3-晶体结构及其与材料性能关系(4)
- 格式:ppt
- 大小:1.57 MB
- 文档页数:101
第四章1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2. 某二元合金相图如右所示。
合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时, K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程)1(00-*=K L L f C C代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:图 4-43 二元合金相图3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
821材料科学基础大纲详解本课程主要考察考生对材料科学的基础理论和专业知识的掌握程度,以及运用这些理论和知识解决实际问题的能力。
同时还将考察考生对常规材料表征技术的掌握程度和应用能力。
考查的知识要点包括以下内容:(1)材料及材料科学的含义:材料及材料的基本要素和相互之间的关系、材料的结构层次及材料结构与性能的关系、材料选择的基本原理;(2)材料的原子结构与分子结构:原子结构、原子间的键合、材料的化学组成和结构对性能的影响、高分子链的近程结构与远程结构:(3)固体材料结构基础:晶体的基本特性、晶体的结构特征(空间点阵和晶胞、晶向指数和晶面指数)、配位数和配位多面体、金属的晶体结构、离子晶体结构、共价晶体结构、高分子凝聚态结构(晶态结构、非晶态结构、取向结构)、非晶态的形成及结构特征、固体材料能带结构的基础知识(导体、半导体、绝缘体)及与性能之间的关系;(4)晶体的结构缺陷:缺陷分类、点缺陷的形成、位错的基本类型和特征、晶体结构缺陷对材料性能的影响;(5)材料的相结构与相变:相的定义、相结构、固溶体的概念及特点、相变的定义、相变的分类(按结构分类、按热力学分类、按相变方式分类、按原子迁移特征分类)、结晶的基本规律与条件:热力学条件、动力学条件(成核-长大机理);(6)高分子材料中的分子链运动:高分子链的内旋转及柔顺性的本质和影响因素,高分子材料的三种力学状态(玻璃态、高弹态及粘流态)、玻璃化转变温度;(7)金属材料、无机非金属材料、高分子材料及复合材料的结构特征、性能特点及其应用分析;(8)常规材料表征技术及应用:XRD、TEM、SEM、IR、DSC的工作原理、影响这些表征技术的主要因素及在材料研究中的应用。
考试题型: 专业术语或基本概念的解释、简答题、论述或辨析题、综合分析题等。
第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2.B 开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
晶体的结构及性质基础知识一.晶体和非晶体1.定义:内部粒子(原子、分子或离子)在空间按一定规律做周期性重复排列的固体物质称为晶体。
例如:高锰酸钾、金刚石、干冰、金属铜、石墨等。
绝大多数常见固体都是晶体。
非晶体:内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。
例如:玻璃、沥青、石蜡等。
非晶体又称为无定形体。
2.晶体的重要特征(1)具有规则的几何外形(2)具有各向异性(3)有固定的熔点(4)X—射线衍射实验二.几类晶体的概念1.分子晶体:分子间以分子间作用力形成的晶体。
2.原子晶体:相邻原子间以共价键相结合形成的空间网结构的晶体叫原子晶体。
原子晶体又叫共价晶体。
3.离子晶体:由阴阳离子通过离子键结合而成的晶体叫做离子晶体。
4.金属晶体:金属原子通过金属键形成的晶体称为金属晶体。
金属晶体的成键粒子是金属阳离子和自由电子。
三.离子晶体、原子晶体、分子晶体和金属晶体比较晶体类型离子晶体原子晶体分子晶体组成晶体的粒子阳离子和阴离子原子分子组成晶体粒子间的相互作用离子键共价键范德华力(有的还有氢键)典型实例NaCl 金刚石、晶体硅、SiO2、SiC冰(H2O)、干冰(CO2)晶体的物理特性熔点、沸点熔点较高、沸点高熔、沸点高熔、沸点低导热性不良不良不良导电性固态不导电,熔化或溶于水能导电差差机械加工性能不良不良不良硬度略硬而脆高硬度硬度较小四.几种常见的晶体结构1.氯化钠晶体(离子晶体)在氯化钠晶体中:(1)与每个Na等距紧邻的Cl-有6个(2)与每个+Na等距紧邻的+Na有12个(3)每个氯化钠晶胞中含有4个NaCl。
(4)+Na周围与每个+Na等距紧邻的6个Cl-围成的空间构型为正八面体。
2.氯化铯晶体(离子晶体)在氯化铯晶体中:(1)与每个Cs+等距紧邻的Cl-有8个(2)与每个Cs+等距紧邻的Cs+有6个(3)每个氯化钠晶胞中含有1个CsCl。
3.干冰(分子晶体)在干冰的晶体中:(1)与每个CO2分子等距紧邻的CO2分子有12个。
20 年 月 日A4打印 / 可编辑x2040251工程材料及成型技术基础课程教学大纲x2040251工程材料及成型技术基础课程教学大纲课程名称:工程材料及成型技术基础英文名称:Engineering Materials and Moulding Technology Foundation课程编码:x2040251学时数:48其中实践学时数:4 课外学时数:学分数:3.0适用专业:机械设计制造及其自动化机械电子工程机械工程过程装备与控制工程一、课程简介《工程材料及成型技术基础》是机械类专业学生的一门重要专业基础课,与先修课程《工程训练》、后续课程《机械制造技术基础》共同探讨机械制造全过程——即从选择材料、制造毛坯、直到加工出零件所涉及的各个方面内容。
要求学生了解机械工程材料的一般知识,掌握常用材料的成分、组织、性能与加工工艺之间的关系及其用途,使学生具有合理选用材料、正确确定加工方法的能力,并初步掌握零件的结构工艺性,为学生今后的学习、设计、工作打下必备的基础。
二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点(一)工程材料的结构与性能1. 教学内容晶体材料的原子排列;合金的晶体结构;工程材料的性能2. 基本要求(1)了解部分:晶体结构及缺陷的形式;单晶体和多晶体;相与组织之间的关系;固溶体和化合物性能;机械性能的概念;材料物理化学性能的概念;陶瓷和高聚物的结构(2)理解部分:刚度、强度、塑性、韧性与材料之间的关系应用;材料工艺性能的含义(3)掌握部分:晶体结构缺陷与材料性能之间的关系;合金的相的种类及对性能的影响;硬度的测量、表示方法及应用(4)熟练掌握:材料强化方式3. 重点和难点(1)重点:金属的三种典型晶体结构;实际金属中的三类晶体缺陷;合金的相结构;材料的力学性能指标σS、σb、δ、αk、HB、HRC及与材料之间的关系(2)难点:材料强化方式(二)金属材料的凝固与固态相变1. 教学内容金属结晶过程的基本规律;二元合金相图的分析;铁碳相图的分析;钢在加热和冷却时的转变2. 基本要求(1)了解部分:金属结晶过程的基本规律及影响因素;铁的同素异构转变;二元相图的意义和基本类型;钢在加热时的转变(2)理解部分:细化晶粒的方法;二元相图的基本类型和结晶过程特点;相图与材料使用性能和工艺性能之间关系;连续冷却转变曲线;钢在冷却时的转变产物及性能特点(3)掌握部分:杠杆定律;匀晶相图;共晶转变;包晶转变;共析转变(4)熟练掌握:铁碳相图的规律及应用3. 重点和难点(1)重点:铁碳合金的基本相;碳钢室温下的平衡组织组成;含碳量对铁碳合金的组织及性能的影响;铁碳相图的应用(2)难点:铁碳相图(三)金属材料的塑性变形1. 教学内容金属的塑性变形;塑性变形对金属组织和性能的影响;回复与再结晶;冷、热变形;金属的可锻性2. 基本要求(1)了解部分:单晶体与多晶体金属的塑性变形特点;加工硬化现象;残余应力的危害及消除(2)理解部分:塑性变形金属在加热时组织与性能的变化;金属可锻性的概念及影响因素(3)掌握部分:加工硬化现象的应用;回复与再结晶的特点;冷、热变形的对比;纤维组织对性能的影响及应用(4)熟练掌握:无3. 重点和难点(1)重点:加工硬化现象的应用;回复与再结晶的应用;冷、热变形的选择;纤维组织对性能的应用(2)难点:无(四)金属材料热处理1. 教学内容钢的热处理工艺(退火、正火、淬火、回火、渗碳、感应加热表面淬火)2. 基本要求(1)了解部分:热处理的分类及工序安排;固溶处理和时效强化;热处理零件结构工艺性;先进热处理工艺;渗氮的特点和应用(2)理解部分:退火、正火、淬火、回火的工艺;感应加热表面淬火的参数选择;渗碳过程(3)掌握部分:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用(4)熟练掌握:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用3. 重点和难点(1)重点:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的,组织和应用(2)难点:无(五)金属表面改性处理1. 教学内容金属表面改性处理的目的、意义、特点和方法2. 基本要求(1)了解部分:金属表面改性处理的意义(2)理解部分:转化膜、电镀、离子沉积、热喷涂、涂装、表面着色等工艺的特点和应用场合(3)掌握部分:无(4)熟练掌握:无3. 重点和难点(1)重点:无(2)难点:无(六)金属材料1. 教学内容合金钢的概述;合金元素的作用;结构钢;工具钢;特殊性能钢;铸铁2. 基本要求(1)了解部分:合金钢的分类、编号方法、化学成分和主要用途;特殊性能钢(主要是不锈钢)的性能特点、热处理工艺及主要用途;有色金属和新型金属材料(2)理解部分:合金元素对钢的组织和性能影响规律(3)掌握部分:工具钢、灰铸铁的性能特点及应用;弹簧钢、轴承钢、易切削钢成分、性能特点及主要用途(4)熟练掌握:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用3. 重点和难点(1)重点:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用(2)难点:无(七)铸造1. 教学内容合金铸造性能;砂型铸造工艺;特种铸造;铸件结构设计;常用合金铸造生产2. 基本要求(1)了解部分:特种铸造的特点和应用;铸造技术新进展(2)理解部分:砂型铸造工艺选择(3)掌握部分:砂型铸造工艺和常用合金的铸造生产(4)熟练掌握:合金的铸造性能;灰铸铁的铸造性能;铸件结构设计3. 重点和难点(1)重点:合金的铸造性能;灰铸铁的铸造生产;铸件结构设计(2)难点:无(八)压力加工1. 教学内容自由锻;模锻;板料冲压;压力加工件结构设计2. 基本要求(1)了解部分:自由锻的工序;模锻的工序;挤压、轧制、拉拔方法;塑性加工新进展(2)理解部分:自由锻、模锻的特点及应用;板料冲压的工序、特点及应用(3)掌握部分:自由锻工艺规程制订;模锻工艺规程制订(4)熟练掌握:压力加工件结构设计3. 重点和难点(1)重点:压力加工件结构设计(2)难点:无(九)焊接1. 教学内容电弧焊;电阻焊;摩擦焊;焊接件结构工艺性;常用金属材料的焊接2. 基本要求(1)了解部分:电阻焊、摩擦焊、压力焊的特点;焊接技术新进展(2)理解部分:电弧焊接基本原理;焊接接头形式;铸铁的焊接;铜、铝合金的焊接(3)掌握部分:电弧焊方法及应用;碳钢和合金钢的焊接性(4)熟练掌握:焊接结构设计3. 重点和难点(1)重点:电弧焊方法及应用;碳钢和合金钢的焊接性;焊接结构设计(2)难点:无(十)机械零件材料及成型工艺的选用1. 教学内容工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用;典型零件的材料及成型工艺选择2. 基本要求(1)了解部分:无(2)理解部分:无(3)掌握部分:工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用(4)熟练掌握:典型零件的材料及成型工艺选择3. 重点和难点(1)重点:典型零件的材料及成型工艺选择(2)难点:无四、教学方式及学时分配五、课程其他教学环节要求(一)实验教学课:实验一铁碳合金平衡组织的显微分析要求:观察和识别铁碳合金在平衡状态下的显微组织,掌握铁碳合金的成分、组织和性能之间的对应关系实验二碳钢热处理的性能与组织分析要求:掌握钢的退火、正火、淬火、回火工艺;掌握含碳量、加热温度、冷却速度、回火温度对碳钢性能的影响;了解碳钢热处理的基本组织。
晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。
因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。
本章将扼要的介绍晶体学的基础知识,并了解材料结构。
1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。
虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。
所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。
在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。
应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。
显然,⽓体和液体都是⾮晶体。
在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。
固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。
玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。
从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。
⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。
⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。
晶体的异向性是因其原⼦的规则排列⽽造成的。
⾮晶体在⼀定条件下可转化为晶体。
例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。
⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。