stm32跑马灯实验
- 格式:pdf
- 大小:1.91 MB
- 文档页数:45
一、实验名称:跑马灯二、实验要求:编写程序控制跑马灯的亮灭:首先是全不亮,接着第1个灯亮,第2个灯亮,第3个灯亮,第4个灯亮,最后所有的灯一起亮,即按顺序亮,然后全亮,最后全灭,顺序循环。
最后蜂鸣器响,然后灯全部灭。
三、实验步骤1、点击WINDOWS 操作系统的开始-> 程序-> ARM Developer Suite v1.2 ->CodeWarrior forARM Developer Suite 启动ADS1.2 IDE 或双击CodeWarrior for ARMDeveloper Suite 快捷方式起动启。
2、打开原有的有关跑马灯实验的工程。
3、源程序代码:。
/******************************************************************** ********* File:LEDCON.C* 功能:LED闪烁控制。
对发光二极管LED4进行控制,采用软件延时方法。
* 使用I/O口直接控制LED,采用灌电流方式。
* 说明:将跳线器JP8_LED4短接。
********************************************************************* *******/#include "config.h"#define LEDCON4 0x00002000 /* P0.13引脚控制LED4,低电平点亮*/#define LEDCON1 0x00000400 /* P0.10引脚控制LED1,低电平点亮*/#define LEDCON2 0x00000800 /* P0.11引脚控制LED2,低电平点亮*/#define LENCON3 0x00001000 /* P0.12引脚控制LED3,低电平点亮*/#define BEEP 0x00000080 /* P0.7引脚控制蜂鸣器,低电平响*/#define ALL 0x00003C80#define LEDALL 0x00003C00/******************************************************************** ********* 名称:DelayNS()* 功能:长软件延时* 入口参数:dly 延时参数,值越大,延时越久* 出口参数:无********************************************************************* *******/void DelayNS(uint32 dly){ uint32 i;for(; dly>0; dly--)for(i=0; i<50000; i++);/******************************************************************** ********* 名称:main()* 功能:控制LED闪烁********************************************************************* *******/int main(void){ PINSEL0 = 0x00000000; // 设置所有管脚连接GPIOPINSEL1 = 0x00000000;IODIR = ALL; // 设置ALL控制口为输出while(1) //实现循环{IOSET =ALL;//初始化所有的灯灭IOSET =BEEP;// 蜂鸣器不响IOCLR = LEDCON1; //低电平灯亮DelayNS(100); //延迟时间IOSET = LEDCON1; //高电平灯灭DelayNS(100); //延迟时间IOCLR = LEDCON2;DelayNS(100);IOSET = LEDCON2;DelayNS(100);IOCLR = LEDCON3;DelayNS(100);IOSET = LEDCON3;DelayNS(100);IOCLR = LEDCON4;DelayNS(100);IOSET = LEDCON4;DelayNS(100);IOCLR =ALLLED;//所有的灯亮DelayNS(100);IOCLR =BEEP;//蜂鸣器响DelayNS(100);}return(0);4、调试程序观察实验结果。
单片机实验报告姓名: 学号:一、 实验实现功能:1:计数器功能2:流水灯二、 具体操作:1、计数器功能数码管的动态显示。
每按一次K2键计数器加1通过数码管显示出来,计数器可以实现从0计数到9999。
2、流水灯当在计数器模式下的时候按下K3键时程序进入跑马灯模式,8个小灯轮流点亮每次只点亮一个,间隔时间为50ms 。
三、 程序流程图开始 定时器T0 设置初值,启动定时器,打开中断复位 Key2按下 中断关闭 计数器模式 计数器加1 Key3按下 流水灯模式 数码管显示数字加1 跑马灯点亮间隔50ms Key1按下中断打开四、程序#include <reg51.h>typedef unsigned char uint8;typedef unsigned int uint16; //类型定义sbit P2_1 = P2^1;sbit P2_2 = P2^2;sbit P2_3 = P2^3;sbit P2_4 = P2^4; //位声明四个数码管开关sbit Key2 = P3^2;sbit Key3 = P3^3; //位声明2个按键K2和K3sbit Ledk = P2^0 ; //LED 开关void delay(uint16 i); //延时函数声明void refresh (); // 数码管刷新函数声明void liushuideng(); //流水灯函数声明uint8 number[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};//数码管的真值表uint8 out[4] = {0}; // 数组变量uint16 counter=0; //用作计数器的变量uint16 Time_counter=0; //用作定时器的变量void main() //主函数{TMOD = 0x01; //定时器0,工作方式一TH0 = 0xFC;TL0 = 0x18; //定时器初值使每次循环为1msTR0 = 0; //定时器0开始作ET0 = 0; // 定时器中断关EA = 0; // 关中断while(1) //计数器模式{Ledk =1 ; //led开关关out[0]=number[counter%10]; //取个位out[1]=number[counter%100/10]; //十位out[2]=number[counter%1000/100]; //百位out[3]=number[counter/1000]; //千位if (!Key2) //计数器加1{++counter; //自加out[0]=number[counter%10]; //取个位out[1]=number[counter%100/10]; //十位out[2]=number[counter%1000/100]; //百位out[3]=number[counter/1000]; //千位while(!Key2) //等待键盘抬起refresh(); //刷新数码管}refresh(); //刷新数码管if (!Key3) // 进入跑马灯模式liushuideng();}} //主函数结束/*******************延时*************/void delay(uint16 i){uint8 j; // 定义局部变量for(i;i>0;i--) //循环i*240 次for(j=240;j>0;j--);}/************数码管刷新******************/void refresh (){uint8 j;for (j=0;j<4;j++) //四次循环刷新数码管{switch(j){case 0: P2_1=1;P2_2=1;P2_3=1;P2_4=0;break;case 1: P2_1=1;P2_2=1;P2_3=0;P2_4=1;break;case 2: P2_1=1;P2_2=0;P2_3=1;P2_4=1;break;case 3: P2_1=0;P2_2=1;P2_3=1;P2_4=1;break;//每次循环只选中一个数码管default:break;}P0 = out[j]; // 位选,给数码管送值delay (20); //延时消抖}}/*************定时器的中断服务函数**************/void Timer0_Overflow() interrupt 1 //定时器0溢出中断,这个语句1ms执行一次{TH0 = 0xFC;TL0 = 0x18; //每1ms重新赋定时器初值Time_counter++; //计数,看经过了几个1ms}/***********************流水灯子函数****************************/ void liushuideng(){uint8 j = 0 ; //定义局部变量P0 = 0xff; // 小灯全关TR0 = 1; //定时器1开始计时EA = 1; //中断开放ET0 = 1; //定时器0中断开while(1){Ledk = 0 ; //打开LED开关P2 = P2|0x1E; //关掉数码管if(50 == Time_counter) //50个毫秒{P0=~(1<<j++); //控制小灯Time_counter = 0; //清零开始下一次循环定时}if (8==j) //移完8次再重新移{j=0;}}}。
6.1 STM32 IO简介本章将要实现的是控制ALIENTEK战舰STM32开发板上的两个LED实现一个类似跑马灯的效果,该实验的关键在于如何控制STM32的IO口输出。
了解了STM32的IO口如何输出的,就可以实现跑马灯了。
通过这一章的学习,你将初步掌握STM32基本IO口的使用,而这是迈向STM32的第一步。
这一章节因为是第一个实验章节,所以我们在这一章将讲解一些知识为后面的实验做铺垫。
为了小节标号与后面实验章节一样,这里我们不另起一节来讲。
在讲解STM32的GPIO之前,首先打开我们光盘的第一个固件库版本实验工程跑马灯实验工程(光盘目录为:“4,程序源码\标准例程-V3.5库函数版本\实验1跑马灯/USER/LED.Uv2”),可以看到我们的实验工程目录:图6.1.1 跑马灯实验目录结构接下来我们逐一讲解一下我们的工程目录下面的组以及重要文件。
①组FWLib下面存放的是ST官方提供的固件库函数,里面的函数我们可以根据需要添加和删除,但是一定要注意在头文件stm32f10x_conf.h文件中注释掉删除的源文件对应的头文件,这里面的文件内容用户不需要修改。
②组CORE下面存放的是固件库必须的核心文件和启动文件。
这里面的文件用户不需要修改。
③组SYSTEM是ALIENTEK提供的共用代码,这些代码的作用和讲解在第五章都有讲解,大家可以翻过去看下。
④组HARDWARE下面存放的是每个实验的外设驱动代码,他的实现是通过调用FWLib下面的固件库文件实现的,比如led.c里面调用stm32f10x_gpio.c里面的函数对led进行初始化,这里面的函数是讲解的重点。
后面的实验中可以看到会引入多个源文件。
⑤组USER下面存放的主要是用户代码。
但是system_stm32f10x.c文件用户不需要修改,同时stm32f10x_it.c里面存放的是中断服务函数,这两个文件的作用在3.1节有讲解,大家可以翻过去看看。
一、实验目的1. 熟悉嵌入式系统硬件电路的搭建与调试;2. 掌握C语言编程,实现跑马灯功能;3. 理解并掌握GPIO口操作,学习定时器中断的使用。
二、实验环境1. 开发板:STM32F103C8T6开发板2. 编译器:Keil uVision53. 软件库:STM32标准外设库三、实验原理跑马灯实验是通过控制LED灯的亮灭,实现LED灯依次点亮的效果。
实验原理如下:1. GPIO口控制:将LED灯连接到开发板的GPIO口,通过控制GPIO口的输出电平,实现LED灯的点亮与熄灭;2. 定时器中断:定时器产生中断,实现LED灯点亮与熄灭的时间间隔;3. 循环控制:通过循环控制LED灯的点亮顺序,实现跑马灯效果。
四、实验步骤1. 硬件电路搭建(1)将LED灯的正极连接到开发板的GPIO口,负极接地;(2)将开发板的电源和地线连接到电源模块。
2. 软件编程(1)在Keil uVision5中创建项目,并导入STM32标准外设库;(2)编写程序,实现以下功能:a. 初始化GPIO口,将LED灯连接的GPIO口配置为输出模式;b. 初始化定时器,设置定时器中断周期,使LED灯点亮与熄灭的时间间隔为1ms;c. 编写定时器中断服务程序,控制LED灯的点亮与熄灭;d. 编写主函数,实现LED灯依次点亮的效果。
3. 编译与下载(1)编译程序,生成可执行文件;(2)将开发板连接到计算机,通过串口下载程序到开发板。
4. 实验调试(1)打开串口调试助手,观察LED灯的点亮与熄灭效果;(2)调整程序参数,优化跑马灯效果。
五、实验结果与分析1. 实验结果(1)LED灯依次点亮,实现跑马灯效果;(2)LED灯点亮与熄灭的时间间隔可调。
2. 实验分析(1)通过控制GPIO口的输出电平,实现LED灯的点亮与熄灭;(2)定时器中断实现LED灯点亮与熄灭的时间间隔控制;(3)循环控制实现LED灯依次点亮的效果。
六、实验总结本次实验成功实现了跑马灯功能,加深了对嵌入式系统硬件电路、C语言编程和GPIO口操作的理解。
嵌⼊式02STM32实验04跑马灯开学STM32跑马灯的实验主要就是了解GPIO⼝的配置及使⽤,我这⾥是使⽤库函数进⾏编程,主要需要设置以下两⽅⾯: 1、使能需要使⽤的IO⼝的时钟,⼀共有A、B、C、D、E、F、G七组IO⼝ 2、初始化IO⼝(设置IO⼝的端⼝号(有GPIO_Pin_0 ~ GPIO_Pin_15,共16个IO端⼝)、设置IO⼝的输出速度、设置IO⼝的⼯作模式)代码如下1//端⼝初始化2 #include "led.h"3 #include "stm32f10x.h"45void LED_Init(void)6 {7 GPIO_InitTypeDef GPIO_KST;8910 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOE, ENABLE); //使能端⼝B和E1112 GPIO_KST.GPIO_Mode = GPIO_Mode_Out_PP; //设置端⼝模式为推挽输出13 GPIO_KST.GPIO_Pin = GPIO_Pin_5; //选择端⼝514 GPIO_KST.GPIO_Speed = GPIO_Speed_2MHz; //IO⼝的速度设置为2MHz15 GPIO_Init(GPIOB, &GPIO_KST); //初始化GPIOB.5161718 GPIO_KST.GPIO_Mode = GPIO_Mode_Out_PP; //设置端⼝模式为推挽输出19 GPIO_KST.GPIO_Pin = GPIO_Pin_5; //选择端⼝520 GPIO_KST.GPIO_Speed = GPIO_Speed_2MHz; //IO⼝的速度设置为2MHz21 GPIO_Init(GPIOE, &GPIO_KST); //初始化GPIOE.522 }主程序1//主程序2 #include "sys.h"3 #include "delay.h"4 #include "led.h"56int main(void)7 {8 delay_init(); //延时初始化9 LED_Init(); //LED初始化10while(1)11 {12 GPIO_ResetBits(GPIOE, GPIO_Pin_5); //关闭PE5端⼝的LED13 GPIO_SetBits(GPIOB, GPIO_Pin_5); //关闭PB5端⼝的LED14 delay_ms(500); //延时100ms15 GPIO_SetBits(GPIOE, GPIO_Pin_5);16 GPIO_ResetBits(GPIOB, GPIO_Pin_5); //打开PB5端⼝的LED17 delay_ms(500); //延时100ms18 }1920 }。
可编辑修改精选全文完整版实验一跑马灯实验一、实验内容1、基本的流水灯根据图1电路,编写一段程序,使8个发光二极管D1、D2、D3、D4、D5、D6、D7、D8顺序(正序)点亮:先点亮D1,再点亮D2、D3……D8、D1……,循环点亮。
每点亮一个LED,采用软件延时一段时间。
2、简单键控的流水灯不按键,按正序点亮流水灯;按下K1不松手,按倒序点亮流水灯,即先点亮D8,再顺序点亮D7、D6……D1、D8……。
松手后,又按正序点亮流水灯。
3、键控的流水灯上电,不点亮LED,按一下K1键,按正序点亮流水灯。
按一下K2键,按倒序点亮流水灯,按一下K3键,全部关闭LED。
二、实验方案1、总体方案设计考虑到K4键未被使用,所以将实验内容中的三项合并到一个主函数中:K4键代替实验内容第二项中的K1键;单片机一开机即执行实验内容第一项;K1、K2、K3键实现实验内容第三项。
所用硬件:AT89C52、BUTTON、LED-BLUE、电源输入:P2.0-K1;P2.1-K2;P2.2-K3;P2.3-K4。
低电平有效输出:P0.0~P0.7-D0~D7。
LED组连线采用共阳极,低电平有效软件设计:软件延时采用延时函数delay(t),可调整延迟时间:void delay(uint t){uint i;while(t--)for(i=0;i<1000;i++){if(P2!=oldK&&P2!=K[0])break;//按下了其他键退出循环}}由于涉及到按键变化所以要设置一个变量oldK保留按键键值,要在延时程序中检测是否按键,当按键后立即设置oldK的值。
按键判断采用在while循环中利用条件语句判断P2的值然后执行该键对应的代码段,达到相应的响应。
为了让K4键的效果优化,即状态变化从当前已亮灯开始顺序点亮或逆序点亮,利用全局变量n来记录灯号,利用算法即可实现。
主要算法:1、全局变量的定义:uchar D[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0X7f};//单个LED亮uchar AllOff=0xff;//LED全灭uchar AllOn=0x00;//LED全亮uchar K[]={0xff,0xfe,0xfd,0xfb,0xf7};//按键开关uchar oldK;//记录已按键int n;2、顺序、逆序点亮流水灯:void forward(){for(n=0;n<=7;n++){out=D[n];delay(15);if(P2!=oldK&&P2!=K[0])break;}out=AllOff;}void backward(){for(n=7;n>=0;n--){out=D[n];delay(15);if(P2!=oldK&&P2!=K[0])break;}out=AllOff;}3、实验内容第二项流水灯灯亮顺序变换:void hold(){n=8;while(1){if(P2==K[4]){//一直按着K4键,逆序点亮跑马灯oldK=K[4];if(n==-1)n=7; //D0灯亮后点亮D7while(n>=0){out=D[n];n--;if(delay4(15))break;}}if(P2==K[0]){//未按下K4键,一直正序点亮跑马灯oldK=K[0];if(n==8)n=0;//D7灯亮后点亮D0while(n<=7){out=D[n];n++;if(delay4(15))break;}}if(P2!=K[4]&&P2!=K[0]){//按下了其他键,退出hold函数break;}}}4、对应实验内容第一项,开机顺序点亮流水灯:while(1){//开机即正序点亮流水灯forward();if(P2!=K[0]){break;}}2、实验原理图图2-1 实验原理图3、程序流程图图2-2 程序流程图三、源程序#include"reg51.h"#define uchar unsigned char#define uint unsigned int#define out P0uchar D[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0X7f};//单个LED亮uchar AllOff=0xff;//LED全灭uchar AllOn=0x00;//LED全亮uchar K[]={0xff,0xfe,0xfd,0xfb,0xf7};//按键开关uchar oldK;//记录已按键int n;//记录当前亮的灯号void delay(uint t){uint i;while(t--)for(i=0;i<1000;i++){if(P2!=oldK&&P2!=K[0])break;//按下了其他键退出循环}}void delay10ms(){uint i;for(i=0;i<10000;i++);}void forward(){for(n=0;n<=7;n++){out=D[n];delay(15);if(P2!=oldK&&P2!=K[0])break;}out=AllOff;}void backward(){for(n=7;n>=0;n--){out=D[n];delay(15);if(P2!=oldK&&P2!=K[0])break;}out=AllOff;}int delay4(uint t){uint i;while(t--)for(i=0;i<1000;i++){if(P2!=oldK){ //按键变化退出循环return 1;}}return 0;}void hold(){n=8;while(1){if(P2==K[4]){//一直按着K4键,逆序点亮跑马灯oldK=K[4];if(n==-1)n=7; //D0灯亮后点亮D7while(n>=0){n--;if(delay4(15))break;}}if(P2==K[0]){//未按下K4键,一直正序点亮跑马灯oldK=K[0];if(n==8)n=0;//D7灯亮后点亮D0while(n<=7){out=D[n];n++;if(delay4(15))break;}}if(P2!=K[4]&&P2!=K[0]){//按下了其他键,退出hold函数break;}}}void main(){oldK=K[0];while(1){//开机即正序点亮流水灯forward();if(P2!=K[0]){break;}}while(1){out=AllOff;if((P2&0x0f)!=0x0f){//检测有键按下delay10ms();//延时10ms再去检测//P2.0_K1键按下正序点亮流水灯if(P2==K[1]){oldK=K[1];while(1){forward();if(P2!=K[1]&&P2!=K[0]){//按下了其他键,退出break;}}}//P2.1_K2键按下逆序点亮流水灯if(P2==K[2]){while(1){backward();if(P2!=K[2]&&P2!=K[0]){//按下了其他键,退出break;}}}//P2.2_K3键按下关闭全部LEDif(P2==K[3]){oldK=K[3];out=AllOff;}//P2.3_K4键按下长按逆序点亮流水灯,不按正序点亮流水灯,直到其他键按下停止if(P2==K[4]){hold();}}}}四、实验结果1、基本的流水灯:开机后即重复顺序点亮流水灯,等待其他按键。
微控制器综合设计与实训实验名称:实验三跑马灯实验实验三:跑马灯实验1 实训任务(1) 编写程序,实现对LED1~LED8的轮流点亮;(2) 仿真调试,调整延时时间,利用仿真示波器观察延时时间长短;(3) 下载程序,观察跑马灯运行状况。
1.1 实验说明本实验将要实现的是控制实训平台上的8个LED灯实现一个类似跑马灯的效果,LED通过控制IO口的高低电平工作,因此实验的关键在于如何控制STM32的IO口输出。
1.2 实验步骤(1) 在实训平台上将IO口与LED(LED1~LED8)连接;(2) 复制工程模板文件夹,新建led.c和led.h文件,并将新建文件加入工程中;(3) 编写led.h文件,声明void LED_Init(void)初始化函数,宏定义LED1~LED8;(4) 编写led.c文件,建立void LED_Init(void)初始化函数,实现对LED灯用到的IO端口的配置,配置为推挽输出,速度为50MHZ;(5) 编写main()函数,实现对LED1~LED8的轮流点亮;(6) 软件仿真,调整延时时间,利用仿真示波器观察延时时间长短;(7) 下载程序,观察跑马灯的运行状况。
2 程序设计2.1 通过数组实现流水灯:2.2 通过宏定义实现流水灯:2.3 通过函数实现流水灯:2.4 通过SYSTICK中断实现流水灯:3硬件原理图设计4 总结通过数组实现流水灯:通过宏定义实现流水灯:通过函数实现流水灯:通过SYSTICK中断实现流水灯:实验心得:本次实验通过四种方法来实现流水灯,分别是通过数组实现流水灯,通过宏定义实现流水灯,通过函数实现流水灯,通过SYSTICK中断实现流水灯。
让我体会到单片机代码的多样性及强大的拓展功能。
MCU通过控制IO口的高低电平来直接控制LED的亮灭,所以本实验的关键是如何控制STM32的IO口输出,来达到我们想要的效果。
就比如灯光秀。
实验三跑马灯实验实验目的:通过一个经典的跑马灯程序,了解STM32F1 的IO 口作为输出使用的方法。
通过代码控制ALIENTEK 战舰STM32 开发板上的两个LED:DS0 和DS1 交替闪烁,实现类似跑马灯的效果内容要点:1.硬件设计本章用到的硬件只有LED(DS0 和DS1)。
其电路在ALIENTEK 战舰STM32F103开发板上默认是已经连接好了的。
DS0 接PB5,DS1 接PE5。
所以在硬件上不需要动任何东西。
其连接原理图如图:2.软件设计跑马灯实验我们主要用到的固件库文件是:stm32f10x_gpio.c /stm32f10x_gpio.hstm32f10x_rcc.c/stm32f10x_rcc.hmisc.c/ misc.hstm32f10x_usart /stm32f10x_usart.h其中stm32f10x_rcc.h 头文件在每个实验中都要引入,因为系统时钟配置函数以及相关的外设时钟使能函数都在这个其源文件stm32f10x_rcc.c 中。
stm32f10x_usart.h 和misc.h 头文件在我们SYSTEM 文件夹中都需要使用到,所以每个实验都会引用。
首先,找到之前新建的Template 工程,在该文件夹下面新建一个HARDWARE的文件夹,用来存储以后与硬件相关的代码,然后在HARDWARE 文件夹下新建一个LED 文件夹,用来存放与LED 相关的代码。
新建led.h和led.c文件,一个外设对应一个.h和.c文件。
在Manage Components 管理里面新建一个HARDWARE 的组,并把led.c 加入到这个组里面,将led.h 头文件的路径加入到工程里面一般的头文件有固定的格式,多个地方调用头文件会重复引用,为了避免头文件内容重复引用,一般通过预编译的方式来写头文件。
一般的格式如下:#ifndef __LED_H#define __LED_H……#endif第一次调用时会将#define下面这一节全部定义,重复调用时,下面的东西就不会被引用。
GPIO原理与配置(跑马灯,蜂鸣器,按键) ⼀。
STM32 GPIO固件库函数配置⽅法 1. 根据需要在项⽬中删掉⼀些不⽤的固件库⽂件,保留有⽤的固件库⽂件 2. 在stm32f10x_conf.h中注释掉这些不⽤的头⽂件 3. STM32的IO⼝可以由软件配置成如下8种模式(4种输⼊模式,4种输出模式) 分别在CRL寄存器和CRH寄存器中配置,配置每⼀个IO⼝需要4位来配置 2位MODE位----配置是输⼊模式还是输出模式 2位CNF位---根据MODE位的配置来确定是哪种输⼊模式或输出模式 a。
输⼊浮空 b。
输⼊上拉 c。
输⼊下拉 d。
模拟输⼊ e。
开漏输出 f。
推挽输出 g。
推挽式复⽤功能 h。
开漏复⽤功能 配置函数 void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct); 4。
GPIO输⼊值的读取 IDR是⼀个端⼝输⼊数据寄存器,只⽤了低16位。
操作IDR寄存器读取IO端⼝数据是通过GPIO_ReadInputDataBit函数实现的: uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); ⽐如我要读 GPIOA.5 的电平状态,那么⽅法是: GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5); uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx); 5. 往某个IO⼝输出数据 ODR 是⼀个端⼝输出数据寄存器,也只⽤了低 16 位。
该寄存器为可读写,从该寄存器读出来的数据可以⽤于判断当前 IO ⼝的输出状态。
⽽向该寄存器写数据,则可以控制某个 IO ⼝的输出电平。
在固件库中设置 ODR 寄存器的值来控制 IO ⼝的输出状态是通过函数 GPIO_Write 来实现的: void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal); 该函数⼀般⽤来往⼀次性⼀个 GPIO 的多个端⼝设值。