基于位置的机器人视觉伺服控制系统研究
- 格式:pdf
- 大小:430.10 KB
- 文档页数:2
基于图像的机器人视觉伺服系统基于图像的机器人视觉伺服系统对工作在未知环境中的机器人,在其位置控制和运动控制中引入视觉反馈信息是一种很有吸引力的解决方案。
利用视觉传感器得到的图像作为反馈信息,构造机器人的位置和运动闭环控制,即视觉伺服[1]。
本文主要研究手部摄像机视觉机器人的控制问题,采用基于图像的直接视觉伺服。
它的控制算法不需要求解逆像问题以及机器人运动学,同时它的结构不依赖于机器人惯量以及科里奥利矩阵。
机器人视觉伺服系统的物理结构机器人视觉伺服系统的结构可分为摄像机固定和手部摄像机两种。
在摄像机位置固定的机器人系统中,有多个摄像机安装在机器人周围的环境中,可同时获得机器人和周围环境的图像,这种方法的目标是控制机器人末端执行器的运动直至触碰到期望目标。
而手部摄像机机器人的摄像机安装在机器人手部,只能获取机器人周围环境的信息,这种方法的目标是控制机器人的运动,使运动或静止的目标在摄像机图像平面上到达期望位置。
摄像机固定的安装方式可获得固定的图像分辨率,并同时获得机器人和机器人周围环境的信息,便于将视觉系统集成到控制中。
但在机器人运动过程中,可能发生图像特征遮盖现象,观察灵活性差。
而手部摄像机方式具有较大的工作范围,不存在图像特征遮盖问题。
同时,随着手爪接近目标物体,可获得较高的图像分辨率,从而提高图像精度。
本文建立的机器人系统采用较低的运动速率,避免了因摄像机运动引起的图像的模糊,同时能够保证目标处于摄像机视场范围内,故采用手部摄像机的安装方式[2]。
视觉伺服的方式根据反馈信号表达方式,分为基于位置的视觉伺服和基于图像的视觉伺服。
基于位置的视觉伺服其反馈信号在三维任务空间中以直角坐标形式定义。
基本原理是通过对图像特征的抽取,并结合已知的目标几何模型及摄像机模型,在三维笛卡尔坐标系中对目标位姿进行估计,然后以机械手当前位姿与目标位姿之差作为视觉控制器的输入,进行轨迹规划并计算出控制量,驱动机械手向目标运动,最终实现定位、抓取功能。
机器人视觉伺服系统综述摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。
最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。
关键词:机器人;视觉伺服;综述Survey of robot visual servoing systemAbstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field.Key words:robot, visual servoing, summary1.引言随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。
为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。
而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。
机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。
其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。
本文将从伺服控制系统的分类和一些常见问题来分析介绍:一、分类目前,机器人视觉伺服控制系统有以下几种分类方式:(1)按照摄像机的数目的不同,可分为单目视觉伺服系统、双目视觉伺服系统以及多目视觉伺服系统。
单目视觉系统只能得到二维平面图像,无法直接得到目标的深度信息;多目视觉伺服系统可以获取目标多方向的图像,得到的信息丰富,但图像的信息处理量大,且摄像机越多越难以保证系统的稳定性。
当前的视觉伺服系统主要采用双目视觉。
按照摄像机放置位置的不同,可以分为手眼系统(eye in hand)和固定摄像机系统(eye to hand或stand alone)在理论上手眼系统能够实现精确控制,但对系统的标定误差和机器人运动误差敏感;固定摄像机系统对机器人的运动学误差不敏感,但同等情况下得到的目标位姿信息的精度不如手眼系统,所以控制精度相对也低。
(2)按照机器人的空间位置或图像特征,视觉伺服系统分为基于位置的视觉伺服系统和基于图像的视觉伺服系统在基于位置的视觉伺服系统中,对图像进行处理后计算出目标相对于摄像机和机器人的位姿,所以这就要求对摄像机、目标和机器人的模型进行校准,校准精度影响控制精度,这是这种方法的难点。
控制时将需要变化的位姿转化成机器人关节转动的角度,由关节控制器来控制机器人关节转动。
在基于图像的视觉伺服系统中,控制误差信息来自于目标图像特征与期望图像特征之间的差异。
对于这种控制方法,关键的问题是如何建立反映图像差异变化与机器手位姿速度变化之间关系的图像雅可比矩阵;另外一个问题是,图像是二维的,计算图像雅可比矩阵需要估计目标深度(三维信息),而深度估计一直是计算机视觉中的难点。
雅可比矩阵的计算方法有公式推导法、标定法、估计方法以及学习方法等,前者可以根据模型推导或标定得到,后者可以在线估计,学习方法主要利用神经网络方法。
按照采用闭环关节控制器的机器人,视觉伺服系统分为动态观察-移动系统和直接视觉伺服前者采用机器人关节反馈内环稳定机械臂,由图像处理模块计算出摄像机应具有的速度或位置增量,反馈至机器人关节控制器;后者则由图像处理模块直接计算机器人手臂各关节运动的控制量。
基于图像的机器人视觉伺服系统综述摘要:本文介绍了机器人视觉伺服系统的概念、发展历程,而且从不同的角度对机器人视觉伺服系统进行了分类。
最后重点介绍了基于图像的机器人视觉伺服系统,以及其的simulink仿真实现。
关键词:机器人;视觉伺服;仿真Abstract:The concept and development process of the robot visual servo system is introduced in this paper, and from different angles of the robot visual servo system are classified. Finally the paper introduces the robot visual servo system based on image, and the realization of Simulink simulation.Key words: robot, visual servoing, simulation1.引言随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因此人们不断对机器人技术提出更高的要求。
为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,人们不断的为机器人寻求更为完善的控制系统。
而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整度高成为最重要的机器人感知功能。
机器人的视觉伺服系统是机器人视觉和控制的相结合的复杂系统。
其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴学科。
随着技术的发展,以及相关理论的日益完善,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关的技术问题已经成为了当前的研究热点。
机器人无标定视觉伺服控制系统研究1. 本文概述在《机器人无标定视觉伺服控制系统研究》一文中,本文概述部分主要阐述了该研究的核心议题与目标。
文章开篇指出,在当前机器人技术领域中,视觉伺服控制作为实现机器人精确定位和操作的有效手段,已受到广泛关注。
传统的视觉伺服控制系统往往依赖于精确的摄像机内外参数标定,这一要求在实际应用中可能由于种种原因难以满足。
针对这一问题,本文致力于探索和设计一种无需预先精确标定摄像机参数的无标定视觉伺服控制系统。
本研究首先回顾了视觉伺服控制的基本原理以及现有标定依赖方法的局限性,并在此基础上提出了新的理论框架和算法策略。
通过融合先进的计算机视觉技术和优化估计方法,旨在实现在未知摄像机参数条件下,依然能够实时准确地完成对机器人运动的伺服控制任务。
预期的研究成果将显著提升机器人的环境适应性和自主作业能力,特别是在那些无法预先获得精确视觉参数信息的应用场景下,具有重要的理论意义和广阔的应用前景。
文章将逐步详细介绍所采用的方法、实验设计及验证过程,以及最终的系统性能评估结果。
2. 无标定视觉伺服控制系统理论基础视觉伺服控制的基本原理:解释视觉伺服控制的基本概念,包括图像处理、特征提取、视觉反馈等。
无标定视觉伺服控制的特点:阐述无标定视觉伺服控制系统与传统视觉伺服系统的区别,强调其无需预先知道摄像机参数的优势。
数学模型与算法:介绍无标定视觉伺服控制系统的数学模型,包括摄像机模型、机器人运动学模型等,并讨论相关的控制算法。
系统稳定性分析:分析无标定视觉伺服控制系统的稳定性,探讨影响系统稳定性的因素。
实验与仿真:简要介绍无标定视觉伺服控制系统的实验验证和仿真研究,强调其在实际应用中的有效性。
我将根据这个大纲生成具体的文本内容。
由于生成的内容会非常详细,可能需要一定时间来完成。
请稍等片刻。
在《机器人无标定视觉伺服控制系统研究》文章的“无标定视觉伺服控制系统理论基础”部分,我们将深入探讨无标定视觉伺服控制的基本原理和关键理论。
伺服系统在机器视觉中的应用机器视觉是一种将摄像机、图像处理和机器学习技术结合起来的技术领域,用于使计算机具备对图像和视频进行分析和理解的能力。
在机器视觉的应用过程中,伺服系统发挥着重要的作用。
本文将探讨伺服系统在机器视觉中的应用,并介绍其原理和优势。
一、伺服系统的原理伺服系统是一种自动控制系统,它通过反馈信号来实现对系统行为的控制。
它由一个伺服电机和一个伺服控制器组成。
伺服电机通常是一种高精度的电动机,通过接收控制器发送的指令来调整输出的位置或速度。
在机器视觉中,伺服系统可以通过接收来自图像处理算法的数据,准确地控制机器的位置和角度。
例如,在工业领域,伺服系统可以用于自动装配线上的产品定位和对位。
通过将伺服系统与机器视觉技术相结合,可以实现高精度的定位和对位,从而提高生产线的效率和质量。
二、1. 机器人视觉导航伺服系统在机器人视觉导航中起着关键的作用。
通过将伺服系统与摄像头相连,机器人可以实时接收图像数据并进行处理。
基于图像处理的算法,机器人可以分析图像中的目标物体,并利用伺服系统精确地控制自身的运动以实现导航。
在工业领域,机器人视觉导航广泛应用于自动化生产线,可以帮助机器人完成复杂的装配任务。
在军事领域,机器人视觉导航可以用于危险环境下的侦查和救援任务。
通过伺服系统的精确控制,机器人可以在复杂的环境中进行准确定位和路径规划。
2. 视觉测量与检测伺服系统在机器视觉的测量与检测中也扮演着重要的角色。
通过对图像数据的处理,可以利用伺服系统实现对目标物体尺寸、角度和位置等参数的测量和检测。
这对于自动化生产线中的质量控制和产品检验非常关键。
例如,在半导体行业中,伺服系统可以与机器视觉技术相结合,测量半导体芯片上的特定缺陷和线宽。
通过伺服系统的精确运动控制,可以实现高精度的测量,提高半导体产品的质量和可靠性。
3. 跟踪和捕捉伺服系统在机器视觉中还可以用于目标的跟踪和捕捉。
通过实时接收图像数据,并结合伺服系统的控制,机器可以追踪移动目标并进行捕捉。
机器人视觉伺服控制技术研究机器人技术是近年来得到快速发展的一项技术,利用计算机和机械等技术实现无人操作或自主操作是其主要应用之一。
在机器人技术应用中,视觉伺服控制技术被广泛应用和研究。
视觉伺服控制技术是利用视觉信息来控制机器人的运动,具有高精度、高速度和高灵敏度等特点,已成为机器人技术和工业自动化领域中的一个重要研究方向。
一、机器人视觉伺服控制技术的基本原理传统机器人控制方法通常是基于传感器和控制器的结合,但是这种方法往往需要复杂的算法和控制机制,导致其不稳定性和误差较大。
而视觉伺服控制技术就是利用机器视觉技术来获取机器人的运动和姿态信息,将其反馈到机器人控制器中进行处理和调整,实现更加精确和高效的控制操作。
视觉伺服控制技术的基本原理是将机器视觉技术应用于机器人控制中,利用机器人自身装备的摄像头、光学传感器等设备获取环境信息和机器人状态。
通过对图像和数据进行处理和分析,得到机器人与环境之间的距离、方向和速度等信息,从而实现机器人位置姿态的控制。
二、机器人视觉伺服控制技术的应用视觉伺服控制技术在机器人技术中有着广泛的应用,其中最主要的是在工业自动化领域中的应用。
工业机器人起初主要是用来实现物体的精准处理和组装等作业,而视觉伺服控制技术的应用则将机器人的控制精度和速度提高到了一个新的水平,使其可以更加精准、高效地完成装配、加工等工作。
此外,视觉伺服控制技术还广泛应用于智能安防、智能家居、医疗机器人、无人驾驶等领域。
智能安防领域中,利用机器视觉技术和视觉伺服控制技术可以实现智能视频监控和入侵检测等功能;在智能家居领域中,机器人可以通过视觉伺服控制技术完成物品清理、家庭安全监测等任务;在医疗机器人领域中,机器人可以通过视觉识别技术和视觉伺服控制技术实现手术、治疗等工作;在无人驾驶领域中,机器人可以通过视觉伺服控制技术获得道路和交通信息,实现车辆的自动操作。
三、机器人视觉伺服控制技术的发展趋势随着技术的不断发展和应用场景的不断扩大,机器人视觉伺服控制技术也在不断升级和改进。
视觉伺服控制原理视觉伺服控制是一种利用计算机视觉技术来实现物体精确定位的自动化控制方法。
该控制方法是在计算机视觉技术和传统伺服控制技术的基础上实现的。
它能够在机器人和自动化设备中实现很多任务,如自动化装配、机器人导航和质量检测等。
视觉伺服控制的核心原理是依靠计算机视觉技术来获取复杂的视觉信息,并以此控制机器人或自动化设备的精确位置和运动。
视觉伺服控制系统一般由四个部分组成:图像采集系统、图像处理系统、运动控制系统和控制算法。
图像采集系统可以是相机、激光测距器、扫描器等设备,它能够采集物体的图像信息。
图像处理系统负责从采集到的图像数据中提取出所需要的物体信息,如物体位置、形状和大小等。
运动控制系统根据所提取的物体信息和指令,实现精确定位和运动控制。
控制算法为视觉伺服控制的核心,利用PID控制方法来根据图像处理系统提供的物体信息对物体进行控制。
视觉伺服控制的原理是基于反馈控制的思想。
它实现了机器人和自动化设备的实时跟踪和位置控制。
通过视觉反馈,一旦运动偏离预定轨迹或目标位置,视觉伺服系统即可及时发出控制信号,调整伺服系统的控制策略,控制机器人或自动化设备的方向和速度,使其重新回到目标设定位置,从而实现目标物体的精准定位。
视觉伺服控制主要应用在自动化装配中,如汽车、电子设备的组装线。
此外还可以应用在工业自动化控制和机器人导航等领域。
其优点是精度高、速度快、适应性强、可扩展性好等。
同时也存在一些挑战,如图像噪声影响、系统复杂性、时滞带来的控制问题等。
总的来说,视觉伺服控制在自动化控制领域中发挥着越来越重要的作用。
它可以帮助制造商提高生产效率和产品质量,降低成本,也可以应用在智能制造、智能交通等领域。
随着计算机视觉技术的不断进步,视觉伺服控制将会有更广泛的应用前景。
机器人视觉伺服控制技术及其应用探讨作者:邱启华来源:《数字技术与应用》2013年第06期摘要:机器人视觉伺服控制是将机器视觉与机器人技术进行有机结合而产生的控制技术,其学术基础涵盖了机器人运动学、图像处理、控制理论等研究领域。
本文从视觉伺服系统中基于图像的机器人视觉伺服系统入手,在实验条件下,探讨了视觉伺服控制技术在机器人作业系统中的应用,并就视觉伺服控制机器人作业系统的实验效果进行了分析。
关键词:机器人视觉伺服作业系统中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2013)06-0002-02近年来,工业机器人在以制造业为代表的各个领域得到了广泛的应用。
1979年,首先由HILL提出了视觉伺服(visualservoing)的概念,并随之出现了多种伺服控制方式,被逐步应用于机器人控制系统之中。
视觉伺服在机器人控制系统中的应用,使得机器人更具类人化、智能化的特点,使其对周围多变环境的自适应能力也大大提升。
1 机器人视觉伺服系统2 视觉伺服在机器人作业系统中的应用本文在实验条件下,将机器人视觉伺服控制技术在切割、焊接、涂漆等领域中的应用抽象和概况为具有普遍应用意义的机器人作业系统,并对其系统构成和应用情况加以分析。
2.1 作业系统整体结构及工作原理在实验条件下构建视觉伺服的机器人作业系统,其主要由摄像系统、图像采集卡、作业平台、工业机器人、控制计算机及其软件系统等构成,如图2所示。
其工作原理如下:摄像机图像采集系统采集作业对象的图像之后,由软件系统平台控制图像采集卡获取摄像机采集的作业对象图像,并经过图像增强、滤波、边缘检测和细化等处理环节,之后进入图像信息分析处理和重建环节,经过分析、处理之后获得的数据信号由软件平台进行实时计算,而获得图像中与作业对象有关的特征点位置信息,针对这些作业对象的特征点位置信息,软件平台系统通过调用MOTOCOM32的库函数并和机器人进行通信,从而完成对机器人末端执行器的实时控制,使其按照控制指令完成各项制定作业。
基于图像的智能机器人视觉伺服系统一、本文概述随着科技的不断发展,机器人技术已经成为了现代工业、医疗、军事等领域不可或缺的一部分。
在机器人的众多应用中,视觉伺服系统发挥着至关重要的作用。
基于图像的智能机器人视觉伺服系统,利用图像处理技术和控制算法,使机器人能够准确识别、定位并跟踪目标对象,实现高效、精确的自动化操作。
本文将对基于图像的智能机器人视觉伺服系统进行深入研究,分析其工作原理、技术特点以及应用领域,并探讨其未来的发展趋势和挑战。
本文将介绍基于图像的智能机器人视觉伺服系统的基本概念和工作原理。
我们将详细阐述如何通过图像采集设备获取目标对象的图像信息,并利用图像处理技术提取出目标对象的特征信息。
然后,我们将介绍如何利用这些特征信息设计合适的控制算法,使机器人能够准确识别、定位并跟踪目标对象。
本文将分析基于图像的智能机器人视觉伺服系统的技术特点。
我们将探讨其与传统视觉伺服系统的区别和优势,并详细分析其在不同应用场景下的性能表现。
同时,我们还将介绍一些典型的基于图像的智能机器人视觉伺服系统实例,以便读者更好地理解和掌握相关技术。
本文将展望基于图像的智能机器人视觉伺服系统的未来发展趋势和挑战。
我们将分析当前技术存在的问题和瓶颈,并探讨如何通过技术创新和研发来解决这些问题。
我们还将预测未来该领域的发展趋势和应用前景,为相关研究和应用提供参考和借鉴。
通过本文的阐述和分析,我们希望能够为读者提供一个全面、深入的视角,帮助读者更好地理解和掌握基于图像的智能机器人视觉伺服系统的相关技术和应用。
二、基于图像的智能机器人视觉伺服系统基本原理基于图像的智能机器人视觉伺服系统是一种结合了图像处理、机器人技术和控制理论的高级机器人控制系统。
其基本原理可以概括为以下几个方面:图像获取与处理:通过安装在机器人上的摄像头获取环境的实时图像。
这些图像随后经过一系列图像处理算法,如滤波、增强、分割和特征提取等,以提取出对机器人运动控制有用的信息。