湿陷性黄土地基的处理
- 格式:pptx
- 大小:427.74 KB
- 文档页数:28
湿陷性黄土地基处理方案湿陷性黄土是一种具有较高含水量时容易发生沉降或收缩的土壤类型。
其主要特点是含水量较高,导致土壤颗粒之间的粘结力降低,土壤结构不稳定,容易发生沉降和收缩现象。
因此,在湿陷性黄土地基处理中,需要采取一系列的措施来改善土壤性质,提高地基的稳定性。
1.土壤加固和改良湿陷性黄土地基中,水含量较高,使得土壤的稳定性较差。
因此,需要采取一定的土壤加固和改良措施来提高土壤的强度和稳定性。
常用的方法包括土壤改良剂的添加和土壤固化。
可以选择适合湿陷性黄土地基的添加剂,如石灰、水泥等,通过与土壤混合,提高土壤的强度和耐水性。
2.水分控制湿陷性黄土对水分非常敏感,过高的含水量会导致土壤发生沉降和收缩现象。
因此,在处理湿陷性黄土地基时,需要采取措施控制水分含量。
可以通过排水系统的设计和建设,将地基中的水分排除,减小土壤的含水量,提高土壤的稳定性。
3.排水系统的设计与建设4.加固地基结构湿陷性黄土地基的基础结构容易受到水分影响,所以需要加固地基结构,以增加地基的稳定性和承载能力。
可以选择适合湿陷性黄土地基的基础类型,如扩大基础、桩基础等,通过增加基础的面积和深度,分散地基荷载,提高地基的稳定性。
5.合理施工工艺在湿陷性黄土地基处理中,施工工艺对于地基的稳定性和强度起着至关重要的作用。
需要严格控制工程的施工质量和施工工艺,避免水分过程过快或不均匀,导致土壤发生不稳定现象。
同时,还需要进行地基的监测和检测,及时发现问题并采取措施加以解决。
综上所述,湿陷性黄土地基处理方案需要综合考虑土壤特性和工程需求,采用土壤加固和改良、水分控制、排水系统的设计与建设、加固地基结构、合理施工工艺等一系列措施,以提高地基的稳定性和承载能力,确保工程的安全性和可靠性。
1、概述湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值范围以内,不会影响建筑物的安全和正常使用.湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进行处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。
我国湿陷性黄土分布很广,各地区黄土的差别很大,地基处理时应区别对待,并结合以下特点:1)湿陷性黄土的地区差别,如湿陷性和湿陷敏感性的强弱,承载能力及压缩性的大小和不均匀性的程度等;2)建筑物的使用特点,如用水量大小,地基浸水的可能性;3)建筑物的重要性和其使用上对限制不均匀下沉的严格程度,结构对不均匀下沉的适应性;4)材料及施工条件,以及当地的施工经验.湿陷性黄土的地基处理措施是采用机械手段对基础的湿陷性黄土进行加固处理,或更换另一种材料改变其物理性质,达到消除湿陷性、减少压缩和提高承载能力的目的,其中大多以第一个目的即消除湿陷为主。
湿陷性黄土的地基处理,在处理深度和处理范围上区分:1)浅处理,即消除建筑物地基的部分湿陷量;2)深基础处理,即消除建筑物地基的全部湿陷量,这种方法包括采用桩基础或深基础穿透全部的湿陷性黄土层.在湿陷性黄土地区设计措施,主要有地基处理措施、防水措施和结构措施三种.地基处理的常用方法有垫层、重锤夯实、强夯、土(或灰土)桩挤密和深层孔内夯扩等,可以完全或部分消除地基的湿陷性,或采用桩基础或深基础穿透湿陷性黄土层,使建筑物基础坐落在密实的非湿性土层上,保证建筑物的安全和正常使用.防水措施使用以防止大气降水、生产和生活用水以及浸入地基,其中包括场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施.结构措施的作用是使建筑物适应或减少不均匀沉降所造成的危害.在湿陷性黄土地区,国内外使用较多的地基处理方法:重锤表层夯实、强夯、垫层、挤密桩复合地基、垫处理、预浸水、爆扩桩、化学加固和桩基础等。
湿陷性黄土地基处理6地基处理6.1一般规定6.1.1甲类建筑地基的湿陷变形和压缩变形不能满足设计要求时,应采取地基处理措施或将基础设置在非湿陷性土层或岩层上,或采用桩基础穿透全部湿陷性黄土层。
采取地基处理措施时应符合下列规定:1非自重湿陷性黄土场地,应将基础底面以下附加压力与上覆土的饱和自重压力之和大于湿陷起始压力的所有土层进行处理,或处理至地基压缩层的深度;2自重湿陷性黄土场地,对一般湿陷性黄土地基,应将基础底面以下湿陷性黄土层全部处理。
6.1.2大厚度湿陷性黄土地基上的甲类建筑,采取地基处理措施时应符合下列规定:1基础底面以下具自重湿陷性的黄土层应全部处理,且应将附加压力与上覆土饱和自重压力之和大于湿陷起始压力的非自重湿陷性黄土层一并处理;2地下水位无上升可能,或上升对建筑物不产生有害影响,且按本条第1款规定计算的地基处理厚度大于25m时,处理厚度可适当减小,但不得小于25m,且应在原防水措施基础上提高等级或采取加强措施。
6.1.3乙类、丙类建筑应采取地基处理措施消除地基的部分湿陷量。
当基础下湿陷性黄土层厚度较薄,经技术经济比较合理时,也可消除地基的全部湿陷量或将基础设置在非湿陷性土层或岩层上,或采用桩基础穿透全部湿陷性黄土层。
6.1.4乙类建筑采用消除地基部分湿陷量的措施时,应符合下列规定:1非自重湿陷性黄土场地,处理深度不应小于地基压缩层深度的2/3,且下部未处理湿陷性黄土层的湿陷起始压力值不应小于100kPa;2自重湿陷性黄土场地,处理深度不应小于基底下湿陷性土层的2/3,且下部未处理湿陷性黄土层的剩余湿陷量不应大于150mm;3大厚度湿陷性黄土地基,基础底面以下具自重湿陷性的黄土层应全部处理,且应将附加压力与上覆土饱和自重压力之和大于湿陷起始压力的非自重湿陷性黄土层的2/3一并处理;处理厚度大于20m时,可适当减小,但不得小于20m,并应在原防水措施基础上提高等级或采取加强措施。
6.1.5丙类建筑消除地基部分湿陷量的最小处理厚度,应符合表6.1.5的规定。
处理湿陷性黄土地基的方法
湿陷性黄土地基的处理措施有浸水处理、土垫层法、强夯法、压浆法、素土桩挤密法和复层地基法等,具体措施应根据地基条件和建筑要求选择,以改善地基的性质和结构。
1、换填土:挖出一定深度的湿陷性黄土,用合格的土或灰土分层填筑,分层夯实。
2、强夯法:用数十吨重锤从高处落下,反复夯实,强力夯实基础,使浅层和深层得到不同程度的加固。
强夯法振动大,对附近建筑物有影响。
因此,要注意施工附近建筑物的安全。
强夯法用于湿陷性黄土区路基处理,土壤含水量应比塑限含水量低1%~3%。
3、预浸法:钻孔注水,使其预先湿陷。
可用于湿陷性土层厚度大于10m,自重湿陷性不小于50cm的地段。
4、挤密法:用冲击、振动或爆炸形成孔洞,然后用石灰或石灰土填充,分层捣实。
5、化学加固法:将硅酸钠溶液通过多孔注入管压入土壤中,与土壤中的水溶性盐类相互作用,生成硅胶,使土壤胶结。
一、湿陷性黄土地基的处理方法湿陷性黄土地基处理的根本原则是:破坏土的大孔结构,改善土的工程性质,消除或减少地基的湿陷变形,防止水浸入建筑物地基,提高建筑结构刚度。
1.1强夯法又叫动力固结法。
是利用起重设备将80~400kg的重锤起吊到10~40m高处,然后使重锤自由落下,对黄土地基进行强力夯击,以消除其湿陷性,降低压缩变形,提高地基强度,但强夯法适用对地下水位以上饱和度Sr≤60%的湿陷性黄土地基进行局部或整片处理,可处理的深度在3~12m。
土的天然含水率对强夯法处理至关重要,天然含水量低于10%的土,颗粒间摩擦力大,细土颗粒很难被填充,且表层坚硬,夯击时表层土容易松动,夯击能量消耗在表层土上,深部土层不易夯实,消除湿陷性黄土的有效深度小,夯填质量达不到设计效果。
当上部荷载通过表层土传递到深部土层时,便会由于深部土层压缩而产生固结沉降,对上部建筑物造成破坏。
1.2垫层法土(或灰土)垫层是一种浅层处理湿陷性黄土地基的传统方法,在湿陷性黄土地区使用较广泛,具有因地制宜,就地取材和施工简便等特点。
实践证明,经过回填压实处理的黄土地基湿陷性速率和湿陷量大大减少,一般表土垫层的湿陷量减少为1~3cm,灰土垫层的湿陷量往往小于1cm,垫层法适用于地下水位以上,对湿陷性黄土地基进行局部或整片处理,可处理的湿陷性黄土层厚度在1~3m,垫层法根据施工方法不同可分为土垫层和灰土垫层,当同时要求提高垫层土的承载力及增强水稳定时,宜采用整片灰土垫层处理。
1.2.1素土垫层法素土垫层法是将基坑挖出的原土经洒水湿润后,采用夯实机械分层回填至设计高度的一种方法,它与压实机械做的功、土的含水率、铺土厚度、及压实遍数存在密切关系。
压实机械做的功与填土的密实度并不成正比,当土质含水量一定时,起初土的密实度随压实机械所做的功的增大而增加,当土的密实度达到极限时,反而随着功的增加而破坏土的整体稳定性,形成剪切破坏。
在大面积的素土夯填施工中时常遇到,运输土料的重型机械容易对已夯筑完毕的坝体表面形成过度碾压,造成剪切破坏,同时对含水率过高的地区形成“橡皮泥”现象,从而出现渗漏。
湿陷性黄土地基的处理方法湿陷性黄土地基处理的根本原则是:破坏土的大孔结构,改善土的工程性质,消除或减少地基的湿陷变形,防止水浸入建筑物地基,提高建筑结构刚度。
1强夯法又叫动力固结法。
是利用起重设备将80~400 kg的重锤起吊到10~40m高处,然后使重锤自由落下,对黄土地基进行强力夯击,以消除其湿陷性,降低压缩变形,提高地基强度,但强夯法适用对地下水位以上饱和度Sr≤60%的湿陷性黄土地基进行局部或整片处理,可处理的深度在3~12m。
土的天然含水率对强夯法处理至关重要,天然含水量低于10%的土,颗粒间摩擦力大,细土颗粒很难被填充,且表层坚硬,夯击时表层土容易松动,夯击能量消耗在表层土上,深部土层不易夯实,消除湿陷性黄土的有效深度小,夯填质量达不到设计效果。
当上部荷载通过表层土传递到深部土层时,便会由于深部土层压缩而产生固结沉降,对上部建筑物造成破坏。
2垫层法土(或灰土)垫层是一种浅层处理湿陷性黄土地基的传统方法,我国已有2000多年的应用历史,在湿陷性黄土地区使用较广泛,具有因地制宜,就地取材和施工简便等特点。
实践证明,经过回填压实处理的黄土地基湿陷性速率和湿陷量大大减少,一般表土垫层的湿陷量减少为1~3cm,灰土垫层的湿陷量往往小于1cm,垫层法适用于地下水位以上,对湿陷性黄土地基进行局部或整片处理,可处理的湿陷性黄土层厚度在1~3m,垫层法根据施工方法不同可分为土垫层和灰土垫层,当同时要求提高垫层土的承载力及增强水稳定时,宜采用整片灰土垫层处理。
2.1素土垫层法。
素土垫层法是将基坑挖出的原土经洒水湿润后,采用夯实机械分层回填至设计高度的一种方法,它与压实机械做的功、土的含水率、铺土厚度、及压实遍数存在密切关系。
压实机械做的功与填土的密实度并不成正比,当土质含水量一定时,起初土的密实度随压实机械所做的功的增大而增加,当土的密实度达到极限时,反而随着功的增加而破坏土的整体稳定性,形成剪切破坏。
湿陷性黄土地基的处理方法地基处理是项目建设中的关键组成部分,特别是湿陷性黄土地基的处理是特别关键的。
黄土区域常常出现水土流失、地基湿陷、水库边坡、路堑和黄土源边滑坡和崩塌等灾害性地质活动,对工农业建设和人民生活经常导致严重危害,因此使用合理的处理办法解决黄土的失陷性对项目具备关键的意义。
标签:湿陷性黄土;黄土地基处理方法1、湿陷性黄土地基的处理办法1.1灰土挤密法1.1.1处理方法灰土挤密桩是运用打入钢套管,或振动沉管或爆扩等办法,在土中成桩孔,之后在孔中分层填入素土域灰土拼夯实而成。
在成孔与夯实经过中,原处于桩孔位置的土所有挤入四周土层中,让距桩周必然间距内的天然土获得挤密,这样来根除桩间土的湿陷性并提升承载力。
在加固深度以下,将大大减少附加应力,灰土挤密桩对地基的加固处理结果,不但和桩距相关,还和所解决的厚度与宽度相关。
当解决宽度小时,也许让基础形成相对大的下沉,更甚是让稳定性丧失,依据《湿陷性黄土区域建筑标准))(GBJ25-90)需求,当为部分解决时,黄土在非自重湿陷性的场地,解决宽度两端要超过基础宽度的0.25倍,并不要小于0.5米;在自重湿陷性黄土场地,如果需要完全根除加固后地基土的湿陷性,则要超过两边各0.75倍基础宽度的解决宽度,而且不小于1米。
1.1.2局限性存在必然局限性的灰土挤密法,在小于等于65%的饱和度,而且在地下水位以上的状况下,湿陷性黄土地基加固处理,这种地基在5米到7米之间的厚度需求。
这种办法对含水量需求非常高,假如含水量非常高或者含水量非常低,经过实践证明都达不到设计的需求。
挤密法对土的含水量需求相对高,通常要求略低于最优含水量,含水量太高或太低,都达不到设计要求的挤密效果。
由于湿陷性黄土具备吸水性强与容易达到饱和状态的特点,这样导致施工经过中很难控制含水量的问题,假如对表层黄土实施洒水时,由于土质干燥,易饱和的上层土质,下层土质由于接受小到水处于干燥状态。
所以,在含水量相对低的土质中,不能使用这办法。
湿陷性黄土地基湿陷的原理和处理方法分析
湿陷性黄土地基,也称为软黏土地基,是指含水量高、结构松散、抗剪强度低的黄土地基。
在雨季或地下水位上升时,土体会因为水分分子的润滑作用,导致土体的抗剪强度下降,土体的体积发生变化,导致地基沉降和变形,这就是湿陷性黄土地基的原理。
本文将从原理和处理方法两个角度对湿陷性黄土地基进行分析。
一、原理
二、处理方法
湿陷性黄土地基的处理步骤可以分为以下几个步骤:
1. 沉降监测和评估
湿陷性黄土地基的处理首先需要进行沉降监测和评估。
通过对地基沉降情况的监测和评估,可以确定地基是否存在沉降问题,评估沉降的程度,为下一步处理提供参考。
2. 地基加固
如果沉降程度较小,可以采用地基加固的方法,通过加固地基和改善土壤性质,提高地基的稳定性和承载能力。
地基加固的方法包括灌浆加固、桩基加固等。
如果沉降程度较大,需要进行地基加密。
地基加密是指在地基表面加铺一定厚度的填土,以增加地基的承载能力和提高地面高度。
填土的选择应根据土质、孔隙水压等因素进行合理的选取。
4. 地基改良
如果地基条件较为复杂,无法采用简单的地基加固和加密方法进行处理,可以考虑采用地基改良的方法。
地基改良是针对土壤物理性质进行改良,使其达到规定的强度和稳定性要求,包括土工格栅加固、细土浆灌注和身管加固等。
总之,湿陷性黄土地基处理方法应根据具体情况而定,可以采用地基加固、地基加密和地基改良等综合措施,从而提高地基的承载能力和稳定性,降低地基沉降和变形风险。