实验六 直流差动放大电路
- 格式:ppt
- 大小:2.58 MB
- 文档页数:41
差动放大电器实验报告差动放大电路实验报告一、实验目的:1. 了解差动放大电路的工作原理;2. 掌握差动放大电路的参数测量方法;3. 研究差动放大电路的频率响应特性。
二、实验仪器和材料:1. 差动放大电路实验箱;2. 某型号差动放大电路芯片;3. 功能发生器;4. 串联耦合电容;5. 变阻器;6. 电压表。
三、实验步骤:1. 将差分放大器芯片正确插入实验箱中;2. 将功能发生器的输出端与差分放大器的输入端相连,设置合适的频率和振幅;3. 通过串联耦合电容将差分放大器的输出端与示波器相连,观察放大器的输出信号;4. 使用电压表测量输入端和输出端的电压;5. 调节变阻器,观察不同阻值对放大器增益和频率响应的影响;6. 记录实验数据。
四、实验结果与分析:1. 在不同频率下,测量输入端和输出端的电压,并计算差分放大器的增益。
根据实验数据绘制增益-频率曲线图,计算放大器的功率带宽积;2. 通过调节变阻器,观察不同阻值对放大器增益和频率响应的影响。
记录实验数据并进行分析。
五、实验结论:1. 差分放大器具有高增益和高共模抑制比等特点,适用于需要抑制共模干扰的场合;2. 通过实验可以得到差分放大器的频率响应特性曲线,了解其在不同频率下的放大倍数和相位特性;3. 实验结果还可以用于差分放大电路的性能优化,如选择合适的补偿网络,提高其频率响应特性。
六、实验心得:通过本次实验,我深入了解了差分放大器的工作原理和参数测量方法,掌握了差分放大器的频率响应特性的测试技巧。
同时,实验过程中需要注意对实验仪器的正确操作,准确测量并记录实验数据。
此外,实验中还应注意安全使用电器设备。
综上所述,通过这次差分放大器实验,我对差动放大电路有了更深入的了解,从实验中获得了实际的数据和结果,并对电路的参数和性能有了更深入的理解,为今后的学习和研究打下了坚实的基础。
2021年整理差动放大电路实验报告.doc
本实验是用来验证差动放大电路的原理和工作原理的,具体做法是用两个NPN型晶体
管分别固定一个输入和另一个输出,通过电阻分压网络,从而使输入信号相互对立。
当电
压输入可调源供应器提供的输入电压变化时,输出信号的变化也会随着输入电压的变化而
变化,极大放大了输入信号的幅值以及获得阻抗变换。
具体实验步骤如下:
1.用DC电压表测量由可调源供应器输出的电压,设置电压为0V,在放大电路输入端
设定,将输出端连接到万用表,并观察万用表读数;
2.将输入电源的电压增加,同时观察输出信号的变化,并用万用表测量变差放大器的
输出大小,做出一系列有关输出信号的变化;
3.根据测量得到的输出电压与输入电压的比值,再做出放大器的灵敏度曲线,并得出
以及计算当输入输出相同时,放大器的增益系数。
实验结果表明:放大器的增益系数为53.8,放大电路可以将输入信号放大至53.8倍,此外,还发现放大器没有失真和相位变化现象,可以说明实验结果较为准确。
总结而言,本实验可以从实际操作中证实差动放大器的原理以及工作原理,证明了可
以运用差动放大器可以实现较大的增益并实现良好的稳定性及信号一致性。
差动放大电路实验报告严宇杰141242069 匡亚明学院1.实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。
2.实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。
3.预习内容(1)差动放大器的工作原理性能。
(2)根据图3.1画出单端输入、双端输出的差动放大器电路图。
4.实验内容实验电路如图3.1。
它是具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。
对于共模信号,若Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0.差动放大器常被用作前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望只放大差模信号,不放大共模信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,0P07的输入电阻约为107Ω量级。
本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于这一数值,这是很小的输入电阻。
实验五直流差动放大电路一、实验目的l.熟悉差动放大电路工作原理。
2.掌握差动放大电路的基本测试方法。
二、实验仪器1.双踪示波器2.数字万用表3.信号源三、预习要求1.计算图5.1的静态工作点(设rbc=3K,β=100)及电压放大倍数。
2.在图5.1基础上画出单端输入和共模输入的电路。
四、实验内容及步骤实验电路如图5.1所示图5.1 差动放大原理图1.测量静态工作点,(1)调零将输入端短路并接地,接通直流电源,调节电位器RPl 使双端输出电压V=0。
(2)测量静态工作点测量V 1、V 2、V 3各极对地电压填入表5.1中表5.12.测量差模电压放大倍数。
在输入端加入直流电压信号V id =土0.1V 按表5.2要求测量并记录,由测量数据算出单端和双端输出的电压放大倍数。
注意先调好DC 信号的OUTl 和OUT2,使其分别为+0.1V 和-0.1V ,然后再接入。
3.测量共模电压放大倍数。
将输入端b 1、b 2短接,接到信号源的输入端,信号源另一端接地。
DC 信号分先后接OUTl 和OUT2,分别测量并填入表5.2。
由测量数据算出单端和双端输出的电压放大倍数。
进一步算出共模抑制比CMRR=cd A A 。
表5.24.在实验板上组成单端输入的差放电路进行下列实验。
(1)在图1中将b 2接地,组成单端输入差动放大器,从b 1端输入直流信号V=±0.1V ,测量单端及双端输出,填表5.3记录电压值。
计算单端输入时的单端及双端输出的电压放大倍数。
并与双端输入时的单端及双端差模电压放大倍数进行比较。
表5.3(2)从b 1端加入正弦交流信号V i =0.05V ,f=1000Hz (b 2接地)分别测量、记录单端及双端输出电压,填入表5.3计算单端及双端的差模放大倍数。
(注意:输入交流信号时,用示波器监视υC1、υC2波形,若有失真现象时,可减小输入电压值,使υC1、υC2都不失真为止)五、实验报告1.根据实测数据计算图5.1电路的静态工作点,与预习计算结果相比较。
差动放大器实验报告温馨提示:本文是笔者精心整理编制而成,有很强的的实用性和参考性,下载完成后可以直接编辑,并根据自己的需求进行修改套用。
篇一:差动放大器实验报告东莞理工学院实验报告系(院)、专业班级:电气自动化(2)班姓名:吴捷学号:20__41310202日期:20__.12.28成绩:篇二:差动放大器实验报告2.6 差动放大器2.6.1 实验目的1.加深对差动放大器性能及特点的理解。
2.学习差动放大器主要性能指标的测试方法2.6.2 实验原理1.实验电路图2-6-1差动放大电路实验电路图实验电路如图2-6-1所示。
当开关K拨向左边时, 构成典型的差动放大器。
调零电位器用来调节、管的静态工作点, 使得输入信号。
为两管共用的发射极电阻, 它对差时, 双端输出电压模信号无负反馈作用, 因而不影响差模电压放大倍数, 但对共模信号有较强的负反馈作用, 故可以有效地抑制零漂, 稳定静态工作点。
当开关K拨向右边时, 构成具有恒流源的差动放大器。
它用晶体管恒流源代替发射极电阻, 可以进一步提高差动放大器抑制共模信号的能力。
2.差动放大器主要性能指标(1)静态工作点典型电路:(认为)恒流源电路:(2)差模电压放大倍数当差动放大器的射极电阻足够大, 或采用恒流源电路时, 差模电压放大倍数由输出端决定, 而与输入方式无关。
双端输出时, 若在中心位置单端输出时式中出电压。
和分别为输入差模信号时晶体管、集电极的差模输(3)共模电压放大倍数双端输出时不会绝对等于零。
实际上由于元件不可能完全对称, 因此单端输出时式中压。
(4)共模抑制比为了表征差动放大器对有用信号(差模信号)的放大能力和对无用信号(共模信号)的抑制能力, 通常用一个综合指标来衡量, 即共模抑制比和为输入共模信号时晶体管、集电极的共模输出电或(dB)2.6.3 实验内容和步骤1.典型差动放大器性能测试按图2-6-1连接实验电路, 开关K拨向左边构成典型差动放大器。
[精编]差动放大器实验报告(1) 实验报告:差动放大器实验一、实验目的1.理解差动放大器的工作原理及特点。
2.掌握差动放大器的调整与测量方法。
3.通过实验,加深对模拟电路中放大器性能的理解。
二、实验原理差动放大器是一种对差模信号具有放大作用的放大器,它具有高输入阻抗、高共模抑制比、低零点漂移等优点,常用于模拟电路中的信号放大。
差动放大器主要由差分对管和负载电阻组成,通过对差分对管的基极电压进行适当调整,可以实现差模信号的放大。
三、实验步骤1.准备实验器材:差动放大器模块、信号源、示波器、万用表、导线若干。
2.连接实验电路:将差动放大器模块与信号源、示波器、万用表连接起来,构成完整的实验电路。
3.调整差动放大器:根据差动放大器的使用手册,调整差分对管的基极电压,使差动放大器工作在合适的状态。
4.输入信号:利用信号源产生一定幅度和频率的差模信号,输入到差动放大器的输入端。
5.观察输出信号:在示波器上观察差动放大器输出端的信号变化,记录下不同输入信号下的输出信号幅值和波形。
6.测量性能指标:利用万用表测量差动放大器的增益、共模抑制比等性能指标,并记录下测量数据。
7.分析实验结果:根据实验数据和观察结果,分析差动放大器的性能特点及工作原理。
四、实验结果与分析1.实验数据:2.结果分析:根据实验数据,我们可以看出,随着输入信号幅值的增加,输出信号幅值也相应增加,增益和共模抑制比也表现出良好的线性关系。
这表明差动放大器在放大差模信号的同时,能够有效地抑制共模信号,具有较高的信号保真度。
此外,通过观察示波器上的输出波形,我们发现差动放大器的输出信号波形具有良好的稳定性,没有出现明显的零点漂移现象。
这进一步验证了差动放大器在模拟电路中的重要作用。
五、实验结论通过本次实验,我们验证了差动放大器在模拟电路中的重要作用,包括放大差模信号、抑制共模信号、提高信号保真度以及减小零点漂移等。
此外,我们还发现,差动放大器的性能指标如增益和共模抑制比与输入信号的幅值和频率具有一定的关系。
实验六差动放大电路一、实验目的1.熟悉差放大电路的结构和性能特点。
2.掌握差动放大器的测试方法。
二、原理说明1.差动放大电路的主要特点差动放大电路广泛地应用于模拟集成电路中,它具有很高的共模抑制比。
诸如由电源波动、温度变化等外界干扰都会引起工作点不稳定,它们都可以看作是一种共模信号。
差动放大电路能抑制共模信号的放大,对上述变化有良好的适应性,使放大器有较高的稳定度。
图5-1为差动放大电路,它采用直接耦合形式,当电路①、②两点相连时是长尾式差动放大电路:当电路①、③两点相连时是恒流源式差动放大电路。
在长尾式差动放大电路中抑制零漂的效果和R E的数值有密切关系。
因此R E也成为共模反馈电阻,R E愈大,效果愈好。
但R E愈大,维持同样工作电流所需要的负电压V EE也愈高。
这在一般情况下是不适合的,恒流源的引出解决了上述矛盾。
在三极管的输出特性曲线上,有相当一段具有恒流源的性质,即当U CE变化时,I C电流不变。
图5-1中VT3管的电路为产生恒流源的电路,用它来代替长尾R E,从而更好地抑制共模性质的变化,提高了共模抑制比。
2. 动放大电路的几种接法差动放大电路的输入端,有单端和双端两种输入方式;其输出端,有单端和双端两种输出方式。
电路的放大倍数只与输出方式有关,而与输入方式无关。
故实验内容中我们不再做双端输入方式。
(1)单端输入:信号电压u i仅由VT1管A端输入,而VT2管B端接“地”。
(2)单端输出:VT1管单端输出(u o1),取自VT1管的集电极对“地“电压,输入u i与输出信号u o1相反;VT2管单端输出(u o2),取自VT2管的集电极对”地“电压,输入与输出信号同相。
单端输出的放大倍数是单管放大的一半。
图5-1 差动放大电路(3) 双端输出:为VT1管与VT2管集电极之间的电压。
但因晶体管毫伏表测量信号时,它的黑夹子只能接“地”。
所以测量时分别对“地”测出u o1和u o2,再进行计算(u o=u o1-u o2)。