初一上册数学代数式求值试题
- 格式:docx
- 大小:11.70 KB
- 文档页数:10
提技能·题组训练求代数式的值1.已知m=1,n=0,则代数式m+n的值为( )A.-1B.1C.-2D.2【解析】选B.当m=1,n=0时,m+n=1+0=1.2.当x=-1时,代数式x2-2x+7的值是( )A.10B.8C.6D.4【解析】选A.x=-1时,x2-2x+7=(-1)2-2×(-1)+7=1+2+7=10.【易错提醒】如果代入的值是负数,要注意加上括号,以免在符号上出错.如本题代入后等于1+2+7而不是-1-2+7.3.如果a+b=2,那么代数式3a+3b的值是( )A.6B.5C.4D.12【解析】选A.因为a+b=2,所以3(a+b)=3×2=6.【变式训练】若m,n互为相反数,则5m+5n-5的值为( )A.-5B.0C.5D.15【解析】选A.由题意得m+n=0,所以5m+5n-5=5(m+n)-5=5×0-5=-5.4.若a-2b=3,则2a-4b-5= .【解析】2a-4b-5=2(a-2b)-5=2×3-5=1.答案:1【互动探究】若2+a-2b=0,那么2a-4b-5的值是多少?【解析】因为2+a-2b=0,所以a-2b=-2,所以2a-4b-5=2(a-2b)-5=2×(-2)-5=-9.【知识归纳】整体代入法求代数式的值最常用的方法就是代入法,即把字母所表示的数值直接代入,计算求值.有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的方法经常用到.5.当x=-7时,代数式ax 7+bx 5+cx 3-3的值为7,其中a,b,c 为常数,当x=7时,这个代数式的值是 . 【解析】因为当x=-7时,代数式ax 7+bx 5+cx 3-3的值为7,所以-77a-75b-73c-3=7,即:77a+75b+73c=-10,所以当x=7时,ax 7+bx 5+cx 3-3=77a+75b+73c-3=-13.答案:-136.已知ab=1,b-a=3,求ab-a+b 的值.【解析】当ab=1,b-a=3时,ab-a+b=ab+b-a=1+3=4.7.已知a−ba+b =3,求代数式2(a−b)a+b -3(a+b)5(a−b)的值. 【解析】因为a−b a+b=3,所以a+b a−b =13. 所以2(a−b)a+b -3(a+b)5(a−b)=2×a−b a+b -35×a+b a−b =2×3-35×13=6-15=295. 求代数式的值的应用1.某种导火线的燃烧速度是0.81cm/s,爆破员跑开的速度是5m/s,为在点火后使爆破员跑到150m 以外的安全地区,导火线的长度可以为 ( )A.22cmB.23cmC.24cmD.25cm【解析】选D.导火线的长度是与安全地区的路程相关,设点火后使爆破员跑到xm×0.81cm.当x=150时,导火线以外的安全地区,那么所需导火线的长度至少为x5×0.81=24.3(cm),故导火线的长度至少为24.3cm,只有D项符合要的长度为1505求.2.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.【解题指南】解答本题的两个步骤(1)按运算程序列出代数式.(2)把x的值代入所列的代数式.【解析】由图可知输出的结果为(x+3)2-5,当x=2时,(x+3)2-5=(2+3)2-5=25-5=20.答案:203.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有个实心圆.【解析】第(1)个图形中有4+2×0=4个实心圆;第(2)个图形中有4+2×1=6个实心圆;第(3)个图形中有4+2×2=8个实心圆;…,第(n)个图形中有4+2×(n -1)个实心圆;所以第20个图形中有4+2×19=42个实心圆.答案:424.若梯形的上底为a,下底为b,高为h,则梯形面积为,当a=2cm,b=4 cm,h=3cm时,梯形的面积为.【解析】梯形的面积公式为S=(上底+下底)×高÷2, 即S=12(a+b)h,当a=2cm,b=4cm,h=3cm时,S=12×(2+4)×3=12×6×3=9(cm2).答案:12(a+b)h 9cm25.一块三角尺的形状和尺寸如图所示,a为直角边的长,r为圆孔的半径.(1)求阴影部分的面积S.(2)当a=8cm,r=1.5cm时.求S的值(π取3.14).【解析】(1)因为三角形的面积为12a2,圆的面积为πr2,所以阴影部分的面积S=12a2-πr2.(2)当a=8cm,r=1.5cm,π取3.14时,S=12a2-πr2=12×82-3.14×1.52=32-7.065=24.935(cm2). 【错在哪?】作业错例课堂实拍已知a=12,b=14,求代数式a+2b的值.(1)找错:从第________步开始出现错误.(2)纠错:________ ________________________答案: (1)①(2) 1111+=+⨯=+=a2b21.2422。
初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。
解析:把x = 1 代入式子,得到2×1 + 3 = 5 。
2. 题目:若y = -2 ,求3y²- 4 的值。
解析:将y = -2 代入,3×(-2)²- 4 = 8 。
3. 题目:当a = 5 时,求6a - 1 的值。
解析:把a = 5 代入,6×5 - 1 = 29 。
4. 题目:已知b = 4 ,求7b + 2 的值。
解析:因为b = 4 ,所以7×4 + 2 = 30 。
5. 题目:若c = 0 ,求8c - 5 的值。
解析:由于c = 0 ,所以8×0 - 5 = -5 。
6. 题目:当d = -3 时,求5d + 7 的值。
解析:把d = -3 代入,5×(-3) + 7 = -8 。
7. 题目:已知e = 2 ,求9e - 6 的值。
解析:将e = 2 代入,9×2 - 6 = 12 。
8. 题目:若f = -1 ,求10f + 8 的值。
解析:把f = -1 代入,10×(-1) + 8 = -2 。
9. 题目:当g = 3 时,求4g - 9 的值。
解析:把g = 3 代入,4×3 - 9 = 3 。
10. 题目:已知h = 5 ,求6h - 10 的值。
解析:因为h = 5 ,所以6×5 - 10 = 20 。
11. 题目:若i = 0 ,求7i - 3 的值。
解析:由于i = 0 ,所以7×0 - 3 = -3 。
12. 题目:当j = -2 时,求8j + 5 的值。
解析:把j = -2 代入,8×(-2) + 5 = -11 。
13. 题目:已知k = 1 ,求5k - 7 的值。
解析:将k = 1 代入,5×1 - 7 = -2 。
14. 题目:若l = -3 ,求6l + 4 的值。
初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
简单带入求值计算题一、与课本衔接基础题选择题1、 已知a-b=-3,c+d=2, 则(b+c) - (a-d) 为( )。
A. -1B. -5C. 5D. 12、 已知a 2-2b-1=0. 则多项式2a 2-4b+2的值等于( )。
A.1B. 4C.-1D. -43、 当x=-3时,多项式ax 5+bx 3+cx-5的值是7, 那么当x=3时,它的值是( )。
A. -3B. -7C. 7D. -17 4、 已知代数式24)35(2dx x cx bx ax x +++, 当x=1时,值为1.那么该代数式当x=一1时的值是( )。
A. 1B. -1C. 0D. 2填空题1、若多项式2x 2+3x+7的值为10, 则多项式6x 2+9x-7的值为 。
2、已知a 2+2ab=-8,b 2+2ab=14, 则a 2+4ab+b 2= :a 2-b 2= 。
3、若x+y=7,y+z=8,z+x=9, 则x+y+z = 。
4、已知x 2+x+1=0, 则x 2000+x 1999+x 1998的值为 。
5、当x=1时,代数式px+qx 的值为2003, 则x=-1时,px+qx 。
6、已知当x=-2时,代数式ax 3+bx+1的值为6, 那么当x=2时,代数式ax 3+bx+1的值是多少 。
7、已知2x+y=10xy, 求代数式yxy x y xy x +-++4224= 。
8、a 2+6a+36=0,则a 3= 。
答案:选择题1、C ;2、B ;3、D ;4、B填空题1、2;2、0,0;3、12;4、0;5、-2001;6、-4;7、27 8、216 a 2+6a=-36 a 2=-6a-36a 3=a •a 2=a(-6a-36)=-6(a2+6a) =-6×36=216二、拔高题(竞赛题)1、已知x-2y=2,求8463---+y x y x 的值2、已知x 1-y 1=3,则y xy x y xy x ---+2232的值3、已知a 4+a 3+a 2+a+1=0,求a 5的值。
3.3代数式的值(一)一、基础训练1.用__________代替代数式中的________,按照代数式中的运算关系计算,所得的结果是代数式的值.2.当x=_______时,代数式53x的值为0.3.当a=4,b=12时,代数式a2-ba的值是___________.4.小张在计算31+a的值时,误将“+”号看成“-”号,结果得12,那么31+a的值应为_____________.5.三角形的底边为a ,底边上的高为h ,则它的面积s=_______,若s=6cm2,h=5cm,则a=_______cm.二、典型例题例1 已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.分析首先将原代数式变形成(a2+5ab)+3(3b2+2ab),然后将整体代入.例2当m=2,n=1时,(1)求代数式(m+2)2和m2+2mn+n2的值;(2)写出这两个代数式值的关系.(3)当m=5,n=-2时,上述的结论是否仍成立?(4)根据(1)(2),你能用简便方法算出:当m=0.125,n=0.875时,m2+2mn+n2的值吗?分析通过代入具体数值,得知(m+2)2=m2+2mn+n2,再运用此等式求值.三、拓展提升例小明读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示小明两天共读了多少页;(2)求当m=120时,小明两天读的页数.四、课后作业1.当a =2,b =1,c =-3时,代数式2c b a b-+的值为___________. 2.若x =4时,代数式x 2-2x +a 的值为0,则a 的值为________.3.若5a b +=,6ab =,则ab a b --=________.4.当7x =时,代数式357ax bx +-=.则当7x =时,35ax bx ++=_____.5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元.现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为___________________.当s =6千米时,运费为________元.6.若代数式2a 2+3a +1的值为5,求代数式4a 2+6a +8的值.7.已知2a b a b+=-,求224()a b a b a b a b +---+的值.8.从2开始,连续的偶数相加,和的情况如下表:n .并由此计算下列各题:(1) 2+4+6+8+…+202(2) 126+128+130+…+3003.3代数式的值(一)一、基础训练1.具体数值字母2. 53. 134. 505. 12ah125二、典型例题例1a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 例2 (1)99(2)相等(3)成立(4)1三、拓展提升例3(1)715m(2)56四、课后作业1.4 32.-83. 14. 175. 20+5s50元6. 167.7 3 88.S=n(n+1)(1)101×(101+1)=10302;(2)150×(150+1)-62(62+1)=18744.3.3代数式的值(二)一、基础训练1.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为______.2.填表:÷2+2x( )+1( )2输出( )输入y 输入x.3.右图是一个数值转换机,写出图中的输出结果:输入2- 0 0.5 输出4.当x .5.当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________. 二、典型例题 例1根据右边的数值转换器,按要求填写下表. x 1- 0 1 2- y 1 12- 0 12 输出 例2 填写下表,并观察下列两个代数式的值的变化情况: n 1 2 3 4 5 6 7 8 …5n +6 …n 2 …(1)(2)估计一下,哪个代数式的值先超过100?三、拓展提升例 已知311=-y x ,求代数式yxy x y xy x ---+2232的值. 分析 变形后运用整体的思想带入,可使分子分母同除以“xy ”.四、课后作业1.当x =1,y =32,z =53时,代数式y (x -y +z )的值为_______. 2.若23250x y -+=,那么23(321)x y -+=______.2x 2 14 2x +1 9 3 12x 1163.定义a*b =ab b a+,则2*(2*2)= . 4.如图所示,某计算装置有一数据入口和计算结果出口,根据图中的程序, 计算函数值,若输入的x 值为75,则输出的结果是________.5.在下列计算程序中填写适当的数或转换步骤:6.若7:4:3::=z y x ,且182=+-z y x ,求代数式z y x -+2的值.3.3代数式的值(二)一、基础训练1.-3 y =x 2 -1≤x y =5x -2≤x ≤-1 y =-x +2 1≤x ≤2输出y 值 输入x 值2.3 1281816 17 2125443.-15 -3 0 4.45.17 5二、典型例题:例1 2 0 1 3例2 (1)6或-1 (2)n2三、拓展提升:例3 3 5四、课后作业:1.4 32.-123.3 24.3 55.略6.8。
【数学七年级上】初一上册数学《代数式求值》试题及答案七年级上册数学《代数式求值》试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为3.【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b=6.【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015=2005.【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55.【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5=1.【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a ﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m=﹣11.【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1=2.【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1=1.【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3.【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9.【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是3.【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b 的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9.【考点】代数式求值.。
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
3.2.2代数式求值同步练习题 2021-2022学年北师大版七年级数学上册A 组(基础题)一、填空题1.(1)当m =-1时,代数式2m +3的值是_______; (2)若a =4,b =10,则代数式a 3-ab 的值为_______; 2.(1)若a ,b 互为相反数,则代数式a +b -2的值为_______; (2)若m +n =-1,则(m +n )2+2m +2n 的值是_______.3.某商店购进一批茶杯,每个1.5元,则购进n 个茶杯需付款_______元.若茶杯的零售价为每个2元,则售完茶杯得2n 元,当n =300时,该商店的利润为_______元. 4.按如图所示的程序计算,若开始输入x 的值为30,则最后输出的结果是_______.二、选择题5.当m =1时,代数式m 2-2m +1的值等于() A.4 B .1 C .0 D .-1 6.已知a +b =4,则代数式1+a 2+b2的值为()A.3 B .1 C .0 D .-1 7.关于代数式2a -1a +3的值,下列说法错误的是()A.当a =12时,其值为0B.当a =-3时,其值不存在C.当a ≠-3时,其值存在D.当a =5时,其值为58.根据如图所示的流程图中的程序,当输入数据x =-2,y =1时,输出的m 值为()A.5 B .3 C .-2 D .4三、解答题9.(1)当x =6,y =4时,求下列各代数式的值. ①(x +y )(x -y );②x 2+2xy +y 2.(2)已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求|a +b |m -cd +m 的值.10.如图是一个长为a 、宽为b 的长方形,在它的四角上各剪去一个边长为x 的小正方形. (1)用代数式表示图中阴影部分的面积;(2)当a =8,b =5,x =2时,求(1)中代数式的值.B 组(中档题)一、填空题11.已知|x |=3,|y |=2,且|x -y |=y -x ,则x -y =_______ 12.(1)若-m +2n =3,则6n -3m -39的值为_______.(2)当x =1时,代数式2ax 2-3bx +8的值为18,则代数式9b -6a +2的值为_______. 13.按如图所示的程序框图计算,若开始输入的x 的值为12,我们发现第一次得到的结果为6,第2次得到的结果为3,……请你探索第2 020次得到的结果为_______.二、解答题14.已知,当x =2,y =-4时,ax 3+12by +5=2 019;当x =4,y =-12时,求代数式ax +8by 3+1 013的值.15.一个电子跳蚤从数轴上表示数a 的点出发,我们把“向右运动两个单位或向左运动一个单位”作为一次操作.如:当a =3时,则一次操作后跳蚤可能的位置有两个,表示的数分别是2和5.(1)若a =0,则两次操作后跳蚤所在的位置表示的数可能是多少? (2)若a =3,且跳蚤向右运动了20次,向左运动了n 次. ①它最后所在的位置表示的数是多少?(用含n 的代数式表示) ②若它最后所在的位置表示的数为10,求n 的值.C 组(综合题)16.全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续三年的观察,并将每年年底的观察结果记录如下表:预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,那么到第m 年年底,该地区沙漠面积将变为多少万平方千米?(2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n(n>5)年年底该地区沙漠的面积为多少万平方千米?(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?参考答案3.2.2代数式求值同步练习题 2021-2022学年北师大版七年级数学上册A 组(基础题)一、填空题1.(1)当m =-1时,代数式2m +3的值是1; (2)若a =4,b =10,则代数式a 3-ab 的值为24;2.(1)若a ,b 互为相反数,则代数式a +b -2的值为-2; (2)若m +n =-1,则(m +n )2+2m +2n 的值是-1.3.某商店购进一批茶杯,每个1.5元,则购进n 个茶杯需付款1.5n 元.若茶杯的零售价为每个2元,则售完茶杯得2n 元,当n =300时,该商店的利润为150元. 4.按如图所示的程序计算,若开始输入x 的值为30,则最后输出的结果是435.二、选择题5.当m =1时,代数式m 2-2m +1的值等于(C) A.4 B .1 C .0 D .-1 6.已知a +b =4,则代数式1+a 2+b2的值为(A)A.3 B .1 C .0 D .-1 7.关于代数式2a -1a +3的值,下列说法错误的是(D)A.当a =12时,其值为0B.当a =-3时,其值不存在C.当a ≠-3时,其值存在D.当a =5时,其值为58.根据如图所示的流程图中的程序,当输入数据x =-2,y =1时,输出的m 值为(B)A.5 B .3 C .-2 D .4三、解答题9.(1)当x =6,y =4时,求下列各代数式的值. ①(x +y )(x -y );②x 2+2xy +y 2. 解:①(x +y )(x -y )=(6+4)×(6-4)=20. ②x 2+2xy +y 2=62+2×6×4+42=100.(2)已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求|a +b |m -cd +m 的值.解:根据题意,得a +b =0,cd =1,m =±2. ①当m =2时,|a +b |m -cd +m =02-1+2=1;②当m =-2时,|a +b |m -cd +m =0-2-1-2=-3.综上所述,|a +b |m -cd +m 的值为1或-3.10.如图是一个长为a 、宽为b 的长方形,在它的四角上各剪去一个边长为x 的小正方形. (1)用代数式表示图中阴影部分的面积;(2)当a =8,b =5,x =2时,求(1)中代数式的值.解:(1)由题意可得,图中阴影部分的面积为ab -4x 2. (2)当a =8,b =5,x =2时,ab -4x 2=5×8-4×22=24.B 组(中档题)一、填空题11.已知|x |=3,|y |=2,且|x -y |=y -x ,则x -y =-1或-5. 12.(1)若-m +2n =3,则6n -3m -39的值为-30.(2)当x =1时,代数式2ax 2-3bx +8的值为18,则代数式9b -6a +2的值为__-28__. 13.按如图所示的程序框图计算,若开始输入的x 的值为12,我们发现第一次得到的结果为6,第2次得到的结果为3,……请你探索第2 020次得到的结果为4.二、解答题14.已知,当x =2,y =-4时,ax 3+12by +5=2 019;当x =4,y =-12时,求代数式ax +8by 3+1 013的值.解:当x =2,y =-4时,ax 3+12by +5=2 019,所以23·a +12×(-4)b +5=2 019.所以8a -2b +5=2 019.所以8a -2b =2 014.当x =4,y =-12时,ax +8by 3+1 013=4a +8b ×(-12)3+1 013=4a -b +1 013=12(8a -2b )+1013=12×2 014+1 013=1 007+1 013=2 020.15.一个电子跳蚤从数轴上表示数a 的点出发,我们把“向右运动两个单位或向左运动一个单位”作为一次操作.如:当a =3时,则一次操作后跳蚤可能的位置有两个,表示的数分别是2和5.(1)若a =0,则两次操作后跳蚤所在的位置表示的数可能是多少? (2)若a =3,且跳蚤向右运动了20次,向左运动了n 次. ①它最后所在的位置表示的数是多少?(用含n 的代数式表示) ②若它最后所在的位置表示的数为10,求n 的值.解:(1)当a =0时,一次操作后跳蚤所在的位置表示的数可能是2或-1,所以两次操作后跳蚤所在的位置表示的数可能是2+2=4,2-1=1或-1+2=1,-1-1=-2.所以两次操作后跳蚤所在的位置表示的数可能是4或1或-2. (2)①它最后所在的位置表示的数为a +20×2-n =3+40-n =43-n . ②若它最后所在的位置表示的数为10,则43-n =10,解得n =33.C 组(综合题)16.全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续三年的观察,并将每年年底的观察结果记录如下表:预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,那么到第m 年年底,该地区沙漠面积将变为多少万平方千米? (2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n (n >5)年年底该地区沙漠的面积为多少万平方千米?(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少? 解:(1)第m 年年底的沙漠面积为100.2+0.2(m -1)=(0.2m +100)万平方千米. (2)104-0.6n (n >5).答:到第n 年年底该地区沙漠的面积为(104-0.6n )万平方千米. (3)当n =90时,104-0.6n =50,50÷100=12.答:第90年年底,该地区沙漠面积占原有沙漠面积的12.。
代数式求值专题12221:已知: m= ,n=-1, 求代数式 3(m n+mn)-2(m n-mn)-m n 的值2:已知: x+ 1 =3, 求代数式 (x+ 1) 2+x+6+ 1的值x x x3:已知当 x=7 时, 代数式 ax 5+bx-8=8, 求 x=7 时, ax 5bx 8的值 .224:已知x yz, 则代数式x 2 y 3z2==xy 2 yz 3 yz3 45:已知 a=3b,c=4a 求代数式2a9b2c的值5a 6b c6:已知 a,b 互为相反数, c,d 互为倒数, x 的绝对值等于 1,求代数式 a+b+x 2- cdx 的值7:设 a+b+c=0,abc >0, 求bc + c a + a b 的值abc22219:5a -4a +a - 9a -3a -4+4a ,此中 a=- ;10:5ab - 9a 2b+ 1a 2b - 11ab - a 2b -5,此中 a=1, b=-2;2 2 422111:( 3a - ab+7)-( 5ab - 4a +7),此中 a=2, b=;12: 1 x -2(x - 1y 2)+3(- 1 x+ 1y 2),此中 x=-2,y=- 2;2 3 2 9 3221213:- 5abc -{2a b - [3abc -2(2ab - a b )]} ,此中 a=-2,b=- 1, c14:证明多项式 16+a -{8a -[a -9- 3( 1- 2a )]} 的值与字母 a 的取值没15:因为看错了符号, 某学生把一个代数式减去 x 2 +6x -6 误看作了加法计算正确的结果应当是多少?16:当 x 2, y1时,求代数式 1 x 2 xy y 2 1 的值。
2217:已知 x 是最大的负整数, y 是绝对值最小的有理数,求代数式2 x3 5x。
1 3 1318:已知x1,求代数式 x1999x1998x1997x 1 的值。
1当x=5时,代数式x-3的值是多少?
分析:当多项式不需要化简时,直接代入计算即可。
本题直接将x=5代入计算可得:5-3=2。
2求代数式的值:2a+(-2a+5)-(-3a+2),其中a=1。
分析:根据同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并,合并同类项的法则是系数相加作为系数,字母和字母的指数不变,然后代入a的值即可求出结果。
当a=1时,原式=3×1+3=6。
3若a+2b=3,则代数式2a+4b+10的值是多少?
分析:本题考查了代数式求值,整体思想的利用是解题的关键。
先算乘法,再算加减;或者利用提公因式法把原式变形,再把a+2b当作已知条件求出代数式的值。
4已知3a-7b=-3,求代数式2(2a+b-1)-5(4b-a)-3b的值。
分析:此题考查了整式的加减-化简求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键。
原式去括号合并后,将3a-7b=-3代入计算即可求出值。
5老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(x^2+ax-5)(x-2)=x^3+(b-2)x^2-6x+10。
求a、b的值。
初中《代数式求值》精选练习题及答案根据已知,求代数式的值:1、已知:x=√3 + √3 ,求代数式(x+1)(x-1)的值;2、已知x 2 +1= x ,求代数式x 1001 -x 1000的值;3、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值;4、已知a 2 = √2 √1+a 2 -1,求代数式a 2024 + a −2024的值;5、已知t ≠0,且 1t - t =1,求代数式t 3 +2t 2 +3003的值;6、已知9x2 +30x+23=0,求代数式(3x +4)2 + 1(3x+4)2 的值;7、已知m 2 -13m =n ,n 2 -13n =m ,求代数式√m 2+n 2+1 的值;8、已知2t +√2 =√3 ,求代数式t 6 -2t 4的值;9、已知3m 2 +5m -11=0,求代数式(4m+7)(2m-5)+m (m+21)+3 的值;10、已知x+√3 =2,求代数式4x 2-〔6x-(5x-8)-x 2〕+3x-〔5x-2(2x-1)〕的值。
参考答案1、已知:x=√3+√3,求代数式(x+1)(x-1)的值;解:已知x=√3+√3=√3+ √33=4√33那么x2=(4√33)2= 163----------①代数式(x+1)(x-1)=x2 -1将①代入= 163-1= 1332、已知x2 +1=x,求代数式x1001 -x1000的值;解:已知x2 +1=x变换一下,得x2-x= -1----------①再变换,得x2 =x -1------------②又x3=x2·x将②代入x3=(x -1)·x=x2-x将①代入故:x3= -1------------③代数式x1001 -x1000=x999+2 -x999+1=x999·x2 -x999·x=x 999(x 2 -x )将①代入=x 999·(-1)= -x 999= -(x 3)333将③代入= -(−1)333 = -(-1)= 13、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值; 解:m =√493 +√563 +√643m=(√73)2 +√73 √83 + (√83)2-------------------① 将①等号两边同时取分母为1,得 m 1 =(√73)2 +√73 √83 + (√83)21等号右边分子分母同时乘以√83 -√73,得m 1 =[(√73)2 +√73 √83 + (√83)2](√83 −√73)√83 −√73m 1 = √83)3√73)3√83 −√73 = √83 −√73 = √83 −√73 等号两边同时取倒数所以:1m = √83 -√73故: 1m 2 = (√73)2 -2√73 √83 + (√83)2-----------② 由① -②,得m - 1m 2 = 3√73 √833·2= 3√73=6√74、已知a2=√2√1+a2 -1,求代数式a2024+ a−2024的值;解:已知a2=√2√1+a2 -1变换一下,得a2+1=√2√1+a2等号两边同时平方,得a4+2a2+1= 2(1+a2)a4+2a2+1= 2+2a2化简,得a4=1代数式a2024+ a−2024=a4×506+ a4×(−506)=(a4)506+(a4)−506将a4=1代入= 1506+ 1−506=1+1=25、已知t≠0,且1- t =1,求代数式t3 +2t2 +3003的值;t解:已知t≠01- t =1t等号两边同时乘以t,得1 -t2=t变换一下,得t2=1 - t---------------------①代数式t3 +2t2 +3003=t2·t +2t2 +3003将①待入=(1 - t)·t +2(1 - t)+3003 =t -t2 +2-2t +3003再将①待入=t -(1- t) +2-2t +3003= t -1 +t +2 -2t +3003=(t +t -2t)+(-1 +2 +3003)=30046、已知9x2+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;解:设3x+4 =t则x= 13(t -4)---------------①已知9x2+30x+23=0将①代入9×[13(t−4)]2+30×[ 13(t−4)]+23=0(t−4)2+10(t -4)+23=0t2 -8t +16 +10t -40 +23=0 t2 +2t -1=0等号两边同时除以t,得t +2 - 1t=0变化一下,得1t- t =2等号两边同时平方,得1t2-2 + t2=4整理,得1t2+ t2= 6因为3x+4 =t故:(3x+4)2+1(3x+4)2=67、已知m2 -13m =n,n2 -13n =m,求代数式√m2+n2+1的值;解:m2 -13m=n,n2 -13n=m则变换一下,得m2 =13m +n----------------①n2 =m +13n----------------②① -②,得m2 -n2 =12(m-n)(m +n)(m -n)=12(m-n)(m +n)(m -n)-12(m-n)=0(m -n)〔(m +n)-12〕=0则有:m -n =0,或(m +n)-12=0即:m = n 或m +n =12(1)当m = n时已知m2 =13m +nm2 =13m +m=14m解得m=0,或m=14第一种情况:m=n=0代数式√m2+n2+1将m=n=0代入=√1=1第二种情况:m=n=14代数式√m2+n2+1将m=n=0代入=√142+142+1=√393(2)当m +n =12时① +②,得m2 +n2 =14(m+n)=14×12代数式√m2+n2+1=√14×12+1=√(13+1)(13−1)+1= √132−1+1=138、已知2t +√2=√3,求代数式t6 -2t4的值;解:2t +√2=√3t = √3−√22所以:t2= 5−2√64----------------①①两边同时平方,得t4= 49−20√616------------------------②代数式t6 -2t4=t4(t2 -2)将①,②代入= 49−20√616(5−2√64-2)= 49−20√616×−3−2√64=−3×49+(−20√6)×(−2√6)+(60√6−98√6)64= 93−38√6649、已知3m2 +5m -11=0,求代数式(4m+7)(2m-5)+m(m+21)+3 的值;解:3m2 +5m -11=0变换一下,得3m2 +5m =11------------①代数式(4m+7)(2m-5)+m(m+21)+3=8m2 -20m+14m -35 +m2 +21m+3=9m2 +15m -32=3(3m2 +5m)-32将①代入=3×11-32=110、已知x+√3=2,求代数式4x2-〔6x-(5x-8)-x2〕+3x-〔5x-2(2x-1)〕的值。
初一数学整式加减代数式求值问题专题训练(附答案)一.选择题(共15小题)1.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,12.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.64.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±75.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.76.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=2 7.当x=﹣1时,代数式3x+1的值是()A.﹣1B.﹣2C.4D.﹣48.已知a2﹣3a﹣7=0,则3a2﹣9a﹣1的值为()A.18B.19C.20D.219.已知a+b=,则代数式2a+2b﹣3的值是()A.2B.﹣2C.﹣4D.﹣310.已知1﹣a2+2a=0,则的值为()A.B.C.1D.511.按如图所示的程序计算,若开始输入n的值为1,则最后输出的结果是()A.3B.15C.42D.6312.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3B.6C.4D.213.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3B.﹣2C.0D.714.已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202115.按如图所示的运算程序,能使输出的结果为3的是()A.x=1,y=2B.x=﹣2,y=﹣2C.x=3,y=1D.x=﹣1,y=﹣1二.填空题(共16小题)16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.17.若a﹣2b=3,则9﹣2a+4b的值为.18.已知4a+3b=1,则整式8a+6b﹣3的值为.19.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.20.设﹣1≤x≤2,则|x﹣2|﹣|x|+|x+2|的最大值与最小值之差为.21.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.22.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.23.当代数式x2+3x+5的值等于7时,代数式3x2+9x﹣2的值是.24.当x=3时,代数式px3+qx+1的值为2019,则当x=﹣3时,代数式px3+qx+1的值是.25.已知x2+2x﹣1=0,则3x2+6x﹣2=.26.若x2+x﹣1=0,则x3+2x2+3=.27.已知a﹣b=2,那么2a﹣2b+5=.28.若x+y=10,xy=1,则x3y+xy3的值是.29.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.30.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.31.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.三.解答题(共9小题)32.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,其中,四个角部分是半径为(a﹣b)米的四个大小相同的扇形,中间部分是边长为(a+b)米的正方形.(1)用含a、b的式子表示需要硬化部分的面积;(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).33.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.34.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?35.当x=2时,式子x2+(c+1)x+c的值是﹣9,当x=﹣3时,求这个式子的值.36.先阅读下面例题的解题过程,再解决后面的题目.例:已知9﹣6y﹣4y2=7,求2y2+3y+7的值.解:由9﹣6y﹣4y2=7,得﹣6y﹣4y2=7﹣9,即6y+4y2=2,所以2y2+3y=1,所以2y2+3y+7=8.题目:已知代数式14x+5﹣21x2的值是﹣2,求6x2﹣4x+5的值.37.如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果将两条小路铺上地砖,选用地砖的价格是每平米a元,(1)求买地砖至少需要多少元?(用含a,x的式子表示)(2)计算a=40,x=2时,地砖的费用.38.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?39.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.40.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一.选择题(共15小题)1.解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选:D.2.解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.4.解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a﹣b=3﹣(﹣4)=7;(2)a=﹣3,b=﹣4时,a﹣b=﹣3﹣(﹣4)=1;∴代数式a﹣b的值为1或7.故选:A.5.解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.6.解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.7.解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.8.解:∵a2﹣3a﹣7=0,∴a2﹣3a=7,则原式=3(a2﹣3a)﹣1=21﹣1=20,故选:C.9.解:∵2a+2b﹣3=2(a+b)﹣3,∴将a+b=代入得:2×﹣3=﹣210.解:∵1﹣a2+2a=0,∴a2﹣2a=1,∴=(a2﹣2a)+=×1+=,故选:A.11.解:把n=1代入得:n(n+1)=2<15,把n=2代入得:n(n+1)=6<15,那n=6代入得:n(n+1)=42>15,则最后输出的结果为42,故选:C.12.解:根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017﹣2)÷6=335…5,则第2017次输出的结果为2,故选:D.13.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.14.解:∵x﹣2y=2,∴原式=3(x﹣2y)+2014=3×2+2014=2020,故选:C.15.解:A、把x=1,y=2代入得:1+4=5,不符合题意;B、把x=﹣2,y=﹣2代入得:4+4=8,不符合题意;C、把x=3,y=1代入得:9+2=11,不符合题意;D、把x=﹣1,y=﹣1代入得:1+2=3,符合题意,故选:D.二.填空题(共16小题)16.解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,故答案为:4.17.解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.18.解:∵4a+3b=1,∴8a+6b﹣3=2(4a+3b)﹣3=2×1﹣3=﹣1;故答案为:﹣1.19.解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.20.解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:121.解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.22.解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.23.解:∵x2+3x+5=7,即x2+3x=2,∴原式=3(x2+3x)﹣2=6﹣2=4.故答案为:4.24.解:∵x=3时,代数式px3+qx+1的值为2019,∴27p+3q+1=2019,∴27p+3q=2018,∴﹣27p﹣3q=﹣2018,∴当x=﹣3时,px3+qx+1=﹣27p﹣3q+1=﹣2018+1=﹣2017.故答案为:﹣201725.解:∵x2+2x﹣1=0,∴x2+2x=1,∴3x2+6x﹣2=3(x2+2x)﹣2=3×1﹣2=1.故答案为:1.26.解:由x2+x﹣1=0得x2+x=1,所以x3+2x2+3=x3+x2+x2+3=x(x2+x)+x2+3=x+x2+3=1+3=4.故答案为:4.27.解:∵a﹣b=2,∴原式=2(a﹣b)+5=4+5=9,故答案为:928.解:x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.29.解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故答案为:7.30.解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.31.解:∵2x2﹣3x=﹣1,∴6x﹣4x2+3=﹣2(2x2﹣3x)+3=﹣2×(﹣1)+3=2+3=5.故答案为:5.三.解答题(共9小题)32.解:(1)需要硬化部分的面积=(3a+b)(2a+b)﹣(a+b)2﹣π(a﹣b)2;(2)当a=30,b=10,硬化部分的面积=(90+10)×(60+10)﹣402﹣π×202=(5400﹣400π)平方米.33.解:(1)大小两个正方形的边长分别为a、b,∴阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab;(2)∵a=6,b=4,∴S=a2+b2﹣ab=×62+×42﹣×6×4=18+8﹣12=14.所以阴影部分的面积是14.34.解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的倒数等于它本身,∴m=±1,①当a+b=0;cd=1;m=1时,∴=+0×1﹣|1|=1﹣1=0;②当a+b=0;cd=1;m=﹣1时,原式=+0×(﹣1)﹣|﹣1|=﹣1﹣1=﹣2.故原式的值有两个0或﹣2.35.解:把x=2代入代数式得:4+(c+1)×2+c=﹣9,解得:c=﹣5,把c=﹣5代入得到关于x的二次三项式为:x2﹣4x﹣5.把x=﹣3代入二次三项式得:(﹣3)2﹣4×(﹣3)﹣5=9+12﹣5=16.当x=﹣3时,代数式的值为16.36.解:∵14x+5﹣21x2的值是﹣2,∴14x﹣21x2=﹣7,即2x﹣3x2=﹣1,∴3x2﹣2x=1,则6x2﹣4x+5=2×(3x2﹣2x)+5=7.37.解:(1)依题意,得32x+(20﹣x)x=32x+20x﹣x2=52x﹣x2(平方米),所以买地砖至少需要(52x﹣x2)a元;(2)当a=40,x=2时,(52x﹣x2)a=(52×2﹣22)×40=4000(元).所以当a=40,x=2时,地砖的费用是4000元.38.解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.39.解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.40.解:(1)当x=100时,方案一:100×200=20000(元);方案二:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,方案一:100×200+80(x﹣100)=80x+12000;方案二:(100×200+80x)×80%=64x+16000,答:方案一、方案二的费用为:(80x+12000)、(64x+16000)元;(3)当x=300时,①按方案一购买:100×200+80×200=36000(元);②按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),36000>35200>32800,则先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省。
代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。
a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。
6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。
(4。
1) =7,求x的值。
3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。
初一数学代数式的值试题1.已知a+3b=2,则2a+6b+3的值是________.【答案】7【解析】本题考查了求代数式的值将a+3b=2整体代入代数式即可求出代数式2a+6b+3的值.当a+3b=2时,2a+6b+3=2(a+3b)+3=4+3=7.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.2.当a=,b=2时,求下列代数式的值.(1)(a+b)2-(a-b)2;(2)a2+2ab+b2.【答案】(1)4 (2)【解析】本题考查了求代数式的值将a=,b=2直接代入这两个代数式即可求出代数式的值.当a=,b=2时:(1);(2)思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.3.已知代数式:①a2-2ab+b2;②(a-b)2.(1)当a=5,b=3时,分别求代数式①和②的值;(2)观察(1)中所求的两个代数式的值,探索代数式a2-2ab+b2和(a-b)2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值.【答案】(1)4,4;(2)a2-2ab+b2=(a-b)2;(3)10000.【解析】本题考查了求代数式的值(1)把a=5,b=3时,分别代入代数式①和②的求值;(2)由(1)得到a2-2ab+b2=(a-b)2;(3)利用(2)得到的等式把所给的式子整理为差的完全的平方的形式.(1)当a=5,b=3时,a2-2ab+b2=52-2×5×3+32=25-30+9=4,(a-b)2=(5-3)2=4;(2)可以发现a2-2ab+b2=(a-b)2;(3)128.52-2×128.5×28.5+28.52=(128.5-28.5)2=1002=10000.思路拓展:解答求代数式的值的问题,要学会替换,即将字母换成相应的数.4.如图,试用字母a、b表示阴影部分的面积,并求出当a=12cm,b=4cm时阴影部分的面积.【答案】,【解析】本题考查了列代数式,并根据已知求代数式的值由图可知,阴影部分的面积=矩形面积-半圆的面积,即可列出代数式,再把a=12cm,b=4cm代入计算即可。
初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值。
2、已知:2023(1+3x)=1,求代数式7+6x 的值。
3、已知a a =3243,求代数式2 +3 +4 的值。
4、若x 2+xy +y 2=2xy +y 2=3,求代数式(x+1)(y-2)+3的值。
5、已知(x+13)2=2023,求代数式(x -27)(x+53)的值。
6、已知x +2y=12,求代数式x 2-4y 2+48y 的值。
7、已知x 2-3x +1=0,求代数式x 2+1 2的值。
8、已知x 2-4x +1=0,求代数式x 4-56x +2024的值。
9、已知x+1 =3,y+1 =1,z+1 ==3,求代数式x yz 的值。
10、已知x 4+x 2+1=0,求代数式x 3+1的值。
11、已知x=1,求代数式(x+2)(2x+1)-x 2+6的值。
12、若x>y>0,x 2+y 2=5xy,求代数式2− 2 的值。
13、已知2x 2+10=(x+2)(x+3),求代数式3x+6的值。
14、已知x=8−215,求代数式x+1 的值。
15、已知x=2,求代数式7x 2+(2x+3)(x-2)+12的值。
参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y 的值解:因为2x+3y+z=1------①2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y 的值是02、已知:2023(1+3x)=1,求代数式7+6x 的值。
因为,要使得2023(1+3x)=1成立,所以1+3x=0,即:x=-13所以:7+3x =7+6×(-13)=5故:代数式7+6x 的值是53、已知a a =3243,求代数式2+3 +4 的值。
解:a a =3243=34*81=(34)81=8181所以:a=812 +3 +4 =281+381+484=9+333+3=12+333故:代数式2 +3 +4 的值是12+3334、若x2+xy+y2=2xy+y2=3,求代数式(x+1)(y-2)+3的值。
初一上册数学代数式求值试题
一、选择题( 共 12 小题 )
1.已知m=1, n=0,则代数式m+n的值为()
A. ﹣ 1
B.1
C. ﹣ 2
D.2
【考点】代数式求值 .
【分析】把m、 n 的值代入代数式进行计算即可得解.
【解答】解:当m=1, n=0时, m+n=1+0=1.
故选 B.
【点评】本题考查了代数式求值,把m、n 的值代入即可,比较
简单 .
2.已知x2﹣ 2x﹣ 8=0,则 3x2﹣ 6x﹣18 的值为 ()
A.54
B.6
C. ﹣ 10
D.﹣ 18
【考点】代数式求值 .
【专题】计算题.
【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入
计算即可求出值 .
【解答】解:∵x2﹣ 2x﹣ 8=0,即 x2﹣2x=8,
∴ 3x2﹣ 6x﹣ 18=3(x2 ﹣ 2x)﹣ 18=24﹣ 18=6.
故选 B.
【点评】此题考查了代数式求值,利用了整体代入的思想,是一
道基本题型.
3.已知 a2+2a=1,则代数式
2a2+4a﹣ 1 的值为 ()
A.0B.1C. ﹣ 1D.﹣ 2
【考点】代数式求值 .
【专题】计算题.
【分析】原式前两项提取变形后,将已知等式代入计算即可求出
值.
【解答】解:∵a2+2a=1,
∴原式 =2(a2+2a) ﹣ 1=2﹣ 1=1,
故选 B
【点评】此题考查了代数式求值,利用了整体代入的思想,熟练
掌握运算法则是解本题的关键 .
4.在数学活动课上,同学们利用如图的程序进行计算,发现无论
x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的
是 ()
A.4, 2, 1
B.2, 1, 4
C.1, 4, 2
D.2, 4, 1
【考点】代数式求值 .
【专题】压轴题; 图表型 .
【分析】把各项中的数字代入程序中计算得到结果,即可做出判
断.
【解答】解:A、把x=4 代入得: =2,
把 x=2代入得: =1,
本选项不合题意;
B、把 x=2 代入得: =1,
把 x=1 代入得:3+1=4,
把 x=4代入得: =2,
本选项不合题意;
C、把x=1 代入得:3+1=4,
把x=4代入得:=2,
把x=2代入得:=1,
本选项不合题意;
D、把x=2 代入得:=1,
把x=1 代入得: 3+1=4,
把x=4代入得:=2,
本选项符合题意,
故选 D
【点评】此题考查了代数式求值,弄清程序框图中的运算法则是
解本题的关键 .
5.当 x=1 时,代数式 4﹣ 3x 的值是()
A.1
B.2
C.3
D.4
【考点】代数式求值 .
【专题】计算题.
【分析】把x 的值代入原式计算即可得到结果.
【解答】解:当x=1 时,原式=4﹣ 3=1,
故选 A.
【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的
关键 .
6.已知x=1, y=2,则代数式x﹣ y 的值为 ()
A.1
B. ﹣ 1
C.2
D. ﹣ 3
【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出
代数式x﹣ y 的值为多少即可 .
【解答】解:当x=1, y=2时,
x﹣ y=1 ﹣ 2=﹣ 1,
即代数式x﹣ y 的值为﹣1.
故选: B.
【点评】此题主要考查了代数式的求法,采用代入法即可,要熟
练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、
计算 . 如果给出的代数式可以化简,要先化简再求值.题型简单总结
以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,
所给代数式不化简; ③已知条件和所给代数式都要化简.
7.已知 x2﹣ 2x﹣ 3=0,则2x2﹣ 4x 的值为 ()
A.﹣ 6
B.6
C. ﹣ 2或 6
D.﹣ 2或 30
【考点】代数式求值 .
【专题】整体思想 .
【分析】方程两边同时乘以2,再化出2x2﹣ 4x 求值 .
【解答】解:x2﹣ 2x﹣ 3=0
2× (x2 ﹣ 2x﹣ 3)=0
2× (x2 ﹣ 2x) ﹣ 6=0
2x2﹣ 4x=6
故选: B.
【点评】本题考查代数式求值,解题的关键是化出要
2x2﹣求的 4x.
8.按如图的运算程
序,能使输出结果为 3 的 x, y 的值是()
A.x=5, y=﹣ 2
B.x=3, y=﹣ 3
C.x= ﹣ 4, y=2
D.x=﹣3, y=﹣ 9
【考点】代数式求值; 二元一次方程的
解.
【专题】计算题.
【分析】根据运算程序列出方程,再根据二元一次方程
的解的定
义对各选项分析判断利用排除法求解.
【解答】解:由题意得,2x﹣ y=3,
A、x=5 时,y=7,故 A选项错误;
B、x=3 时,y=3,故 B选项错误;
C、x=﹣ 4 时,y=﹣ 11,故C选项错误;
D、x=﹣ 3 时,y=﹣ 9,故 D选项正确
.
故选: D.
【点评】本题考查了代数式求值,主要利用了二元一次
方程的解,
理解运算程序列出方程是解题的关键.
9.若 m+n=﹣ 1,则(m+n)2﹣ 2m﹣ 2n 的值是 ()
A.3
B.0
C.1
D.2
【考点】代数式求值 .
【专题】整体思想 .
【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可
得解 .
【解答】解:∵m+n=﹣ 1,
∴ (m+n)2﹣ 2m﹣ 2n
=(m+n)2﹣ 2(m+n)
=(﹣ 1)2﹣ 2× (﹣ 1)
=1+2
=3.
故选: A.
【点评】本题考查了代数式求值,整体思想的利用是解题的关键
10.已知x﹣ 2y=3,则代数式6﹣
2x+4y的值为()
A.0B. ﹣ 1C.﹣ 3D.3
【考点】代数式求值 .
【分析】先把6﹣ 2x+4y变形为6﹣
2(x﹣ 2y),然后把x﹣ 2y=3
整体代入计算即可 .
【解答】解:∵x﹣ 2y=3,
∴ 6﹣ 2x+4y=6﹣ 2(x﹣ 2y)=6 ﹣ 2× 3=6﹣ 6=0
故选: A.
【点评】本题考查了代数式求值:先把所求的代数式根据已知条
件进行变形,然后利用整体的思想进行计算.
11.当 x=1 时,代数式ax3﹣
3bx+4的值是7,则当x=﹣ 1 时,这
个代数式的值是 ()
A.7
B.3
C.1
D. ﹣ 7
【考点】代数式求值 .
【专题】整体思想 .
【分析】把x=1 代入代数式求出a、b 的关系式,再把x=﹣ 1 代
入进行计算即可得解.
【解答】解:x=1 时,ax3﹣ 3bx+4=a﹣
3b+4=7,
解得a﹣ 3b=3,
当 x=﹣ 1 时,ax3﹣ 3bx+4=﹣ a+3b+4=﹣ 3+4=1.
故选: C.
【点评】本题考查了代数式求值,整体思想的利用是解题的关键
12.如图是一个运算程序的示意图,若开始输入x 的值为
81,则
第 2014次输出的结果为()
A.3
B.27
C.9
D.1
【考点】代数式求值 .
【专题】图表型.
【分析】根据运算程序进行计算,然后得到规律从第4次开始,
偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答
即可 .
【解答】解:第 1 次,×81=27,
第2 次,×27=9,
第3 次,×9=3,
第4 次,×3=1,
第 5 次,1+2=3,
第6 次,×3=1,
⋯,
依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果
是 3,
∵ 2014 是偶数,
∴第2014次输出的结果为 1.
故选: D.
【点评】本题考查了代数式求值,根据运算程序计算出从
第 4 次
开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是
解题的关键.。