耐热高分子材料及其应用

  • 格式:doc
  • 大小:222.50 KB
  • 文档页数:10

下载文档原格式

  / 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐热高分子材料及其应用

姓名

(常州轻工职业技术学院常州 213164)

摘要:随着尖端科学技术的发展,特别是高速飞行、火箭、宇宙航行、无线电、工程技术等的飞跃发展,对高分子材料的耐热性提出了越来越高的要求。近年来世界各国科学家正在开发这方面新技术,很多材料已经进行大规模生产。耐高温高分子材料一直是大家关注的热点,本文首先对耐热高分子材料作一概述,然后从多方面介绍耐热高分子材料在实际中的应用以及对其未来的展望。

关键词:耐热高分子耐热性高分子材料耐热材料应用

1 耐热高分子材料

1.1 耐热高分子材料的定义

耐热高分子材料一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料[1]。在电气绝+缘材料范畴,通常把使用温良长期在150℃以上的高分子材料称为谢热高分子绝缘材科.

1.2 耐热高分子材料的影响因素

环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐射等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指树料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一种热塑性聚合物的耐热性低于热稳定性。

1.3 耐热高分子材料的分类

耐热高分子材料按结构可分为:

(1)芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酷咬等;

(2)杂环聚合物类,如聚酰亚胺、聚苯并咪唑、喹恶林等;

(3)梯形聚合物,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹恶林类梯形聚合物等:

(4)元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物;

(5)无机聚合物类.

2 高分子材料的耐热性与结构

2.1 对高分子材料耐热性的要求

关于高分子材料的耐热性,至今尚无完全统一的规定,不同研究者往往有不同的解释[2]。Eirich,等人在1961年曾对高分子材料的耐热性提出三条基本要求:有高熔点和高软化点;高的抗热解性;有良好的耐热氧化性和耐化试学剂性。但通常首先注意材料的最高工作

温度。实际上,对耐高温高分子材料的要求不只是这一个指际,还应指出使用条件、可耐时间以及性能改变的允许范围等才有意义。例如美国航空宇宙局规定的条件为:在330 C于空气中400小时,538 C 下80小时内材料仍保持足够的机械强度、尺寸稳定性及化学稳定性。当做火箭烧蚀材料时,则要求在1000——10000 C高温下,在儿秒到儿分钟的短时间内,应残留大量的燃烧残渣并保持其原来的形态。只有提出对温度、环境、性能等儿方面的要求,才能作为可使用材料的完整指标。

当前合成新的耐高温高分子材料的要求是:能长时间耐300 C以上高温,甚至在氧化环境中能长期保持结构的完整性并维持其性能。现有的高分子材料的耐热性多数低于这个要求,并希望某高分子材料其有导体和半导体比、或加入某些石墨化或金属活化的组成,使其显示超导体性。

2.2 耐热性与高分子结构

关于高分子结钩与耐热性之间的关系问题,从1959年以来进行了不少的探讨[3.4.] ,取得了某些进展,这对耐高温材料的合成及提高材料的耐热性,具有一定的指导意义。但是还存在着很大的盲目性,如把几十种杂环引进高分子链,真正有应用价值的,目前不过十几种,有的杂环本身就不稳定或很难合成,把它们引入高分子链的实际意义并不大[5]。另外对原料来源是否丰富,工艺路线、产品成本是否合理,也缺乏足够的重视,常常停留在多种可能结构的变来变去,有关这方面种经验教训值得吸取。

耐高温高分子材料,首先应该有高的玻璃化温度(To)和熔点(Tm)。多数结晶高聚物的To/Tm(K)= 0.58—0.78(约为2/3)。

已知:

Tm=△H/△S

式中: △H为热烩,它主要和分子间力有关(如氢键、范德华力等),显然分子间力越大熔点越高。△S为嫡,与分子的刚性和对称性有关,分子的对称性增大,则自由旋转性小,分子刚性增大△S则减小,熔点升高。提高分子刚性即相应提高分子的耐热性。

从实用力加工角度考虑,曾往往注意提高△H。为了进一步提高耐热性,首先应考虑限制分子的自由旋转,增加分子刚性,减小体系的△S。

从合成方法角度考虑,予期提高分子}种胜,借助缩聚反应,用对称性好的苯环(芳环)或共骊的芳族衍生物,合成聚芳烃或含苯环或芳等环的高分子,是颇有希望的。

3 耐热性高分子的研究

1973 年春季的美国化学年会在得克隆斯州的达拉斯召开, 这个年会的有机涂膜及塑料部门会议举办的“高温高分子的合成与物性”座谈会是献给亚利桑那大学的C.s. 玛威尔教授的。说是全美所有的耐热性高分子研究者群贤毕至也并不过分玛威尔教授今年84 岁, 仍继续着耐热性高分子的合成研究, 他是这个领域的首届一指的人物。由于这方面的功绩被授于波顿奖, 上述座谈会就是为纪念这次授奖而召开的。玛威尔教授在会上作了受奖演说。首先他说: “自己一开始并不是对耐热性高分子的合成抱有特别的兴趣, 在50 年代初, 当时自己任伊利诺斯大学教授时, 一天由设在俄亥州戴通的美国空军雷登. 派塔松基地空军研究所一位青年中尉到家里来了, 开口就说他想搞提高分子耐热性的研究”[6]。

因此, 耐热性高分子材料的研究是由于作为航空材料的要求而开始的, 这是最大的特征。其后在50 年代末开始的和所谓的进入宇宙时代相联系, 其研究的大部分都是通过空军及航空宇宙局(NASA)提供研究资金。

高分子的耐热性的最高限度因其热分解而被限制住了[7]。并且热分解是由于高分子主链的炭—炭单键的断裂而发生的, 所以耐热性的最初的目标是在高分子链上引入炭以外的原子, 以增大链能。这种高分子的代表是聚硅氧烷, 虽然耐热性的确大些, 但-si-O -骨架的弯曲