差动放大电路----直流信号
- 格式:ppt
- 大小:11.90 MB
- 文档页数:22
一、实验目的1. 理解直流差动放大电路的工作原理。
2. 掌握直流差动放大电路的组成和特点。
3. 通过实验,验证差动放大电路对差模信号和共模信号的放大能力。
4. 学习使用直流电压表、万用表等仪器测量电路参数。
二、实验原理差动放大电路是一种能够有效抑制共模干扰的放大电路,由两个完全相同的晶体管组成。
它能够分别放大两个输入端输入的差模信号和共模信号,并抑制共模信号的影响。
差动放大电路的原理如下:1. 差模信号放大:当两个输入端分别输入大小相等、极性相反的信号时,差动放大电路能够将这两个信号的差值作为输出信号放大。
2. 共模信号抑制:当两个输入端同时输入大小相等、极性相同的信号时,差动放大电路能够抑制这个共模信号的影响,只输出差模信号。
三、实验仪器与设备1. 直流电源2. 晶体管3. 电阻4. 电容5. 直流电压表6. 万用表7. 信号发生器8. 电路板9. 连接线四、实验步骤1. 搭建电路:根据实验原理图,将电路连接好,包括直流电源、晶体管、电阻、电容等元件。
2. 测量静态工作点:使用直流电压表测量晶体管的集电极电压和发射极电压,确保晶体管工作在合适的工作点。
3. 输入差模信号:使用信号发生器输入一个差模信号,使用直流电压表测量输出电压,分析差模放大倍数。
4. 输入共模信号:使用信号发生器输入一个共模信号,使用直流电压表测量输出电压,分析共模抑制能力。
5. 测量电路参数:使用万用表测量晶体管的参数,如β值、输入阻抗等。
五、实验结果与分析1. 差模信号放大:通过实验,我们得到了差模放大倍数Aud的测量值,并与理论值进行了比较,验证了差动放大电路对差模信号的放大能力。
2. 共模信号抑制:通过实验,我们得到了共模抑制比CMRR的测量值,并与理论值进行了比较,验证了差动放大电路对共模信号的抑制能力。
3. 电路参数测量:通过实验,我们测量了晶体管的参数,如β值、输入阻抗等,并与理论值进行了比较,验证了电路的可靠性。
第4章 差动放大电路在工业控制过程中,如温度、压力这样的物理量,被传感器检测到并转化为微弱的。
变化缓慢的非周期电信号。
而这些信号还需要经过直流放大器放大以后,才能进行进一步的处理或推动二次仪表进行显示。
那么,这里的放大器一般采用直接耦合多级放大器。
直接耦合多级放大器存在零点漂移的问题,克服零点漂移的有效办法,就是在多级放大器的输入级采用差动放大电路。
4.1 典型差动放大电路4.1.1 零点漂移问题1、零点漂移(1)零点漂移:指输入信号电压为零时,输出电压发生缓慢地、无规则地变化的现象,简称零漂。
(2)零漂产生的原因:晶体管参数()CEO BE I U β、、随温度变化、电源电压波动、电路元件参数的变化等。
(其中主要因素是温度对晶体管参数的影响,称为温漂。
)(3)温漂:环境温度每变化1℃,将放大电路输出端出现的漂移电压oU '∆ 折算到输入端,用这个折算到输入端的漂移电压数值表示零漂的大小,用i U '∆表示。
(常常认为,零漂就是温漂。
)放大电路的级数越多,放大倍数越大,则零漂电压逐级放大,就使零漂越严重,有时会将输入信号淹没。
那么,第一级零漂对输出端的总零漂来说,占主要地位。
2、抑制温度漂移的措施:① 在电路中引入直流负反馈。
(如第2章介绍的分压式偏置电路中的E R 就是一个直流负反馈。
)② 采用特性相同的管子,使它们的温漂相互抵消,构成差动放大电路,至于直接耦合多级放大电路的输入端。
(在直接耦合放大电路中抑制零点漂移最有效的电路结构是差动放大电路。
)4.1.2 典型差动放大电路1、电路结构与静态工作情况 (图4-1为典型的差动放大电路)将两个电路结构、参数均相同的单管放大电路组合在一起,就成为差动放大电路的基本形式。
两管射极均通过电阻E R 与负电源串联之后接地。
(1)差动放大电路的结构特点:① 由两个结构、参数左右对称的共射放大器组成;② 它有两个输入端a 和b ,存在两个输入信号1i u 、2i u ;③ 它有两个输出端,有单端输出(从任意一个集电极输出)、双端输出(从两个集电极之间输出)两种方式; ④ EE U 为负电源,确保1V 、2V 工作在放大状态。
一文解析差动放大器电路原理运算放大器广泛应用于各类型电子产品上面,用来对模拟量信号进行放大或衰减,使信号幅值达到一个合理的区间,供其它电路进行比较或采样。
差动放大器具有一个普通放大器不具备的优点:可对一个或多个不共地的信号进行检测,各个被测信号或放大器皆不受非等电位带来的影响,使各个被信号与放大器之间继续保持着“隔离”特性。
但这个这么好的优点却没有被仪器厂家重视。
目前绝大多数的示波器都无法对两个以上不共地信号进行同时检测,甚至只使用单通道时也无法直接测量非隔离的信号,例如220V市电,或220V整流后的电压,因为探头的地跟交流电地线是通的,一测就是短路。
假如前级采样采用差动放大器电路形式,此问题迎刃而解了。
不过福禄克的示波表倒是支持测量不共地信号,但它是不是用的差动放大电路,我就没去研究过了。
下图是整流器电压的采样电路,根据科技先躯们的经验,当两输入电阻相等,两反馈电阻也相等时(姑且把同相端电阻也称为反馈电阻),电路的放大比例为RF/RI,下图为10/1000,即0.01倍,衰减型电路。
教科书上的公式推导过程我看来看去硬是看不明白,数学没学好是我的硬伤,但我相信公式是正确的,因为我用我自己的理解方式计算过,也实验过,放大比例确实是RF/RI,下面我就分享一下我的推导方法,也是各电压点的计算方法,但是要注意的是,这个计算方法是针对被测信号与放大器不共地的时候用的,在共地的时候计算法又不同,后面我会讲到。
图中,受测电压为540VDC,上正下负。
我们知道,运放工作在放大区时,正反输入端电压是相等的(理想状态下完全一致,实际有少许偏差,偏差值由运放品质决定),即虚短,那受测信号的负载电流可以等效于右图,我们由此计算出受测信号回路电流,540V/2000K=0.27MA,红色箭头为电流方向,OK。
我们还知道,运放还有虚断特性,即正反输入端的电流几乎为0,可以忽略不计,那我们就可以断定,流经两输入电阻的电流与流经两反馈电阻的电流是一样的,即4个电阻的电流都为0.27MA。
差动放大器实验报告实验报告:差动放大器的原理与应用一、实验目的1.了解差动放大器的基本原理;2.学习差动放大器的性能参数评价与测量方法;3.熟悉差动放大器的应用。
二、实验原理1.差动放大器的基本电路为共射器差动放大电路。
它由两个相同的共射放大器和一个共同的负载电阻组成。
两个BJT管分别驱动同一负载电阻,其发射极相互连接。
通过负载电阻可以得到差模和共模信号。
其中,差模信号为两个输入信号之差,而共模信号为两个输入信号之和。
2.差动放大器的性能参数主要包括共模抑制比、增益、输入电阻和输出电阻。
其中,共模抑制比指的是差动放大器对于共模信号的抑制能力;增益指的是差动放大器对于差模信号的放大能力;输入电阻指的是差动放大器对于输入信号的电阻特性;输出电阻指的是差动放大器对于输出信号的电阻特性。
三、实验步骤1.接线:按照电路图将差动放大器电路搭建起来。
2.测量差动放大器的直流工作点:使用万用表测量差动放大器电路的直流电压,包括两个BJT管的发射极电压、基极电压和集电极电压。
3.测量差动放大器的交流性能参数:(1)输入特性测量:使用函数信号发生器作为输入信号源,测量输入信号和输出信号的电压,绘制输入特性曲线。
(2)共模抑制比测量:使用函数信号发生器分别给两个输入端口施加共模信号和差模信号,测量输出信号的电压,计算共模抑制比。
(3)增益测量:使用函数信号发生器分别给两个输入端口施加差模信号,测量输出信号的电压,计算增益。
(4)输入、输出电阻的测量:使用函数信号发生器施加信号,通过分析输入、输出端口的电流和电压变化,测量输入、输出电阻。
四、实验结果与分析1.直流工作点测量结果如下表所示:左端BJT管,发射极电压,基极电压,集电极电压:----------:,:----------:,:--------:,:--------:Q1,1.23V,0.72V,6.68VQ2,1.30V,0.75V,6.42V这里插入图片从图中可以看出,当输入信号的幅值逐渐增大时,输出信号的幅值也随之增大,但存在一个饱和区,超过该区域输入信号的幅值不再增大。
差分放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII差分放大器的工作原理差分放大器也叫差动放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。
差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路 (ECL, Emitter Coupled Logic) 的输入级。
如果Q1 Q2的特性很相似,则V a,V b将同样变化。
例如,V a变化+1V,V b也变化+1V,因为输出电压VOUT=V a-V b=0V,即V a的变化与V b的变化相互抵消。
这就是差动放大器可以作直流信号放大的原因。
若差放的两个输入为,则它的输出V out为:其中Ad是差模增益 (differential-mode gain),Ac是共模增益 (common-mode gain)。
因此为了提高信/噪比,应提高差动放大倍数,降低共模放大倍数。
二者之比称做共模仰制比(CMRR, common-mode rejection ratio)。
共模放大倍数AC可用下式求出:A c=2R l/2R e通常以差模增益和共模增益的比值共模抑制比 (CMRR, common-mode rejection ratio) 衡量差分放大器消除共模信号的能力:由上式可知,当共模增益Ac→0时,CMRR→∞。
Re越大,Ac就越低,因此共模抑制比也就越大。
因此对于完全对称的差分放大器来说,其Ac = 0,故输出电压可以表示为:所谓共模放大倍数,就是V a,V b输入相同信号时的放大倍数。
如果共模放大倍数为0,则输入噪声对输出没有影响。
要减小共模放大倍数,加大R E就行通常使用内阻大的恒流电路来带替R E差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。
很多系统在差分放大器的一个输入端输入反馈信号,另一个输入端输入反馈信号,从而实现负反馈。
四种差分放大电路的放大倍数差分放大电路是一种用于放大差分信号的电路,在许多应用中都有广泛的应用,如在通信、音频放大、电路控制等方面。
差分放大电路有很多种类型,每一种类型都有自己的特点和适用范围。
本文将介绍四种典型的差分放大电路及其放大倍数。
一、基本差分放大电路基本差分放大电路是由两个晶体管组成的放大器,其中一个管为PNP型管,另一个为NPN型管,所以它也被称为PNP-NPN对差分放大器。
该电路的输入端是一个差分信号,输出端是差分信号的放大信号。
它的放大倍数可以分为交流放大倍数和直流放大倍数两种情况。
交流放大倍数是指在差分信号的交流信号中,输出信号放大的倍数。
基本差分放大电路的交流放大倍数为RC/L1的电阻倍数,其中RC是输出端的负载电阻,L1是输入端的电感。
它还受到晶体管的放大度和共模抑制比等因素的影响。
如果输入端的电阻和电感的比值适当,则交流放大倍数可以达到几百倍。
直流放大倍数是指在差分信号的直流信号中,输出信号放大的倍数。
基本差分放大电路的直流放大倍数由晶体管上的基极电阻和负载电阻决定,它通常在几十倍到几百倍之间。
但由于晶体管的特性参数都有所不同,所以直流放大倍数也会有所不同。
长尾对差分放大电路的交流放大倍数与基本差分放大电路类似,仍然受到负载电阻、输入电感等因素的影响,但它的直流放大倍数明显优于基本差分放大电路。
直流放大倍数通常在几十倍到几百倍之间。
三、差动对称放大电路差动对称放大电路的交流放大倍数主要由负载电阻和输入电感共同决定。
输入电感的质量越好,其放大倍数越高。
由于该电路采用了对称结构,因此共模抑制比很高,可以达到90dB以上。
直流放大倍数通常也在几十倍到几百倍之间。
差分对数放大电路的交流放大倍数很大,可以达到1000倍以上。
直流放大倍数则是由电区电阻大小决定,一般在几十倍到几百倍之间。
此外,差分对数放大电路还有一个特点是输入信号的比例关系,当输入信号比例为1:1000时,输出信号的比例为1:1,因此可以实现对低电平信号的有效放大。