八年级数学三角形的外角
- 格式:pdf
- 大小:354.40 KB
- 文档页数:8
初二数学上册三角形的外角复习专项练习【三角形的外角】相关知识点三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。
三角形的外角特征:①顶点在三角形的一个顶点上,如∠ACD的顶点C 是△ABC的一个顶点;②一条边是三角形的一边,如∠ACD的一条边AC 正好是△ABC的一条边;③另一条边是三角形某条边的延长线如∠ACD 的边CD是△ABC的BC边的延长线。
性质:①.三角形的外角与它相邻的内角互补。
②三角形的一个外角等于和它不相邻的两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
④三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
【三角形的外角】例题解析1.下列说法错误的是()A.有一个外角是锐角的三角形是钝角三角形B.有两个角互余的三角形是直角三角形C.直角三角形只有一条高D.任何一个三角形中,最大角不小于60度选C【点评】本题考查了钝角三角形、直角三角形的概念.注意D中,如果最大角小于60°,则三个角的和就小于180°,与三角形的内角和定理,内角和为180°相矛盾.2.如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.【解答】解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.3.三角形的一个外角与它相邻的内角相等,而且等于与它不相邻的两个内角中的一个角的3倍.则这个三角形各角的度数是()A.45°,45°,90°B.36°,72°,72°C.25°,21°,134°D.30°,60°,90°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和与三角形的内角和等于180°可以求出与这个外角相邻的内角等于90°,然后根据这个外角等于与它不相邻的两个内角中的一个角的3倍,求出这个内角即可.【解答】解:根据题意,与这个外角相邻的内角等于180°÷2=90°,∵这个外角等于与它不相邻的两个内角中的一个角的3倍,∴90°÷3=30°,∴90°﹣30°=60°,∴这个三角形各角的度数是:30°,60°,90°.故选D.【点评】本题主要考查三角形的外角性质和三角形的内角和定理,熟练掌握性质和定理是解题的关键.4.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为()2·1·c··j·yA.60°B.70°C.80°D.85°【考点】三角形的外角性质;余角和补角;三角形内角和定理.【分析】先根据三角形内角和等于180°求出∠3+∠4的度数,再根据三角形的内角和等于180°即可求出∠BDC的度数【解答】解:∵∠1=20°,∠2=25°,∠A=35°,∴∠3+∠4=180°﹣∠1﹣∠2﹣∠A=180°﹣20°﹣25°﹣35°=100°,在△BDC中,∠BDC=180°﹣∠3﹣∠4=180°﹣100°=80°.故选C.【点评】本题三角形的内角和等于180°求解,是基础题,准确识别图形是解题的关键.5.如图,点D、B、C在同一条直线上,∠A=60°,∠C=50°,∠D=25°.则∠1=()A.60°B.50°C.45°D.25°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形外角的性质求出∠ABD的度数,再由三角形内角和定理即可得出结论.【解答】解:∵∠ABD是△ABC的外角,∠A=60°,∠C=50°,∴∠ABD=∠A+∠C=60°+50°=110°,在△BDE中,∵∠D=25°,∠ABD=110°,∴∠1=180°﹣25°﹣110°=45°.故选C.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.6.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】直角三角形的性质;三角形的外角性质;翻折变换(折叠问题)【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°【考点】三角形的外角性质;三角形内角和定理.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选C.【点评】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,难度适中.8.直角三角形的一锐角为60°,则另一锐角为30°.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形的一锐角为60°,∴另一锐角为90°﹣60°=30°.故答案为:30°.【点评】本题考查了直角三角形的性质,熟记直角三角形两锐角互余是解题的关键.9.直角三角形中两个锐角的差为20°,则两个锐角的度数分别是55°、35°.【考点】直角三角形的性质.【分析】设一个锐角为x,根据题意表示出另一个锐角,根据直角三角形的性质列出方程,解方程得到答案.【解答】解:设一个锐角为x,则另一个锐角为x﹣20°,则x+x﹣20°=90°,解得,x=55°,x﹣20°=35°故答案为:55°、35°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键,注意方程思想的正确运用.10.如图,△ABC中,∠A=50°,∠ABO=18°,∠ACO=32°,则∠BOC=100°.【考点】三角形的外角性质.【分析】延长BO与AC相交于点D,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长BO与AC相交于点D,由三角形的外角性质,在△ABD中,∠1=∠A+∠ABO=50°+18°=68°,在△COD中,∠BOC=∠1+∠ACO=68°+32°=100°.故答案为:100°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造成三角形是解题的关键.11.(2015春•保山校级期中)如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2等于270度.【考点】三角形的外角性质.【分析】如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【解答】解:∵△ABC 为直角三角形,∠B=90,∴∠1=90°+∠BNM,∠2=90°+∠BMN,∴∠1+∠2=270°.故答案为:270.【点评】本题主要考查三角形的外角性质、三角形内角和定理,关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.12.(2015秋•萧山区月考)如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56’,那么∠BOC为81°8′.【点评】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.。
三角形的外角【教学目标】1.了解三角形的外角,探索并理解三角形外角定理及其推论的推导,会用三角形外角定理及其推论解决一些实际问题。
2.通过观察、操作、交流等活动发展推理能力。
3.通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【教学重难点】三角形外角定理及其推论的推导和实际应用。
【教学过程】一、导入新课。
如图,△ABC的三个内角是什么?它们有什么关系?学生回答。
过渡:若延长BC至D,则△ACD是什么角?这个角与△ABC的三个内角有什么关系?二、讲授新课。
(一)三角形外角的概念。
过渡:观察上图说出三角形ABC的一个外角。
例如△ACD。
过渡:大家可以总结一下如何定义三角形的外角?三角形的外角概念:三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角。
过渡:在三角形的外角的学习中,我们需要明白这几个名词。
过渡:现在请大家将一个三角形的全部外角都画出来,并思考一下:三角形的外角有几个?每个顶点处有两个外角,共有6个外角。
过渡:知道了三角形的外角的定义,那么请同学们思考如何计算三角形的外角呢?三角形的外角有哪些特征呢?(二)三角形外角的特征。
每个外角与相邻的内角是邻补角。
每个顶点处有两个外角,但这两个是对顶角。
(三)三角形外角和定理。
过渡:我们了解了三角形的内角和等于180°,那么如何计算三角形的外角和呢?三角形的一个外角与它相邻的内角之间是什么关系?与它不相邻的两个内角之间是什么关系呢?三角形的一个外角等于与它不相邻的两个内角的和。
在△ABC中,D△A+△B+△ACB=180°,△ACB+△ACD=180°,△△ACD=△A+△B 。
过渡:这个定理在运算过程中,能够帮我们简化问题,现在大家来试一下吧。
练习:求下列各图中△1的度数。
过渡:我们知道三角形的外角等于与它不相邻的两个内角的和,也就是说三角形的一个外角大于与它不相邻的任何一个内角。
学生做题前请先回答以下问题问题1:三角形的______________________组成的角,叫做三角形的外角.问题2:三角形外角定理:三角形的一个外角等于__________________.三角形的外角(外角定义、定理)(人教版)一、单选题(共10道,每道10分)1.下列各项中,∠1是△ABC的外角的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:三角形的外角2.如图,在△ABC中,点D,F在线段AB上,点E在线段AC上,H是BC延长线上一点,FE 的延长线交BH于点G,则下列说法错误的是( )A.∠ACG是△ABC的外角B.∠FGH是△ECG的外角C.∠AFE是△BFG的外角D.∠DEA是△ECG的外角答案:D解题思路:试题难度:三颗星知识点:三角形的外角3.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,连接DE,则下列说法正确的是( )A.∠BFE是△CDF的外角B.∠ADF是△CDF的外角C.∠CFD是△BFE的外角D.∠CFB是△DFE的外角答案:B解题思路:试题难度:三颗星知识点:三角形的外角4.如图,∠B=30°,∠A=40°,则∠BCD的度数为( )A.80°B.70°C.60°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形的外角5.如图,直线m,n分别过点A,B,若∠1=100°,∠2=70°,则m,n相交所成的锐角为( )A.20°B.30°C.70°D.80°答案:B解题思路:试题难度:三颗星知识点:三角形的外角6.如图是某零件的平面示意图,点E在BD的延长线上,其中∠A=40°,∠ABC=35°,∠C=30°,则∠ADC的度数为( )A.75°B.95°C.105°D.140°答案:C解题思路:试题难度:三颗星知识点:三角形的外角7.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,若∠A=45°,∠B=30°,∠C=40°,则∠BFC的度数为( )A.110°B.115°C.120°D.145°答案:B解题思路:试题难度:三颗星知识点:三角形的外角8.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则的度数为( )A.75°B.105°C.135°D.165°答案:D解题思路:试题难度:三颗星知识点:三角形的外角9.如图,五角星的顶点分别为A,B,C,D,E,∠A+∠B+∠C+∠D+∠E的度数为( )A.90°B.180°C.270°D.360°答案:B解题思路:试题难度:三颗星知识点:三角形的外角10.如图,P为△ABC内任意一点,延长CP交AB于点D,连接BP,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形的外角。
与三角形有关的角【要点梳理】知识点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.【典型例题】类型一、三角形的内角和1.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .举一反三:【变式1】如图所示,α∠的度数是()A.10︒B.20︒C.30︒D.40︒【变式2】三角形中至少有一个角不小于________度.类型二、三角形的外角2.如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)举一反三:【变式】将一副直角三角板如图放置,使两直角边重合,则α∠的度数为()A.75︒B.105︒C.135︒D.165︒类型三、三角形有关角的实际应用3.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求BDCB∠=︒,∠=︒,19A∠等于140︒才算合格,小明通过测量得90∠=︒后就下结论说此零件不合格,于是爸爸让小明解释这是为什么,小明很轻松地40C说出了原因,并用如下的三种方法解出此题.请你代小明分别说出不合格的理由.(1)如图1,连接AD并延长.(2)如图2,延长CD交AB于E.(3)如图3,连接BC.举一反三:【变式】探究与发现:有一块直角三角板DEF放置在ABC∆上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.请写出BDC∠+∠+∠之间的数量关∠与A ABD ACD 系,并说明理由.应用:某零件如图所示,图纸要求90∠=︒,21∠=︒,当检验员量得CBA∠=︒,32∠=︒,就断定这个零件不合格,你能说出其中的道理吗?145BDC【复习巩固】1.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°2.如图,将一块直角三角板DEF放置在锐角三角形ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=45°,则∠ABD+∠ACD的值为()A.40°B.45°C.50°D.55°3.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=140°,∠BGC=110°,则∠A=.4.如图,将△ABC纸片沿DE折叠,点A的对应点为A′,∠B=60°,∠C=80°,则∠1+∠2等于.5.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=108°,∠C=35°,则∠2=.6.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为.7.如图,△ABC中,∠B=38°,∠C=74°,AD是BC边上的高,D为垂足,AE平分∠BAC,交BC于点E,DF⊥AE,求∠ADF的度数.8.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=30°,∠ACB=40°,求∠E的度数;(2)求证:∠BAC=∠B+2∠E.9.如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.。
11.2.2 三角形的外角【教学目标】1、知识与技能: 使学生初步掌握三角形外角的定义及性质,并会应用。
2、过程与方法:〔1〕学生经过观察、思考、猜测、证明等数学活动过程,开展合情推理能力;〔2〕通过合作探究三角形的内外角之间的关系,提高学生的合作意识和沟通表达能力。
3、情感态度与价值观:通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【教学重难点】重点:三角形的外角及其性质.难点:三角形外角性质的证明及应用【教学准备】教师:多媒体、实物投影、三角板学生:三角板【课型】新授课【学习方法】自主探究与小组合作学习相结合的方法【教学过程设计】第一课时教学过程设计意图说明一、回忆与思考:〔.ppt出示〕1、在△ABC中,∠A=61°,∠B=72°,那么∠C= 。
2、如图,∠ACB=85°,那么∠ACD= 。
3、如图,在△ABC中,∠A=25°,∠B=30°,那么∠ACB= ,∠ACD= 。
4、如图,在△ABC中,∠A=30°,∠B=110°,那么∠ACD=。
思考:在上面2至4题中的∠ACD是△ABC的内角吗?假设不是,通过回忆旧知;三角形内角和知识,设置问题引入新知,激发学生学习兴趣,并让学生知道学习要懂得学以致用.那∠ACD是什么角?这个角与△ABC的三个内角有什么关系?二、自主探究(1):1.探究内容:教材第14页“三角形外角的概念〞.2.探究要求:学生理解三角形外角的概念。
三、交流展示(1):1、三角形外角的定义:________________________________2、外角的特征有三点:(1)顶点在___________上.(2)一条边是________ .(3)另一条边是__________________.3、动手试一试:画出一个三角形,并画出它的所有外角,看一个三角形有几个外角。
第十一章三角形11.1 与三角形有关的角11.2.2三角形的外角一、教学目标1.理解并掌握三角形的外角的概念,并能够在能够复杂图形中找出外角.2.掌握三角形的外角的性质和三角形外角和,并会用学过的定理证明.3.会运用三角形的外角的性质及外角和定理解决问题.二、教学重难点重点:三角形的外角定义及性质.难点:利用三角形的外角性质解决有关问题.三、教学过程【新课导入】[复习导入]1.三角形三个内角的和等于.2.∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角.邻补角的性质:.[学生回答]学生根据老师提出的问题,复习与本节课相关的知识(180°;∠1+∠2=180°)[课件展示][学生回答]学生根据课件展示的习题,练一练(75°;180°)[提出问题]∠ACD还具有什么样的性质呢?【新知探究】知识点1 三角形外角的概念[课件展示]教师利用多媒体展示三角形外角的定义,并出示如下例1例1 (1)如图,延长CB到D,延长AB到E,∠CBE△ABC的一个外角,∠DBE△ABC的外角,∠DBE△ABC 的外角.(填“是”或“不是”)(2)画一画:画出△ABC的所有外角,你一共能画出几个呢?(3)∠ABD与∠CBE是什么关系?[学生回答]学生根据三角形外角的定义回答(是;是;不是;6个;对顶角)[归纳总结]三角形的外角应具备的条件:①顶点是三角形的顶点;②一边是三角形的一条边;③另一边是三角形某条边的延长线.每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.[课件展示]跟踪训练如图.(1)∠BED既是△的外角,也是△的内角;(2)∠ACD既是△的外角,也是△的内角;(3)∠EFC既是△的外角,也是△的外角.提醒学生注意:找一个角是哪个三角形外角时,若图形比较复杂,这个角可能是多个三角形的外角.知识点2 三角形的外角的性质[提出问题]知道了三角形外角,那它有什么性质呢?我们一起来看看吧![课件展示]如图,已知在△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,则∠ACD=°,∠A+∠B=°.[小组讨论]小组之间讨论,得到结果,教师点名回答.(130°;130°)[提出问题]我们得到了两者都是130°,所以说明了什么呢?(由此可得,∠ACD=∠A+∠B .)是不是每个三角形的外角都具有这种关系呢?[课件展示]如图 .(1)△ABC的三个内角有什么关系?(2)△ABC的外角∠ACD与其相邻的内角∠ACB有什么关系?(3)△ABC的外角∠ACD与其不相邻的两内角(∠A,∠B)有什么关系?[学生思考]学生根据这三个问题进行思考[课件展示][归纳总结]三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.同时展示其几何表达形式:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B.[课件展示]跟踪训练1.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=( D )A.40°B.50°C.55°D.60°[课件展示]跟踪训练【变式】如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,∠B=35°,∠E=25°,则∠ACD的度数为( C )A.100°B.110°C.120°D.130°知识点3 三角形的外角和[课件展示][提出问题]你还有其他解法吗?教师提示学生可用邻补角的性质或周角的性质解答[小组讨论]将学生分为两大组,每组分别运用上述不同的方法解答,教师巡视,可提示运用周角性质的学生最辅助线.[课件展示][提出问题]我们可以得到什么结论?[归纳总结]三角形的外角和等于360°.同时提醒学生注意:三角形的每一个顶点处各有两个外角,三角形的外角和不是指六个外角的总和,而是说在三角形的每一个顶点处取一个外角,三个不同顶点处的外角和叫做三角形的外角和.[课件展示]跟踪训练如图,∠1=140°,∠2=100°,则∠3=( B )A.100°B.120°C.130°D.140°【课堂小结】【课堂训练】1.如图,点B,C分别在∠EAF的边AE,AF上,点D在线段AC上,则下列是△ABD的外角的是( D )A.∠BCF B.∠CBE C.∠DBC D.∠BDF2.如图,已知直线 AB∥CD,∠C=80°,∠A=40°,则∠E=( C )A.80°B.30°C.40°D.60°3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( C )A.90° B.110° C.100° D.120°4.(2021•陕西)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( B )A.60°B.70°C.75°D.85°【解析】∵∠1=180°-(∠B+∠ADB),∠ADB=∠A+∠C,∴∠1=180°﹣(∠B+∠A+∠C),∴∠1=180°﹣(25°+35°+50°)=180°﹣110°=70°,故选B.5.如图,求y的值为50.6.如图,∠A=20°,∠B=30°,∠C=50°,则∠ADB的度数是100°.7.如图,在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.证明:(1)根据外角性质可知∠ACD=∠ABC+∠A,∠2=∠1+∠E,∴∠A=∠ACD-∠ABC,∠E=∠2-∠1.∵CE是外角∠ACD的平分线,BE是∠ABC的平分线,∴∠ACD=2∠2,∠ABC=2∠1.∴∠A=2∠2-2∠1=2(∠2-∠1)=2∠E.(2)由(1)可知,∠A=2∠E.∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE.∴AB∥CE.8.如图,试求出∠A+∠B+∠C+∠D+∠E+∠F的度数.解:∵∠1是△ABN的外,∴∠1=∠A+∠B.同理∠2=∠C+∠D,∠3=∠E +∠F.∴∠1+∠2+∠3=∠A+∠B+∠C+∠D+∠E +∠F.∵∠1、∠2、∠3是△PMN的外角,∴∠1+∠2+∠3=360°.∴∠A+∠B+∠C+∠D+∠E +∠F=360°.【教学反思】上课开始,通过复习引入,为本节课做好铺垫.本节课是在学生学习了与三角形内角和与邻补角基础上,首先了解三角形外角的概念,再通过自主探索,得到“三角形外角的性质”和“外角和的度数”,难度不高,学生易于掌握.。