高等数学二阶常系数线性齐次方程
- 格式:pdf
- 大小:550.39 KB
- 文档页数:10
高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
二阶常系数齐次线性微分方程的通解这类方程很特殊,前缀多,范围小,但在物理中经常见到,所以单独讨论。
我们先从二阶线性微分方程入手,y''+P(x)y'+Q(x)y+R(x)=0,若R(x)=0,则为二阶线性齐次微分方程。
进一步地,若系数和x无关,都为常数,即为常系数二阶线性齐次微分方程y''+py'+qy=0.求解这个方程,可以先求出它的两个线性独立的特解,然后通过解的叠加原理得到通解。
设解的形式为y=e^{rx}代入方程即得到(r^2+pr+q)e^{rx}=0 \Rightarrow r^2+pr+q=0.这个等式称为微分方程的特征方程,可见特征方程是一个一元二次代数方程,其解可由求根公式得到。
需要分三种情况讨论:1)特征方程有两个不等实根r_1 \ne r_2则两个特解为y_1=e^{r_1x},y_2=e^{r_2x},而\frac{y_1}{y_2} \ne C,故通解为y=C_1e^{r_1x}+C_2e^{r_2x}.2)特征方程有一对共轭复根r_1=a+bi,r_2=a-bi,b\ne0则两个特解为y_1=e^{ax+bxi},y_2=e^{ax-bxi},由欧拉公式有y_1=e^{ax}[cos(bx)+isin(bx)],y_2=e^{ax}[cos(bx)-isin(bx)].特解含有复数部分,我们希望解是实的,运用解的叠加原理,可以凑出新的两个特解y_{11}=\frac{1}{2}(y_1+y_2)=e^{ax}cos(bx),y_{12}=\frac{1}{2}(y_1-y_2)=e^{ax}sin(bx).它们也线性无关,因此通解为y=e^{ax}[C_1cos(bx)+C_2sin(bx)].3)特征方程具有两个相等实根r_1=r_2只能得到一个特解y_1=e^{r_1x}.设\frac{y_2}{y_1}=u(x) \Rightarrow y_2=y_1u(x),代入原微分方程可得到u''=0.不放取u=x作为第二个特解。
高等数学公式大全高等数学是一个非常广泛的学科,包含了数学中的许多基本概念和方法。
这里我们将为大家介绍高等数学中的各种公式。
1.微积分微积分是高等数学中最重要的概念之一。
它是研究函数的变化的一种方法,包括微分和积分。
以下是微积分中的一些重要公式:(1)导数:如果$f(x)$是一个可导函数,则$f(x)$在$x=a$处的导数为$f'(a)=\lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$。
(2)高阶导数:如果$f(x)$是一个可导函数,则$f(x)$的$n$阶导数为$f^{(n)}(x)=\frac{d^{n}f(x)}{dx^{n}}$。
(3)链式法则:如果$y=f(u)$和$u=g(x)$都是可导函数,则$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$。
(4)积分基本定理:如果$f(x)$是一个可积函数,则$\int_{a}^{b}f(x)\,dx=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数。
(5)分部积分法:如果$u(x)$和$v(x)$都是可积函数,则$\int u(x)v'(x)\,dx=u(x)v(x)-\int v(x)u'(x)\,dx$。
2.矩阵和行列式矩阵和行列式是高等数学中的另一个重要概念。
它们在线性代数中扮演着重要的角色。
以下是矩阵和行列式中的一些重要公式:(1)矩阵加法和减法:如果$A$和$B$是两个相同阶数的矩阵,则$A+B$和$A-B$也是这个阶数的矩阵,定义为$(A+B)_{i,j}=A_{i,j}+B_{i,j}$和$(A-B)_{i,j}=A_{i,j}-B_{i,j}$。
(2)矩阵乘法:如果$A$是$m\times n$矩阵,$B$是$n\times p$矩阵,$C$是$m\times p$矩阵,则$C_{i,j}=\sum_{k=1}^{n}A_{i,k}B_{k,j}$。
《二阶常系数齐次线性微分方程》教学设计——以智慧平台为依托摘要:从教学目标设定、教学对象分析、教学内容选取、教学保障、教学实施等方面,以《二阶常系数齐次线性微分方程》为例,着重针对学员的常见问题给出相应的对策,重点突出“学为中心、能力为本”的设计理念。
1.教学目标设定知识目标:掌握二阶常系数齐次线性微分方程的求法;能力目标:提升学员观察、分析以及解决实际问题的能力;素质目标:体验特征根法所蕴含的数学思想,培养从猜想到验证的思维品质。
2.教学对象分析教学对象是本科一年级学员。
知识储备:前期已经学习过不定积分的相关知识,对微分方程的通解和特解有了一定的认识;认知特点:在上大学之前,学员形成了以常量数学为对象的思维定势。
对方程有直观的认识,但对于如何求解微分方程有一定的障碍;学习态度:有进一步探究知识的求知欲,但部分学员有畏难情绪,缺乏学习积极性和主动性。
3.教学内容选取内容取自同济大学第七版教材《高等数学》第七章第七节。
高阶微分方程的求解通常都很难,除了第五节利用降阶法求解三类高阶微分方程,第六节对于高阶线性微分方程解的结构给我们二阶常系数齐次线性微分方程提供了方法指导。
本节课的教学重点是二阶常系数齐次线性微分方程的定义、解法、应用,二阶常系数齐次线性微分方程的解法与应用为教学难点。
4.教法设计以问题为导向,通过数形结合、合作探究、互动与启发引导相结合多措并举,引导学员找到微分方程的解法,同时鼓励学员运用所学知识解决实际问题,达到学以致用的目的。
5.教学保障智慧教室1间6.常见问题及解决方法具体实施中,着重介绍针对学员出现的常见错误,给出相应的解决办法。
常见问题1:学员学习积极性不高解决方法:(1)开篇以某次海上游泳训练引入,几名学员为称得一直径为的圆柱形浮标的质量,设计了如下实验:首先,一名学员将浮标铅直地放入水中,稍向下压后突然放开,浮标在水中开始上下振动;同时,另一名学员在一旁用秒表进行计时,测得浮标的振动周期为。