第一章 物体的受力分析和静力平衡方程
- 格式:ppt
- 大小:3.47 MB
- 文档页数:110
第一章静力学【竞赛知识要点】重心共点力作用下物体的平衡物体平衡的种类力矩刚体的平衡流体静力学(静止流体中的压强)【内容讲解】一.物体的重心1.常见物体的重心:质量均匀分布的三角板的重心在其三条中线的交点;质量均匀分布的半径R的半球体的重心在其对称轴上距球心3R/8处;质量均匀分布的高为h的圆锥体的重心在其对称轴上距顶点为3h/4处。
2.重心:在xyz 三维坐标系中,将质量为m的物体划分为质点m1、m2、m3……m n.设重心坐标为(x0,y0,z0),各质点坐标为(x1,y1,z1),(x2,y2,z2)……(x n,y n,z n).那么:mx0=∑m i x i my0=∑m i y i mz0=∑m i z i【例题】1、(1)有一质量均匀分布、厚度均匀的直角三角板ABC,∠A=30°∠B=90°,该三角板水平放置,被A、B、C三点下方的三个支点支撑着,三角板静止时,A、B、C三点受的支持力各是N A、N B、N C,则三力的大小关系是.(2)半径为R的均匀球体,球心为O点,今在此球内挖去一半径为0.5R的小球,且小球恰与大球面内切,则挖去小球后的剩余部分的重心距O点距离为.2、如图所示,质量分布均匀、厚度均匀的梯形板ABCD,CD=2AB,求该梯形的重心位置。
3、在质量分布均匀、厚度均匀的等腰直角三角形ABC(角C为直角)上,切去一等腰三角形APB,如图所示。
如果剩余部分的重心恰在P点,试证明:△APB的腰长与底边长的比为5:4.4、(1)质量分别为m,2m,3m……nm的一系列小球(可视为质点),用长均为L的细绳相连,并用长也是L的细绳悬于天花板上,如图所示。
求总重心的位置5、如图所示,质量均匀分布的三根细杆围成三角形ABC,试用作图法作出其重心的位置。
6、如图所示,半径为R圆心角为θ的一段质量均匀分布的圆弧,求其重心位置。
7、论证质量均匀分布的三角形板的重心在三条中线的交点上8、求半径为R的厚薄均匀的半圆形薄板的重心9、均匀半球体的重心问题10、均匀圆锥体的重心11、如图所示,有一固定的半径为R 的光滑半球体,将一长度恰好等于R 21、质量为m 的均匀链条搭在球体上,其一端恰在球体的顶点上,并用水平拉力拉住链条使之静止,求拉力的大小。
力学平衡力和静力学的分析力学平衡力和静力学是力学中的重要概念和理论,用于研究物体在静止或平衡状态下的力学性质和相互作用。
在这篇文章中,我们将对力学平衡力和静力学进行深入的分析和讨论。
一、力学平衡力的概念和原理1.1 力学平衡力的概念力学平衡力是指物体在施加力的情况下,保持静止或匀速直线运动的状态。
当物体处于平衡力状态时,合力和合力矩为零。
1.2 力学平衡力的原理根据牛顿第一定律,如果物体处于平衡状态,则合外力和合外力矩为零。
即ΣF = 0,Στ = 0。
其中ΣF表示合外力,Στ表示合外力矩。
二、静力学的分析方法静力学是力学中研究物体处于平衡状态下受力和力的平衡的学科。
在静力学中,通过应用力的平衡条件和切比雪夫定理来解决问题。
2.1 力的平衡条件力的平衡条件是指合外力和力矩为零的条件。
在平衡状态下,物体受力平衡时,合外力和合外力矩都为零。
根据力的平衡条件,我们可以得出物体受力平衡的方程式和解题方法。
2.2 切比雪夫定理切比雪夫定理是静力学中常用的分析方法之一。
根据切比雪夫定理,如果一个物体处于平衡状态,则物体受力的直线作用线经过物体的重心。
三、力学平衡力和静力学的应用力学平衡力和静力学的理论和方法在工程、建筑、物理学等领域有广泛的应用。
3.1 工程应用在工程领域,力学平衡力和静力学可以用来分析和设计建筑物、桥梁、机械设备等结构的稳定性和安全性。
通过合理的力学平衡力和静力学分析,可以确保工程结构的稳定性和可靠性。
3.2 物理学应用在物理学领域,力学平衡力和静力学的理论和方法可以用于研究物体的力学性质、运动规律和相互作用。
通过力学平衡力和静力学的分析,可以揭示物体间的力学规律和相互关系。
3.3 生活应用力学平衡力和静力学的理论和方法在日常生活中也有很多应用。
比如,在搬运重物、做家务、开车等活动中,我们需要根据力学平衡力和静力学的原理来合理地施加力,以保证活动的稳定和安全。
四、总结力学平衡力和静力学是力学中的重要概念和理论,对于研究物体在静止或平衡状态下的力学性质和相互作用具有重要意义。
第一篇静力平衡分析第一章静力分析基础1.1静力分析的基本概念1.2静力分析公理公理一(二力平衡公理):作用在刚体上的两个力,使刚体处于平衡的充分必要条件是:两个力大小相等方向相反,且作用在同一直线上。
(只受两个力作用而平衡的构件,称为二力构件。
)公理二(加减平衡力系公理):在作用刚体的力系上,加上或减去任一个平衡力系,并不改变原力系对刚体的作用效应。
推论1 (力的可传性原理):作用于刚体上的力可沿其作用线移至刚体内任一点,而不改变该力对于刚体的作用效应。
公理三(力的平行四边形公理):作用在刚体上同一点的两个力可以合成为一个合力,合力也作用于该点,其大小和方向可以由以这两个力为邻边所构成的平行四边形的共点对角线所确定。
推论2(三力平衡汇交原理)当刚体受三力作用而平衡时,若其中任意两个力的作用线相交于一点,则三力必然共面,且第三力的作用线通过该汇交点。
公理四(作用与反作用定律):两个物体间的相互作用力,总是大小相等,方向相反,作用线相同且分别作用在两个物体上。
公理五(刚化公理):如果变形体在某力系作用下平衡,若将此物体刚化为刚体,其平衡不受影响。
(对于变形体而言,刚体的平衡条件只是必要条件而不是充分条件)1.3约束与约束反力阻碍物体运动的限制条件称为约束。
约束对被约束物体的作用力,称为约束反力,或称约束力。
约束反力作用在被约束物体与约束的接触处,其方向总是与约束所阻碍的运动方向相反。
(1)柔性约束柔索只能承受拉力,因而只能阻止物体沿柔索伸长方向的运动。
柔性约束的约束反力作用于连接点,且方向沿着柔索而背离物体。
(2)理想光滑面接触构成的约束光滑接触约束只能阻止物体沿接触面公法线方向的运动。
光滑接触约束反力通过接触点,沿着接触点的公法线指向被约束的物体。
(3)光滑圆柱铰链约束约束反力在垂直于构建销孔轴线的横截面内,且通过销孔中心。
一般而言,由于接触点的位置无法预先确定,所以铰链约束反力的方向不能预先确定。
静力平衡方程知识点总结1. 静力平衡方程的定义静力平衡方程是描述物体在静止状态下受力平衡的关系的方程。
当一个物体处于静止状态时,所有施加在它上面的力相互抵消,使得物体不会发生位移。
这种力的平衡状态可以用数学方程来描述,这就是静力平衡方程。
2. 静力平衡方程的基本原理静力平衡方程的基本原理是根据牛顿第二定律,即物体所受合外力等于物体的质量乘以加速度,且加速度为零。
在静力平衡状态下,物体不会发生加速度,因此合外力为零。
这就是静力平衡方程的基本原理。
3. 静力平衡方程的具体应用静力平衡方程在工程、建筑、力学等领域都有广泛的应用。
在工程设计中,静力平衡方程可以用来计算建筑物、桥梁、机械设备等的结构强度,以及确定各个部件所受的力的大小和方向。
在力学中,静力平衡方程可以用来研究各种物体在静止状态下所受的力的平衡关系。
4. 静力平衡方程的相关知识点静力平衡方程的相关知识点包括力的平衡条件、力的合成与分解、受力分析、静力平衡的原理和方法等内容。
力的平衡条件是指一个物体处于静止状态时,所受的力必须相互平衡,合力为零。
力的合成与分解是指将一个力分解为若干个分力的合成,或者将若干个分力合成为一个合力。
受力分析是指通过对物体所受的各个力进行分析,来确定物体所受的合力和合力的方向。
静力平衡的原理和方法是指在求解静力平衡方程时,可以利用受力平衡的原理和方法来对物体所受的力进行分析和计算。
5. 静力平衡方程的解题方法静力平衡方程的解题方法包括利用受力平衡的原理和方法,对物体所受的各个力进行分析和计算。
在解题的过程中,可以采用如下步骤:首先,对物体所受的各个力进行受力分析,确定物体所受的合力和合力的方向;然后,利用静力平衡的原理和方法,写出静力平衡方程,并通过求解方程得出物体所受的各个力的大小和方向;最后,对计算结果进行检验,确保物体所受的各个力相互平衡,合力为零。
6. 静力平衡方程的实际应用案例静力平衡方程在实际应用中有许多案例,以下是其中的一些典型案例:**(1)桥梁设计**在桥梁设计中,常常需要对桥梁的结构强度进行计算。
静力学力的平衡与受力分析在物理学中,力是物体之间相互作用的结果,是描述物体受到的外界作用的量。
静力学力的平衡与受力分析是力学中的重要概念和方法。
本文将通过对静力学平衡和受力分析的讨论,阐述力的平衡条件以及如何进行受力分析。
静力学平衡的概念使我们能够了解物体在静止状态下所受的力的关系。
在一个封闭的系统中,如果物体保持静止,则该物体的受力和力的矩之和为零。
这可以用以下公式表示:ΣF = 0其中,ΣF表示所有作用在物体上的力的矢量和。
这个方程称为力的平衡条件,它是静力学平衡的基础。
平衡条件的主要应用在于解决各种物体和结构的受力问题。
通过对平衡条件的分析,我们可以确定物体上受力的大小、方向和作用点的位置。
在进行受力分析时,我们首先需要明确物体所处的受力系统。
受力系统包括物体所受的所有外力和内力。
外力是由外界环境对物体施加的力,如重力、摩擦力等。
内力是物体内部不同部分之间相互作用的力,如张力、弹力等。
确定了受力系统后,我们可以使用受力分析方法来计算物体所受力的大小和方向。
下面介绍几种常见的受力分析方法:1. 自由体图法:将物体从整体中分离出来形成自由体,只考虑物体受到的力,不考虑周围物体的作用。
通过绘制自由体图,我们可以清楚地看到物体所受的各个力的大小和方向,从而计算出受力平衡的条件。
2. 悬挂点法:对于悬挂在一定点上的物体,我们可以通过设定悬挂点作为坐标原点,建立力的平衡方程来求解物体所受的力。
通过受力分析,我们可以确定物体所受力的大小、方向和作用点的位置。
3. 斜面分解法:对于放置在斜面上的物体,我们可以将受力分解为平行和垂直于斜面的分力,通过受力分析得到物体所受力的大小和方向。
受力分析在工程学和物理学中有着广泛的应用。
它可以帮助我们解决各种实际问题,如桥梁的结构稳定性分析、机械装置的设计优化等。
除了上述介绍的受力分析方法,还有其他一些分析方法,如向量分解法、平衡方程法等。
不同的问题需要选择合适的受力分析方法,以便得到准确的结果。
静力平衡方程的名词解释在物理学中,静力学是研究物体在静止状态下的力学性质和平衡条件的一个分支。
在静力学中,静力平衡方程是一种用于描述物体处于平衡状态的数学表达式。
它是基于牛顿第二定律的运用,可以通过分析物体所受到的各个力的大小和方向来确定物体是否处于平衡状态。
静力平衡方程的基本原理是基于牛顿第二定律。
这个定律表明,当物体处于静止或匀速运动状态时,合外力为零。
静力平衡方程通过将所有作用在物体上的力矢量相加,可以判断物体所受的合力是否为零。
方程表达式为ΣF = 0,其中,ΣF代表所有作用力的矢量的代数和。
在静力平衡方程中,力的概念非常重要。
力是描述物体之间相互作用的一种物理量。
它可以是推动物体运动、变形物体形状、维持物体静止的原因。
力的大小可以用牛顿(N)作为单位进行度量。
对于力的方向,我们习惯上使用箭头表示,箭头指向物体所受力的作用方向。
静力平衡方程的另一个关键概念是力矩。
力矩是描述力绕某个轴旋转的能力的物理量。
它是由力的大小和力臂(力与轴的距离)的乘积组成。
力矩的大小可以用牛顿·米(N·m)作为单位进行度量。
在静力平衡方程中,力矩的性质被广泛运用,因为物体的平衡取决于力矩的平衡。
在使用静力平衡方程时,人们通常需要考虑物体所受的多个力,并确定它们之间的关系。
在分析力的时候,我们需要注意力的平行和力的方向。
如果两个力的作用线平行且方向相同,它们可以合并为一个力。
如果两个力的作用线平行但方向相反,它们可以合并为一个力,其大小为两个力的差值。
静力平衡方程可以在各种物理问题中应用。
例如,在分析杆平衡时,我们可以将杆分为多个部分,并对每个部分应用静力平衡方程。
通过将所有部分的力矩求和,并将其设置为零,我们可以确定杆是否处于平衡状态。
此外,静力平衡方程也可以应用于物体上的物体。
在分析物体的平衡状态时,我们可以考虑物体所受的各个力,包括重力、支持力等,并使用静力平衡方程来确定物体是否处于平衡状态。