制系统中的重要性,解释了鲁棒控制、鲁棒性、鲁棒控制系统、鲁棒控制器的意义,介绍了鲁棒控制系统的分类以及其常用的设计方法,并对鲁棒控制的应用领域作了简单介绍,并举出实例。
关键词:鲁棒控制鲁棒性不确定性设计方法现代控制系统经典的控制系统设计方法要求有一个确定的数学模型。
在建立数学模型的过程中,往往要忽略许多不确定因素:如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中不考虑高阶模态的影响等。
但经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似。
对许多要求不高的系统,这样的数学模型已经能够满足工程要求。
然而,对于一些精度和可靠性要求较高的系统,如导弹控制系统设计,若采用这种设计方法,就会浪费了大量的人力物力在反复计算数弹道、调整控制器参数以及反复试射上。
因此,为了解决不确定控制系统的设计问题,科学家们提出了鲁棒控制理论。
由于鲁棒控制器是针对系统工作的最坏情况而设计的,因此能适应所有其它工况,所以它是解决这类不确定系统控制问题的有力工具。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
上世纪60年代,状态空间结构理论的形成,与最优控制、卡尔曼滤波以及分离性理论一起,使现代控制理论成了一个严密完整的体系。
随着现代控制理论的发展,从上世纪80年代以来,对控制系统的鲁棒性研究引起了众多学者的高度重视。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
通常说一个反馈控制系统是鲁棒的,或者说一个反馈控制系统具有鲁棒性,就是指这个反馈控制系统在某一类特定的不确定性条件下具有使稳定性、渐进调节和动态特性保持不变的特性,即这一反馈控制系统具有承受这一类不确定性影响的能力。
设被控系统的数学模型属于集合D,如果系统的某些特性对于集合U中的每一对象都保持不变,则称系统具有鲁棒性。
摘要鲁棒控制一直是国际自控界的研究热点,对于一个控制系统,若使得闭环系统是稳定的,则有必要在设计稳定化控制器的时候,考虑可能出现的不确定因素以及时间滞后因素,这就是线性不确定时滞系统的鲁棒控制器设计问题。
本文的主要研究内容包括:首先综述了鲁棒控制理论的发展和线性矩阵不等式方法的发展现状;然后针对线性不确定系统和线性不确定时滞系统,研究这些系统的状态反馈鲁棒控制器的设计方法,基于线性矩阵不等式(LMI)和Lyapunov稳定性理论,研究线性不确定系统、线性不确定时滞无关系统以及线性不确定时滞相关系统的渐近稳定的充分条件,得到它们的鲁棒控制器设计方法,并根据设计实例进行了仿真研究,结果表明系统稳定。
关键词:鲁棒控制;不确定性;线性时滞系统;状态反馈AbstractRobust control is the focus in the research of Internationally controlled sector,for a control system, if makes its closed-loop system is stable,it will be necessary to consider the possible uncertain and time-delay factors when we design stability controllers. This is design problem of linear uncertain time-delay systems robust controller.Summarily the contents of this paper are outlined as follows:first, it summarize the development of robust control theory and linear matrix inequality approach; then,for the linear uncertain system and the linear uncertain time-delay systems research the robust stability conditions and design technique of robust controller for these systems, base on the linear matrix inequality(LMI) and Lyapunov stability theory, a sufficient condition for linear uncertain system,linear uncertain delay-independent system and linear uncertain delay-dependent system to be asymptotically stable is presented, getting the design technique of their controller, and according to design examples and the simulation study ,the results show that the system is stable.Key words: robust control; uncertainty; linear time-delay system; state feedback目录第1章概述 (1)1.1 时滞系统概述 (1)1.2 鲁棒控制理论概述 (2)1.3 本文研究的主要内容 (5)第2章预备知识 (6)2.1 线性矩阵不等式基础 (6)2.2 一些常用的基本引理 (10)2.3 本章小结 (11)第3章线性时滞系统时滞无关的状态反馈控制 (12)3.1 引言 (12)3.2 线性不确定系统的鲁棒控制器设计 (12)3.3 线性不确定时滞系统时滞无关鲁棒控制器设计 (15)3.4 具有时滞项不确定的线性时滞系统时滞无关鲁棒控制器设计 (19)3.5 本章小结 (23)第4章线性时滞系统时滞相关的状态反馈控制 (24)4.1 引言 (24)4.2 线性不确定时滞系统时滞相关鲁棒控制器设计 (24)4.3 本章小结 (30)结论 (31)参考文献 (32)致谢 (33)附录 (34)第1章概述1.1 时滞系统概述时滞是客观世界和工程技术中普遍存在的问题。
最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
鲁棒控制当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。
根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
由于工作状况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。
如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内外科研人员的研究课题。
鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。
然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动。
因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。
现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。
其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。
一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。
鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围。
一些算法不需要精确的过程模型,但需要一些离线辨识。
一般鲁棒控制系统的设计是以一些最差的情况为基础,因此一般系统并不工作在最优状态。
常用的设计方法有:INA方法,同时镇定,完整性控制器设计,鲁棒控制,鲁棒PID控制以及鲁棒极点配置,鲁棒观测器等。
鲁棒控制方法适用于稳定性和可靠性作为首要目标的应用,同时过程的动态特性已知且不确定因素的变化范围可以预估。
控制系统鲁棒性分析控制系统是应用于工程领域的一种重要技术,用于实现对系统行为的精确控制。
然而,在实际应用中,系统可能会受到外部扰动和内部参数变化的影响,导致系统性能下降甚至失效。
为了解决这一问题,控制系统的鲁棒性分析变得尤为重要。
本文将介绍控制系统鲁棒性分析的概念、目的、方法以及相关应用。
一、概述控制系统鲁棒性是指系统对参数变化、扰动和不确定性的适应能力,即使在面对这些变化时,系统仍能保持稳定性、可控性和鲁棒性。
鲁棒性分析旨在评估和提高控制系统的鲁棒性能力,通过对系统的特性进行分析和优化,以保证系统在不确定环境下的可靠性和稳定性。
二、鲁棒性分析的目的控制系统鲁棒性分析的主要目的是预测和评估系统对不确定性和变化的响应能力,发现和解决可能导致系统不稳定或性能下降的问题。
通过鲁棒性分析,可以为控制系统的设计、调试和优化提供指导,从而提高系统的稳定性和可控性。
三、鲁棒性分析方法1. 频域分析频域分析是一种常用的鲁棒性分析方法,通过研究系统的频率响应和稳定边界,评估系统对频率扰动的抗干扰能力。
其中,包括经典的辐射圆法、奈奎斯特稳定判据等方法。
通过频域分析,可以得到系统的带宽、相位余量等指标,为鲁棒控制器设计提供依据。
2. 时域分析时域分析是一种通过研究系统的时态响应,评估系统对时域扰动的鲁棒性能力。
时域分析方法包括传输函数、状态空间、脉冲响应等分析方法,在控制系统设计中常用于系统的性能评估和参数调试。
3. 鲁棒控制器设计鲁棒控制器设计是控制系统鲁棒性分析的重要内容之一。
鲁棒控制器可以通过增加控制器的鲁棒性来提高整个系统的鲁棒性能力。
通常采用的方法包括H∞控制器设计、μ合成控制器设计等。
四、鲁棒性分析的应用控制系统鲁棒性分析广泛应用于工业自动化、航空航天、机械制造等领域。
例如,在飞机的飞行控制系统中,鲁棒性分析可以提高飞行控制系统对风速变化、负载扰动等的抗干扰能力,保证飞机的飞行稳定性;在过程控制中,鲁棒性分析可以提高控制系统对工艺参数变化、测量误差等的容错能力,确保工艺过程的稳定性和一致性。
《鲁棒控制与鲁棒控制器设计》鲁棒控制是指在系统存在不确定性和外部干扰的情况下仍然能够保证系统稳定性和性能的控制方法。
在现实生活中,控制系统往往会受到各种不确定因素的影响,如参数变化、外部扰动、测量误差等。
鲁棒控制的目标就是在这些不确定性的情况下,保持系统的稳定性和性能。
鲁棒控制器设计是实现鲁棒控制的关键环节。
其设计目标是要求控制器能够在不确定性和外部干扰的情况下仍然能够保持系统的稳定性和性能。
鲁棒控制器设计的方法有很多种,下面介绍两种常见的设计方法:1.H∞鲁棒控制H∞鲁棒控制是一种基于频域的鲁棒控制方法。
它通过最小化系统输入输出的γ范数来设计控制器,使系统对不确定性和外部干扰具有鲁棒稳定性和鲁棒性能。
H∞鲁棒控制的设计流程一般包括以下几个步骤:首先,建立系统模型,获取系统的传递函数;然后,根据系统模型设计一个传递函数为V的鲁棒性能权值V;接着,利用V来计算问题的解;最后,根据问题的解设计出最优的鲁棒控制器。
2.μ合成鲁棒控制μ合成鲁棒控制是一种基于频域分析的鲁棒控制方法。
它通过合成满足一定性能要求的不确定性权值函数,来设计鲁棒控制器。
μ合成鲁棒控制的基本思想是先构造正向控制律,使得系统的输出能够满足给定性能要求;然后,构造反向控制律,抵消系统的不确定性和外界干扰,使得系统具有鲁棒稳定性。
以上是两种常见的鲁棒控制器设计方法,它们都能够有效地确保系统在不确定性和外部干扰的情况下仍能保持稳定性和性能。
在实际应用中,根据具体系统的特点和需求,可以选择合适的鲁棒控制器设计方法来解决问题。
总结起来,鲁棒控制器设计是鲁棒控制的关键环节之一、通过合适的设计方法,能够使系统在面对不确定性和外部干扰的情况下仍然能够保持稳定性和性能。
在实际应用中,我们应根据具体情况选择合适的鲁棒控制器设计方法,以满足系统的要求。