一元一次方程应用——行程问题含答案
- 格式:doc
- 大小:88.00 KB
- 文档页数:12
行程问题(讲义)➢ 课前预习1. 小学我们已经学过行程问题,那么行程问题中的基本关系是_________=________×________.2. 已知小明家离学校2千米,一天小明在下午5:00放学之后开始步行回家,同时爸爸骑自行车从家出发去接小明,已知小明步行的速度是60米/分钟,爸爸骑自行车的速度是140米/分钟,请问小明爸爸从家出发几分钟后接到小明?设小明爸爸从家出发x 分钟后接到小明,分别用含x 的代数式表达小明和爸爸所走的路程.3. 上题中的等量关系是:_______________+_____________=从家到学校的距离. 可列方程为:_________________________.学校家爸爸➢知识点睛行程问题:①理解题意,找关键词,即________、________、________;②分析运动过程,通常采用____________或____________的方法来进行;③梳理信息,列表,提取数据,列表时要按照运动状态或者运动过程进行分类;④根据等量关系列方程.➢精讲精练1.一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?启明中学举行了一次路程为60千米的远足活动,八年级学生步行,七年级学生乘一辆汽车,两个年级的学生同地出发,这辆汽车开到目的地后,再回头接八年级的学生.若八年级学生的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问八年级学生出发后经过多长时间与回头接他们的汽车相遇?2.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km,到中午12时,两人又相距36 km.求A,B两地间的路程.3.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时下坡路程比上坡路程的2倍少14千米,原路返回比去时多用12分钟,则去时上、下坡路程各多少千米?4.某人在上午8时从甲地出发到乙地,按计划在中午12时到达.在上午10时汽车发生故障而停车修理15分钟,修好后司机为了能及时赶到,把每小时的车速又提高了8千米前进,结果在11时55分提前到达乙地,求汽车原来的速度.5.一列火车匀速行驶,经过一条长300 m的隧道需要20 s的时间;隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.根据以上数据,你能否求出火车的长度?6.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,火车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒.已知两人的步行速度都是3.6千米/时,请计算这列火车的长度.7.铁路旁的一条平行小路上有一行人和一骑车人同时向东行进,行人速度为3.6 km/h,骑车人速度为10.8 km/h,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车长和火车的速度.【参考答案】➢课前预习1.路程速度时间2.140x60x3.爸爸所走路程小明所走路程➢知识点睛①路程速度时间140602000 x x+=② 示意图 线段图➢ 精讲精练1.解:设经过了t 小时,根据题意得 45t +35t =10×2解得答:1号队员从离队开始到与队员重新会合,经过了小时. 2.根据题意得 5x +60(x -1)=2×60解得答:八年级学生出发后经过小时与回头接他们的汽车 相遇. 3.= 解得答:A ,B 两地间的路程为108 km .4. 上坡42千米,下坡70千米5. 40 km/h6. 火车长为300米.7. 火车长为255米.14t =143613x =361336108x --36128x +-108x =8.火车长为286米,车速为14 m/s.行程问题(随堂测试)1.暑假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发直奔目的地,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米/时,小李车速为15千米/时,经过多少小时小张能够追上小李?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【参考答案】1.(1)经过2小时小张能够追上小李;(2)小张的车速应为18千米/时.行程问题(习题)➢巩固练习1.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.请问小明家距学校有多远的距离?2.一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟;如果每小时行12千米,就会迟到10分钟,则规定的时间是多少小时?他行驶的路程是多少千米?3.家住郑州的李明和家住开封的好友张华分别沿郑开大道匀速赶往对方家中.已知两人在上午8:00时同时出发,到上午8:40时,两人还相距12 km,到上午9:00时,两人正好相遇.求两家之间的距离.4.小明和小刚从两地同时相向而行,两地相距2 km,小明每小时走7 km,小刚每小时走6 km,如果小明带一只狗和他同时出发,狗以每小时10 km的速度向小刚方向跑去,遇到小刚后又立即回头跑向小明,遇到小明后又立即回头跑向小刚,这样往返直到二人相遇.(1)两个人经过多少小时相遇?(2)这只狗共跑了多少千米?5.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,则通讯员追上学生队伍时行进了多少千米?通讯员用了多长时间?(用两种不同的方法)6.一列火车匀速行驶经过一条隧道、从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度7.甲、乙两人在与铁路平行的马路上背向而行,甲骑车每小时行驶36千米,乙步行每小时走3.6千米,一列火车匀速向甲驶来,列车在甲旁开过用了10秒钟,而在乙旁开过用了21秒钟,则这列火车的长是多少米?8.只活到父亲寿数的一半,就匆匆离去.这对他是一个沉重的打击,后来4年,丢番图因为失去爱子而伤悲,终于告别数学,离开了人世.请你根据以上文字记载,算一算丢番图的寿命.【参考答案】➢ 巩固练习 1. 1 260米 2. 规定时间是小时,行驶的路程为20千米 3. 36 km4. (1)213小时 (2)2013千米5. 通讯员追上学生队伍时行进了千米,通讯员用了小时6. 隧道的长度为1170米,火车的速度是30m/s.7. 这列火车的长是210米.8. 丢番图的寿命是84岁327316。
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
一元一次方程的应用——路程问题
一、直线型相遇
1、某公路的干线上有相距108千米A.B两个车站,某日16时整,甲、乙两辆汽车分别从A、B两站同时出发,相向而行。
已知甲车速度为45千米/小时,乙车速度为36千米/小时,则两车相遇时间为()
A . 16时20分 B. 17时20分 C. 17时30分 D. 16时50分
2、甲乙两人骑自行车,同时从相距45千米的两地相向而行,经过2小时两人相遇,已知甲比乙每小时多走2.5千米,求两人每小时各走多少千米?
二、直线型追及
3、甲乙两人骑自行车和摩托车都从A地到B地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时走_________________km.
4、某中学组织学生到校外参加义务植树活动。
一部分学生骑自行车先走,速度为9千米/小时;40分钟后其余学生乘汽车出发,速度为45千米/小时,结果他们同时到达目的地。
目的地距学校多少千米?
三、环形跑道型相遇与追及
5、一条环形跑道长400米,甲练习骑自行车,平均每分钟行550米,乙练习跑步,平均每分钟跑250米.两人同时同地出发。
(1)若两人背向而行,则他们经过多长时间首次相遇?
(2)若两人同向而行,则他们经过多长时间首次相遇?
四、列车型相遇与追及
6、甲列车长120米,车速为60千米/小时,乙列车长130米,车速为40千米/小时。
(1)两车同向而行,当甲列车车头追上乙列车车尾后又经过多长时间两车离开?
(2)两车相向而行,当两车相遇后又经过多长时间两车离开?。
学生做题前请先回答以下问题问题1:在求解应用题时,首先需要审题梳理信息,一般用什么方式梳理信息?问题2:行程问题中会出现的关键词有哪些?问题3:分析行程问题的运动过程通常采用什么样的方法进行?一元一次方程应用题(行程问题)专项训练(一)一、单选题(共7道,每道14分)1.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为千米,则汽车下坡共用了( )小时.A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题2.京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是20分钟,若设小王用自驾车方式上班的速度为千米/时,则小王家到上班地点的路程是( )千米.A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题3.第七届中国郑开国际马拉松赛在郑开大道举行,为参加此次比赛,家住郑州的小李和家住开封的好友小王分别沿郑开大道匀速赶往对方家中.已知两人在上午9时同时出发,到上午9时40分,两人还相距km,到中午10时的时候,两人再次相距km,则两家之间的距离为( )km.A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题4.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.设小明从家到学校用了分钟,则小明家到学校的路程可表示为( )米.A.③④B.④⑤C.③⑤D.①②答案:C解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题5.哈尔滨到大连的哈大高铁在试运营时,预计高速列车在哈尔滨、大连间单程直达运行时间为3小时.某次试车时,试验列车由哈尔滨到大连的行驶时间比预计时间多用了6分钟,由大连返回哈尔滨的行驶时间与预计时间相同.如果这次试车时,由大连返回哈尔滨比去大连时平均每小时多行驶7千米.若从设哈尔滨到大连的哈大高铁轨道的长度是千米,则下列说法错误的是( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题6.某人跑步的速度为每分钟150米,一辆货车从后面开来,越过他用了3秒钟.设货车的长为x米,则下列说法错误的是( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题7.A,B两站间的距离为670km,一列慢车从A站开往B站,每小时行驶55km,慢车行驶1小时后,另一列快车从B站开往A站,每小时行驶85km,设快车行驶了小时后与慢车相遇,则依题意可列方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一元一次方程应用题——行程问题。
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
行程问题行程问题分为:相向而行和同向而行。
不管是相向而行和同向而行,都路程相等或时间相等。
解题方法:分析实际问题中的数量关系,利用路程相等或时间相等列出方程。
一、相向而行:例1 甲、乙两人从相距180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶,已知甲的速度为15千米/时,乙的速度为45千米/时.问经过多少时间两人相遇?分析:利用“甲、乙两人相距180千米”作为等量关系列方程即可求解.即,甲的路程+乙的路程=总路程.解答:设经过x小时两人相遇,由题意得:15x+45x=180,解得:x=3.答:经过3小时两人相遇.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.例2 A、B两地相距120km,一辆汽车以每小时50km的速度从A地出发,另一辆货车以每小时40km的速度从B地出发,两车相向而行.经过多少时间两车相距30km?分析:相距30km包括两种情形:相遇前和相遇后.所以分类讨论:相遇前:行程之和+30=两地距离;相遇后:行程之和-30=两地距离.解答:设经过x小时两车相距30km.根据题意,得①相遇前:50x+40x+30=120.解得x=1;②相遇后:50x+40x-30=120.解得x=53.答:经过1小时或53小时两车相距30km.点评:此题考查一元一次方程的应用,注意分类讨论,是易错题.二、同向而行例3 A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?分析:本题等量关系为:甲走的路程+15-乙走的路程=30,由此可列出方程.解答:由题意得:50x+15-40x=30,解得:x=1.5.答:经过1.5小时,两车相距30千米.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.例4 A、B两地相距45千米,甲汽车在后边以50千米/小时从A出发,乙汽车在前边以40千米/小时从B出发,两车同时出发同向而行(沿AB方向),问经过几小时,两车相距30千米?分析:本题等量关系有两种情况:甲走的路程+15-乙走的路程=30,由此可列出方程.①甲在追上乙之前两车相距30千米:乙走的路程+45-甲走的路程=30;②甲在追上乙之后两车相距30千米:甲走的路程-乙走的路程-45=30。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒解题方法:审题并找等量关系,设未知量x(列方程),解方程一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,列出方程。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟3、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟?4、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?等量关系:快车行的路程+慢车行的路程=两列火车的车长之和5、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。
1. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
一元一次方程应用——行程问题1.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?2.一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.3.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?4.小明从家里骑自行车到学校,每小时骑20km,可早到15分钟,每小时骑15km就会迟到10分钟.问他家到学校的路程是多少km?5.汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?6.某中学学生步行到郊外旅行.七年级(1)班学生组成前对,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?7.小亮和哥哥在离家2千米的同一所学校上学,哥哥以4千米/时的速度步行去学校,小亮因找不到书籍耽误了15分钟,而后骑自行车以12千米/时的速度去追哥哥.(1)到校前小亮能追上哥哥吗?(2)如果小亮追上哥哥,此时离学校有多远?8.老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带乘一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.9.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?10.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198km,已知游艇的速度是38km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多少时间?11.一条环形公路长42千米,甲、乙两人在公路上骑自行车,速度分别是21千米/时、14千米/时.(1)如果两人同时同地反方向出发,那么经过几小时两人首次相遇;(2)如果两人同时同地同向出发,那么经过几小时两人首次相遇;(3)如果从同一地点同向前进,乙出发1小时后甲出发,那么甲经过几小时后追上乙.12.李明和王强周末约好去宜春花博园游玩,李明家在王强家与花博园两地之间,距王强家2千米,距花博园3千米.当王强以140米/分的速度从家先走10分钟后才打电话给李明,李明立即以100米/分的速度往花博园走,两人同向而行:(1)王强从家出发后多久追上李明?(2)王强能在李明到达花博园前追上李明吗?说明理由.13.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?14.为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机场的时间仅剩90分钟,7点30分小颖发现爸爸忘了带身份证,急忙通知爸爸返回,同时她乘坐出租车以40千米/小时的平均速度直奔机场,与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上小颖(打电话,拿身份证及上出租车的时间忽略不计),并立即按原速赶往机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示);(2)求小颖从7点30分出发经过多少时间与爸爸相遇;(3)小颖的爸爸能否在规定的时间内赶到机场?15.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析1.【分析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.【解答】解:设第一次相距50千米时,经过了x小时.(120+80)x=450﹣50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米.【点评】本题考查理解题意能力,关键知道相距50千米时有两次以及知道路程=速度×时间,以路程做为等量关系可列方程求解.2.【分析】设这列火车的长度是x米,根据火车行驶的速度不变由行程问题的数量关系路程÷时间=速度建立方程求出其解是关键.【解答】解:设这列火车的长度是x米,由题意,得,解得:x=300.答:火车长300米.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,行程问题的数量关系的运用,解答时根据火车行驶的速度不变建立方程是关键.3.【分析】若设王强以6米/秒的速度跑了x米,则根据总时间=以6米/秒的速度跑的时间+以4米/秒的速度跑的时间列出方程即可.【解答】解:解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000﹣x)米.根据题意列方程:去分母得:2x+3(3000﹣x)=10×60×12.去括号得:2x+9000﹣3x=7200.移项得:2x﹣3x=7200﹣9000.合并同类项得:﹣x=﹣1800.化系数为1得:x=1800.解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60﹣x)秒.根据题意列方程6x+4(10×60﹣x)=3000,去括号得:6x+2400﹣4x=3000.移项得:6x﹣4x=3000﹣2400.合并同类项得:2x=600.化系数为1得:x=300,6x=6×300=1800.答:王强以6米/秒的速度跑了1800米.【点评】找出题中的等量关系列出方程是解题的关键.注意时间单位要统一.4.【分析】10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm.根据“每小时骑20km所用的时间+15分钟=每小时骑15km所用的时间﹣10分钟”列出方程;方法二:设小明到学校的时间为x小时.根据路程不变列出方程,并解答.【解答】解:10分钟=小时,15分钟=小时.方法一:设他家到学校的路程为xkm,依题意得:,解得x=25.答:他家到学校的路程是25km;方法二:设小明到学校的时间为x小时,,解得x=1.5.他家到学校的路程为(千米).答:他家到学校的路程是25km.【点评】本题考查了由实际问题列一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.5.【分析】方法1:可设原计划行驶的时间是x小时,根据路程是一定的,列出方程求解即可;方法2:如果在准时的时间内,用每小时50千米的速度汽车多行50×0.5=25千米,用每小时45千米的速度汽车少行45×0.5=22.5千米,两次相差25+22.5=47.5千米;速度差为:50﹣45=5千米;那么原计划开的时间为:47.5÷5=9.5小时;甲、乙两地的距离:50×(9.5﹣5)=450(千米);据此解答.【解答】解:30分钟=0.5小时,方法1:设原计划行驶的时间是x小时,依题意有45(x+0.5)=50(x﹣0.5),解得x=9.5;方法2:(50×0.5+45×0.5)÷(50﹣45)=47.5÷5=9.5(小时);50×(9.5﹣0.5)=450(千米).答:甲、乙两地的距离是450千米,原计划行使9.5小时.【点评】本题的解答思路是:通过比较已知条件,找出两个相关的差数,一是路程差,二是速度差,将这两个差相除,就可求出原计划行使的时间,然后再根据基本关系式:总差额÷每份的差额=总份数解答.6.【分析】(1)设后队追上前队需要x小时,根据后队比前队快的速度×时间=前队比后队先走的路程可列出方程,解出即可得出时间;(2)先计算出联络员所走的时间,再由路程=速度×时间即可得出联络员走的路程.(3)要分两种情况讨论:①当(2)班还没有超过(1)班时,相距2千米;②当(2)班超过(1)班后,(1)班与(2)班再次相距2千米,分别列出方程,求解即可.【解答】解:(1)设后队追上前队需要x小时,由题意得:(6﹣4)x=4×1,解得:x=2.故后队追上前队需要2小时;(2)后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以10×2=20(千米).答:后队追上前队时间内,联络员走的路程是20千米;(3)要分三种情况讨论:①当(1)班出发半小时后,两队相距4×=2(千米)②当(2)班还没有超过(1)班时,相距2千米,设(2)班需y小时与(1)相距2千米,由题意得:(6﹣4)y=2,解得:y=1;所以当(2)班出发1小时后两队相距2千米;③当(2)班超过(1)班后,(1)班与(2)班再次相距2千米时(6﹣4)y=4+2,解得:y=3.答当0.5小时或1小时后或3小时后,两队相距2千米.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.【分析】(1)先设小亮走了x时追上哥哥,求出追上需要的时间,再求出小亮走的路程与全程比较,大于全程不能追上,小于全程就可以追上.从而得出答案.(2)由(1)的时间就可以求出小亮走的路程,总路程﹣小亮走的路程就是小亮追上哥哥时离学校的距离.【解答】解:(1)设小亮走了x时追上哥哥根据题意得:4×+4x=12x解得x=×12=1.5∵2千米>1.5千米∴小亮能追上哥哥(2)∵2﹣1.5=0.5(千米),∴小亮追上哥哥时离学校的距离为0.5千米.【点评】本题考查了列一元一次方程解生活中的实际问题中的追击问题的运用,列一元一次方程的方法的运用.解答时求出追上的时间是关键.8.【分析】由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米,根据乙步行的时间等于老师返回接甲并到达的时间列出方程,求出x的值即可.【解答】解:由于让学生甲先步行,老师带乘学生乙,到达距博物馆一定地方,放下乙,让其步行,而老师再去接甲,最后三人同时到达,所以甲乙步行的路程相等,都设为x千米根据乙步行的时间等于老师返回接甲并到达的时间得:=+,去分母得20x=4(33﹣2x)+5(33﹣x),解得x=9,所以共用时间+=3小时.【点评】本题考查的是一元一次方程的应用,解答此题的关键是熟知甲乙步行的路程相等列出方程.9.【分析】等量关系为:哥哥所走的路程=弟弟和妈妈所走的路程.【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.【点评】难点是得到弟弟和妈妈所用的时间,关键是找到相应的等量关系.10.【分析】(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.根据“总共行驶了198km”列方程;(2)AB段的路程为3×36=108(km),BC段的路程为.则往返时间=两段时间之和.【解答】解:(1)设水流速度为x km/h,则游艇的顺流速度为(x+38)km/h,游艇的逆流航行速度为(38﹣x)km/h.据题意可得,.解得x=2.∴水流的速度为2km/h.(2)由(1)可知,顺流航行速度为40km/h,逆流航行的速度为36km/h.∴AB段的路程为3×36=108(km),BC段的路程为.故原路返回时间为:.答:游艇用同样的速度原路返回共需要5小时12分.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】(1)根据“行驶路程的和等于42千米”列出方程计算;(2)根据“行驶路程的差等于42千米”列出方程计算;(3)根据“两人行驶的路程相等”列出方程计算;【解答】解:(1)设x小时相遇,根据题意得:(21+14)x=42解得:x=答:经过小时两车相遇;(2)设经过y小时两车相遇,根据题意得:(21﹣14)y=42,解得:y=6小时;答:经过6小时两人首次相遇;(3)设经过z小时甲追上乙,根据题意得:21z=14(z+1),解得:z=2,答:甲经过2小时后追上乙.【点评】本题考查了一元一次方程的应用,解题的关键是了解路程、速度和时间之间的关系.12.【分析】(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意列出方程,求出方程的解即可得到结果;(2)王强能在李明到达花博园前追上李明,理由为:求出李明走的路程,比较即可得到结果.【解答】解:(1)设王强从家出发后x分钟追上李明,则李明走的时间为(x﹣10)分钟,根据题意得:140x=2000+100(x﹣10),解得:x=25,答:王强从家出发后25分钟追上李明;(2)王强能在李明到达花博园前追上李明,理由:从李明走(25﹣10)分钟的路程分析,(25﹣10)×100=1500(米),∵1500米<3000米,∴王强能在李明到达花博园前追上李明.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.13.【分析】由(1)得v下=(v上+1)千米/小时.由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.【解答】解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.【点评】本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.14.【分析】(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40 x千米,爸爸返回了(60x﹣5)千米.(2)设小颖从7点30分出发经过x小时与爸爸相遇,以路程和时间做为等量关系列出方程求解.(3)根据(2)中得到时间与90分钟作比较即可得到结论.【解答】解:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了40x千米,爸爸返回了(60x﹣5)千米(均用含x的代数式表示).故答案是:40x;(60x﹣5);(2)设小颖从7点30分出发经过x小时与爸爸相遇,根据题意得,40x+60(x﹣)=60×40x+60x﹣5=35x=,答:小颖从7点30分出发经过小时与爸爸相遇;(3)小颖的爸爸赶到机场共花时间:=(小时)=83分钟<90分钟.答:小颖的爸爸能在规定的时间内赶到机场.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.【分析】(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.【点评】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。