弹塑性力学基本理论及应用_刘土光___华中科技大学研究生院教材基金资助_第二章应力状态
- 格式:pdf
- 大小:646.82 KB
- 文档页数:21
弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。
为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。
在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。
要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。
对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。
这些都是固体力学的基本问题。
如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。
在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。
有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。
这些也是固体力学的基本问题。
此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。
如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。
正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。
工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。
而工程力学的发展则大大推动了许多工程技术的飞速发展。
因此,力学是许多工程部门设计研究人员的基本素质之一。
二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。
力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。
第八章 能量原理及其应用弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。
然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有15个未知量的6个偏微分方程,在给定边界条件时.求解是极其困难的,而且往往足小对能的。
因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。
这些解法的依据都是能量原理。
本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。
本章共讨论五个能量原理。
首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。
另外,还简单介绍最大耗散能原理。
本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。
8.1 基本概念1.1 物体变形的热力学过程由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。
因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。
如果物体在变形过程中,各点的温度与其周围介质的温度保持平衡,则称这一过程为等温过程;若在变形过程中,物体的温度没有改变,即既没有热量损失也没有热量增加,则称这一过程为绝热过程。
物体的瞬态高频振动,高速变形过程都可视为绝热过程。
令物体在变形过程中的动能为E ,应变能为U ,则在微小的t δ时间间隔内,物体从一种状态过渡到另一种状态时,根据热力学第一定律,总能量的变化为 Q W U E δδδδ+=+ (a) 其中,W δ为作用于物体上的体力和面力所完成的功;Q δ是物体由其周围介质所吸收(或向外发散)的热量,并以等量的功度量。
假定弹性变形过程是绝热的,则对于静力平衡问题有00==Q ,E δδ (b)将式(b)代入式(a),则有W U δδ= (8.1-1)1.2 应变能由第四章的式(4.1-5b)知,在线弹性情况下,单位体积的应变能为ik ij ij ij ij d U εσεσε2100==⎰ (8.1-2)对于一维应力状态,在x x εσ-平面内,则0U 实际上就是应力应变曲线与x ε轴和'x x εε=所围成的面积(图8.1),即⎰='0Xx x d U εεσ (8.1-3)其中'x ε是物体变形过程某一指定时刻的应变,应 图8.1 应变能与应变余能 变能0U 表示物体在变形过程中所储存的能量。
第22卷 第2期爆炸与冲击V ol.22,N o.2 2002年4月EXP LOSI ON AND SH OCK W AVES Apr.,2002 文章编号:100121455(2002)022*******刘 理,刘土光,张 涛,李天匀(华中理工大学船舶与海洋工程系,湖北武汉 430074) 摘要:对复杂载荷作用下圆柱壳的弹塑性动力屈曲问题进行了研究。
基于Hamilton变分原理导出圆柱壳的运动方程,本构关系采用增量理论,借助增量数值算法求解动力方程组。
结果表明,均匀径向外压对圆柱壳的轴向冲击的过程或冲击性态有较大的影响,并讨论了径向压力与轴向冲击载荷的幅值对结构临界动力屈曲载荷和临界动力失效载荷的影响。
关键词:圆柱壳;复杂载荷;动力屈曲;动力失效Ξ 中图分类号:O347.3 文献标识码:A1 引 言 在工程实际中,如在深水中受爆炸冲击载荷作用的潜艇、在深水中攻击目标的鱼雷、遭受飞行物撞击的原子能反应堆等结构,在承受冲击载荷之前,已经受到了其它类型载荷的作用,因此它们与结构单独承受冲击载荷时的动力性态有较大的差异。
R. C.T ennys on[1]利用实验和计算的方法对飞行器、化学容器、核反应堆容器和导弹等圆柱壳模型在各种联合载荷作用下的弹性静力屈曲问题进行了研究。
王仁、韩铭宝等[2]对轴向冲击弹塑性圆柱壳的屈曲问题进行了研究,提出了第二临界速度。
之后,韩铭宝等[3]进一步考虑了在径向载荷和轴向冲击联合作用下的圆柱壳塑性稳定性问题,认为复杂载荷下的圆柱壳同样存在着两种临界速度。
但是上述的理论分析是基于小变形下进行的,实际上,薄壁圆柱壳在轴向冲击载荷作用下的屈曲问题属于大变形、大应变的范畴,因此有必要对该类问题继续进行深入的研究。
江松青[4]考察了环向加筋圆柱壳在复杂载荷作用下的弹塑性动力屈曲问题,对均匀径向外压与轴向冲击载荷峰值之间的关系进行了定性的讨论,并得到了一些有意义的结论。
在本文中,我们对复杂载荷作用下圆柱壳的弹塑性动力屈曲问题进行了研究。
弹塑性力学读书报告刘刚玉1020120036同济大学交通运输工程学院道路与铁道工程摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。
关键字:弹塑性力学本构关系1基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定整个物体的体积都被组成物体的介质充满,不留下任何空隙。
使得σ、ε、u 等量表示成坐标的连续函数。
1.1.2线弹性假定(弹性力学)假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。
1.1.3均匀性假定假定整个物体是由同一种材料组成的,各部分材料性质相同。
这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。
1.1.4各向同性假定(弹性力学)假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化; 1.1.5小变形假定假定位移和形变是微小的,即物体受力后物体内各点位移远远小物体的原来的尺寸。
可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量;。
1.2应力状态理论应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。
弹塑性力学基本理论及应用刘士光著华中科技大学第一章绪论1.1弹塑性力学的任务固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。
弹性力学和塑性力学是固体力学的两个重要分支。
弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。
大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。
所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。
因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。
塑性材料或塑性物体的含义与此相类。
如上所述。
大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。
本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。
以及相应的“破坏”准则或失效准则。
以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。
结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。
由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只不过刚度相对地降低。
因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。
我所认识的弹塑性力学弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。
一绪论1、弹塑性力学的概念和研究对象弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。
弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。
弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。
其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。
2、弹塑性简化模型及基本假定在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。
在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。
理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。
弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性假定、各向同性假定、小变形假定和无初应力假定。
3、研究方法及其与初等力学理论的联系和区别一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。
经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。
弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别二基本理论框架1、基本方程弹塑性力学和材料力学所求解的问题都是超静定问题,因此在分析问题研究问题是基本思路都是要进过三个方面的分析,这三个方面分别为:(1)静力平衡条件分析(2)几何变形协调条件分析(3)物理条件分析从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决,这三方面的方程为:(1)平衡(或运动方程)内部应力与外部体力之间的关系(2)几何方程(应变与位移之间的关系)(3)本构方程(应力与应变之间的关系)(A)在弹性变形阶段(B)在弹塑性变形阶段屈服函数f(?ij)?0,则有a、增量理论(流动理论)b、全量理论(变形理论)a、增量理论(i)Prandtl—Reuss理论(??塑性增量本构关系deij?deeij?de?pij?12Gdsij?d?sijd?ii?d?eii1?2?Ed?ii理想弹塑性材料deij?d?ii?12GEdsij?d?3dwd2?ii2ssij(ii)Levy—Mises理论(??理想刚塑性材料12)d?ij?3d?i2?ssijb、全量理论(形变理论)(??依留申理论(强化材料)12)?ii?1?2?E?ii,eij?3?i2?isij,?i??(?i)总之,当物体发生变形时,不论弹性变形还是塑性变形问题,共有3个平衡微分方程,6个几何方程和6个本构方程,共计15个独立方程(统称为泛定方程)而问题共有?ij、?ij、ui15个基本未知函数,因此在给定边界条件时,问题是可以求解的,弹塑性静力学的这种那个问题在数学上成为求解边值问题。