离散数学总复习,西工大离散复习
- 格式:ppt
- 大小:436.50 KB
- 文档页数:24
《离散数学》综合复习资料一、判断题1. A 、B 、C 是任意命题公式,如果A ∧C ⇔B ∧C ,一定有A ⇔B 。
( )2.设<A ,*>是一个代数系统,且集合A 中元素的个数大于1。
如果该代数系统中存在幺元e 和零元θ,则e ≠θ。
( )3. A 、B 、C 为任意集合,已知A ⋃B=A ⋃C ,必须有B=C 。
( ) 4. 自然数集是可数的。
( )5. 命题联结词{⌝,∧,∨}是最小联结词组。
( ) 6. 有理数集是可数的。
( ) 7. 交换群必是循环群。
( )8. 图G 的邻接矩阵A ,A l 中的i 行j 列表示结点v i 到v j 长度为l 路的数目。
( ) 二、解答题1.求命题公式⌝(P →Q)的主析取范式。
2.举出A={a,b,c}上的二元关系R 和S 满足:(1)R 既不是自反的又不是反自反的,既是对称的又是反对称的; (2)S 既不是对称的又不是反对称的,是传递的。
3.以下哪些是函数?哪些是入射?哪些是满射?对任意一个双射,写出它们的逆函数。
(1) f: N →Q, f(x) = 1/x(2) f: R ⨯R →R ⨯R, f(x,y)=<y+1,x+1> 4.判断下列代数系统是否是群,并说明理由:(1) <R ,->:实数集关于减法; (2) <I ,+>:整数集关于加法;5.构造一非空偏序集,它存在一子集有上界,但没有最小上界。
它还有一子集,存在最大下界但没有最小元。
6.画一个有欧拉回路,但没有汉密尔顿回路的图。
d ︒ b ︒︒e ︒c︒a7.将下列命题符号化(1)如果张三和李四都不去,她就去。
((⌝P ∧⌝Q )→R ) (2)今天要么是晴天,要么是雨天。
(P ∀Q ) 8.设G=<V,E>,V={V1,V2,V3,V4}的邻接矩阵:(1)试画出该图。
(2)V2的入度d -(V2)和出度d +(V2)是多少?(3)利用邻接矩阵的性质求从V1到V2长度为3的路有几条? 9.将下列命题符号化(1)除非你走否则我留下。
《离散数学》期末复习一、期末考试题型试题类型及分数分别为单项选择题和填空题各有15题,分数占60%;化简解答题与计算题及证明题,共占40%。
各章分数的比例大致与其所用课时比例相同。
单项选择题和填空题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算。
单项选择题给出四个备选答案,其一正确。
填空题只需填写正确结论,不写计算、推论过程或理由。
化简解答题与计算题主要考核同学们的基本运算技能和速度,要求写出计算过程。
证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出推理过程。
二、各章复习要求和重点第1章命题逻辑复习要求1. 命题及其联结词。
命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义,六个联结词。
2. 命题公式及分类。
在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;真值表3. 命题的判定及命题演算的推理理论。
推理方法有:真值表法;等值演算法;主析取范式法,构造证明法(直接证明法、附加前提证明法和间接证明法)本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.。
第2章一阶逻辑复习要求1.谓词与量词谓词,在谓词逻辑中,原子命题分解成个体词和谓词. 个体词是可以独立存在的客体,它可以是具体事物或抽象的概念。
谓词是用来刻划个体词的性质或事物之间关系的词 量词,是在命题中表示数量的词,量词有两类:全称量词∀,表示“所有的”或“每一个”;存在量词∃,表示“存在某个”或“至少有一个”2. 2.公式与解释谓词公式,由原子公式、联结词和量词可构成谓词公式(严格定义见教材).命题的符号化结果都是谓词公式.例如∀x(F(x)→G(x)),∃x(F(x)∧G(x)),∀x∀y(F(x)∧F(y)∧L(x,y)→H(x,y))等都是谓词公式3. 解释(赋值),谓词公式A的个体域D是非空集合,则(1) 每一个常项指定D中一个元素;(2) 每一个n元函数指定D n到D的一个函数;(3) 每一个n元谓词指定D n到{0,1}的一个谓词;按这个规则做的一组指派,称为A的一个解释或赋值。
第一部分:集合论知识点:集合关系(∈,⊆,⊂,∉,=)集合运算(并、交、差、对称差、补集、幂集),特殊集合(∅,E,P(A))集合恒等式(幂等律、交换律、结合律、分配律、吸收律、德摩根律、补交转换律(A-B=A⋂~B)、德·摩根律~(B⋃C)=~B~⋂C,A-(B⋃C)=(A-B)⋂(A-C))证明集合包含或相等(根据定义, 通过逻辑等值演算证明、利用已知集合等式或包含式, 通过集合演算证明)1. 证:A⋃(B⋂C)=(A⋃B)⋂(A⋃C)证∀x x∈A⋃(B⋂C)⇔ x∈A∨(x∈B∧ x∈C) (并,交的定义)⇔(x∈A∨x∈B)∧(x∈A∨x∈C) (逻辑演算的分配律)⇔x∈(A⋃B)⋂(A⋃C)2. 证明(A-B)-C=(A-C)-(B-C)证(A-C)-(B-C)= (A ⋂ ~C) ⋂ ~(B ⋂ ~C) (补交转换律)= (A ⋂ ~C) ⋂ (~B ⋃ ~~C) (德摩根律)= (A ⋂ ~C) ⋂ (~B ⋃ C) (双重否定律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂ ~C ⋂ C) (分配律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂∅) (矛盾律)= A ⋂ ~C ⋂ ~B (零律,同一律)= (A ⋂ ~B) ⋂ ~C (交换律,结合律)= (A – B) – C第二部分:逻辑学命题的定义(凡具有确定真假意义的陈述句均称为命题。
)联结词(⌝、∧、∨、→、↔、↑、↓(公式转化为只含↑、↓的表达形式))例:将p → q化为只含↑的公式p → q ⇔⌝p ∨q⇔⌝(p∧⌝q) ⇔ p↑⌝q⇔p↑⌝( q∧q)⇔ p↑ q↑ q命题符号化(1、王晓虽然聪明,但不用功.2、张辉与王丽都是三好生.3、张辉与王丽是同学.4、除非天冷,小王才穿羽绒服.5、除非小王穿羽绒服,否则天不冷.)等值演算(幂等律、交换律、结合律、分配律、吸收律、蕴涵等值式A→B⇔⌝A∨B等价等值式A↔B⇔(A→B)∧(B→A)假言易位等值式A→B⇔⌝B→⌝A等价否定等值式A↔B⇔⌝A↔⌝B)证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式)⇔ (⌝p⌝∨q)∨r (结合律)⇔⌝(p∧q)∨r (德摩根律)⇔ (p∧q) →r (蕴涵等值式)判断下列公式的类型q⌝∧(p→q)解q⌝∧(p→q)⇔ q⌝∧(⌝p∨q) (蕴涵等值式)⇔ q∧(p⌝∧q) (德摩根律)⇔ p∧(q⌝∧q) (交换律,结合律)⇔ p∧0 (矛盾律)⇔ 0 (零律)该式为矛盾式.命题公式(重言式、矛盾式、可满足式),利用真值表判断,等值演算,范式。
离散数学复习资料离散数学是计算机科学与数学领域中的重要学科,它研究的是离散的数学结构和离散的数学对象。
在计算机科学领域,离散数学是构建算法和设计计算机系统的基础。
为了更好地复习离散数学,我们可以从以下几个方面入手。
一、集合论集合论是离散数学的基础,它研究的是集合及其运算。
在集合论中,我们需要了解集合的定义、基本运算和集合间的关系。
此外,还需要掌握集合的代数运算法则,如交、并、差和补集等。
复习时可以通过解题来加深理解,例如证明集合之间的等价关系、集合的幂集等。
二、逻辑与命题逻辑是离散数学中的重要分支,它研究的是推理和论证的规则。
在逻辑中,命题是最基本的逻辑单位。
复习时需要了解命题的定义和常见的逻辑运算符,如非、与、或、异或等。
此外,还需要熟悉命题的真值表和命题之间的逻辑等价关系。
通过解题和推理,可以提高对逻辑的理解和应用能力。
三、图论图论是离散数学中的一个重要分支,它研究的是图及其性质。
在图论中,我们需要了解图的基本概念,如顶点、边、路径、环等。
此外,还需要熟悉图的表示方法,如邻接矩阵和邻接表。
复习时可以通过解题来加深对图的理解,例如求最短路径、判断图的连通性等。
四、代数系统代数系统是离散数学中的一个重要内容,它研究的是代数结构及其性质。
在代数系统中,我们需要了解群、环、域等代数结构的定义和性质。
此外,还需要熟悉代数运算法则和代数结构之间的关系。
复习时可以通过解题来加深对代数系统的理解,例如证明一个集合构成一个群、判断一个环是否是域等。
五、概率论与统计学概率论与统计学是离散数学中的一个重要分支,它研究的是随机事件和随机变量的概率性质。
在概率论与统计学中,我们需要了解概率的定义和性质,掌握常见的概率分布和统计方法。
此外,还需要熟悉概率的运算法则和统计推断的基本原理。
复习时可以通过解题和实际问题的分析来加深对概率论与统计学的理解。
总之,离散数学作为计算机科学与数学领域中的重要学科,对于计算机科学专业的学生来说具有重要意义。
离散数学期末复习总要离散数学期末复习各个章节要点纲要(及定理)离散数学定义定理1.3.1命题演算的合式公式规定为:(1)单个命题变元本身是一个合式公式。
(2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。
(4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。
若指定的一种指派,使P的值为真,则称这组指派为成真指派。
若指定的一种指派,使P的值为假,则称这种指派为成假指派。
含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。
1.3.6 设A为一命题公式,若A在它的各种指派情况下,其取值均为假,则称A为矛盾式或永假式。
1.3.7设A为一命题公式,若A在它的各种指派情况下至少存在一组成真指派,则称A为可满足式。
1.4.1 设X式合式公式A的子公式,若有Y也是一个合式公式,且X<=>Y,如果将A中的X用Y置换,得到公式B,则A<=>B。
1.4.2 设A,B为两个命题公式,A<=>B,当且仅当A ←→B为一个重言式。
P=>Q称做P蕴含Q或蕴含式,又称永真条件式。
蕴含式有下列性质:(1)对任意公式A,又A=>A;(2)对任意公式A,B和C,若A=>B,B=>C,则A=>C;(3)对任意公式A,B和C,若A=>B,A=>C,则A=>(B∧C); (4)对任意公式A,B和C,若A=>C,B=>C,则A∨B=>C.1.4.3设P,Q为任意两个命题公式,P<=>Q的充分必要条件式P=>Q,,Q=>P。
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
百度文库离散数学复习整理离散数学复习整理离散数学复习整理函数***重点掌握:单射、满射、双射函数的概念一、函数的概念(和数学里面函数的概念差不多)A为函数f的定义域,记为domf=A;f(A)为函数f的值域,记为ranf。
|f|=|A|f(x)表示一个变值,f代表一个集合,因此f≠f(x)。
⨯|A||B||A|从A到B的不同的关系有2个;但从A到B的不同的函数却仅有|B|个。
(个数差别) 每一个函数的基数都为|A|个(|f|=|A|),但关系的基数却为从零一直到|A|×|B|。
二、特殊函数单射:对任意x,x∈A,如果x≠x,有f(x)≠f(x),则称f为从A到B的单射(不同的x对应121212不同的y);满射:如果ranf=B,则称f为从A到B的满射;(B的定义域都能通过函数f(x)求到)双射:若f是满射且是单射,则称f为从A到B的双射。
若A=B,则称f为A上的函数;当A上的函数f是双射时,称f为一个变换。
定理:8.2.1设A,B是有限集合,且|A|=|B|,f是A到B的函数,则f是单射当且仅当f是满射。
典型(自然)映射:设R是集合A上的一个等价关系,g:A→A/R称为A对商集A/R的典型(自然) 映射,其定义为g(a)=[a],a∈A.R恒等函数:如果A=B,且对任意x∈A,都有f(x)=x,则称f为A上的恒等函数,记为I。
A常值函数:如果∃b∈B,且对任意x∈A,都有f(x)=b,则称f为常值函数。
上取整函数:对有理数x,f(x)为大于等于x的最小的整数,则称f(x)为上取整函数(强取整函数),记为f(x)= ;下取整函数:对有理数x,f(x)为小于等于x的最大的整数,则称f(x)为下取整函数(弱取整函数),记为f(x)= ;三、函数的复合运算不满足交换律,但满足结合律1.函数f和g可以复合⇔ranf⊆domg;2.dom(fog)=domf,ran(fog)⊆rang;3.对任意x∈A,有fog(x)=g(f(x))。
离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学复习资料离散数学最全复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表“?”否定联结词,P是命题,?P是P的否命题,是由联结词?和命题P组成的复合命题.P取真值1,?P取真值0,P取真值0,?P取真值1. 它是一元联结词.“∧”合取联结词,P∧Q是命题P,Q的合取式,是“∧”和P,Q组成的复合命题. “∧”在语句中相当于“不但…而且…”,“既…又…”. P∧Q取值1,当且仅当P,Q均取1;P∧Q取值为0,只有P,Q之一取0.“∨”析取联结词,“?∨”不可兼析取(异或)联结词,P∨Q是命题P,Q的析取式,是“∨”和P,Q组成的复合命题. P?∨Q是联结词“?∨”和P,Q组成的复合命题. 联结词“∨”或“?∨”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P?∨Q”?“(?P∧Q)∨(P∧?Q)”. P∨Q取值1,只要P,Q之一取值1,P∨Q取值0,只有P,Q都取值0.“→”蕴含联结词,P→Q是“→”和P,Q组成的复合命题,只有P取值为1,Q 取值为0时,P→Q取值为0;其余各种情况,均有P→Q的真值为1,亦即1→0的真值为0,0→1,1→1,0→0的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P→Q”.“?” 等价联结词,P?Q是P,Q的等价式,是“?”和P,Q组成的复合命题. “?”在语句中相当于“…当且仅当…”,P?Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P 的真指派;若使P的真值为0,则称这组值称为P的假指派.命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材P.16的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.等值式A ?B ,命题公式A ,B 在任何赋值下,它们的真值均相同,称A ,B 等值。
《离散数学》期末复习第一篇:《离散数学》期末复习《离散数学》期末复习内容:第一章~第七章题型:一、选择题(20%,每题2分)二.填空题(20%,每题2分)三、计算题(20%,每题5分)四、证明题(20%,每题5分)五、判断题(20%,每题2分)第1章数学语言与证明方法1.1 常用的数学符号1.计算常用的数学符号式子 1.2 集合及其表示法1.用列举法和描述法表示集合2.判断元素与集合的关系(属于和不属于)3.判断集合之间的包含与相等关系,空集(E),全集(∅)4.计算集合的幂集5.求集合的运算:并、交、相对补、对称差、绝对补6.用文氏图表示集合的运算7.证明集合包含或相等方法一:根据定义, 通过逻辑等值演算证明方法二:利用已知集合等式或包含式, 通过集合演算证明1.3 证明方法概述1、用如下各式方法对命题进行证明。
π直接证明法:A→B为真π间接证明法:“A→B为真” ⇔“ ¬B→¬A为真” π归谬法(反证法): A∧¬B→0为真π穷举法: A1→B, A2→B,…, Ak→B 均为真π构造证明法:在A为真的条件下, 构造出具有这种性质的客体B π空证明法:“A恒为假” ⇒“A→B为真” π平凡证明法:“B恒为真” ⇒“A→B为真” π数学归纳法:第2章命题逻辑2.1 命题逻辑基本概念1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。
命题的定义和联结词(¬, ∧, ∨, →, ↔)2、判断命题公式的类型赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。
2.2 命题逻辑等值演算1、用真值表判断两个命题公式是否等值2、用等值演算证明两个命题公式是否等值3、证明联结词集合是否为联结词完备集 2.3 范式1、求命题公式的析取范式与合取范式2、求命题公式的主析取范式与主合取范式(两种主范式的转换)3、应用主析取范式分析和解决实际问题 2.4 命题逻辑推理理论1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效第3章一阶逻辑3.1 一阶逻辑基本概念1、用谓词公式符号命题(正确使用量词)2、求谓词公式的真值、判断谓词公式的类型 3.2 一阶逻辑等值演算1、证明谓词公式的等值式2、求谓词公式的前束范式第4章关系4.1 关系的定义及其表示1、计算有序对、笛卡儿积2、计算给定关系的集合3、用关系图和关系矩阵表示关系 4.2 关系的运算1、计算关系的定义域、关系的值域2、计算关系的逆关系、复合关系和幂关系3、证明关系运算满足的式子 4.3 关系的性质1、判断关系是否为自反、反自反、对称、反对称、传递的2、判断关系运算与性质的关系3、计算关系自反闭包、对称闭包和传递闭包 4.4 等价关系与偏序关系1、判断关系是否为等价关系2、计算等价关系的等价类和商集3、计算集合的划分4、判断关系是否为偏序关系5、画出偏序集的哈期图6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界7、求偏序集的拓扑排序第5章函数1.判断关系是否为函数2.求函数的像和完全原像3.判断函数是否为满射、单射、双射4.构建集合之间的双射函数5.求复合函数6.判断函数的满射、单射、双射的性质与函数复合运算之间的关系7.判断函数的反函数是否存在,若存在求反函数第6章图1.指出无向图的阶数、边数、各顶点的度数、最大度、最小度2.指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度3.根据握手定理顶点数、边数等4.指出图的平行边、环、弧立点、悬挂顶点和悬挂边5.判断给定的度数列能否构成无向图6.判断图是否为简单图、完全图、正则图、圈图、轮图、方体图7.求给定图的补图、生成子图、导出子图8.判断两个图是否同构6.2 图的连通性1.求图中给定顶点通路、回路的距离2.计算无向图的连通度、点割集、割点、边割集、割边3.判断有向图的类型:强连通图、单向连通图、弱连通图 6.3 图的矩阵表示1.计算无向图的关联矩阵2.计算有向无环图的关联矩阵3.计算有向图的邻接矩阵4.计算有向图的可达矩阵5.计算图的给定长度的通路数、回路数6.4 几种特殊的图1、判断无向图是否为二部图、欧拉图、哈密顿图第7章树及其应用 7.1 无向树1.判断一个无向图是否为树2.计算无向树的树叶、树枝、顶点数、顶点度数之间的关系3.给定无向树的度数列,画出非同构的无向树4.求生成树对应的基本回路系统和基本割集系统5.求最小生成树 7.2 根树及其应用1.判断一个有向图是否为根树2.求根树的树根、树叶、内点、树高3.求最优树4.判断一个符号串集合是否为前缀码5.求最佳前缀码6.用三种方法遍历根树第二篇:离散数学期末复习试题及答案(二)第二章二元关系1.设A={1,2,3,4},A上二元关系R={(a,b)|a=b+2},S={(x,y)|y=x+1 or y=x2} 求R⋅S,S⋅R,S⋅R⋅S,S2,S3,S⋅Rc。
离散数学复习资料离散数学复习资料离散数学是计算机科学和数学领域的重要基础课程,它涉及到离散结构和离散对象的研究,如集合论、图论、逻辑、代数和组合数学等。
在计算机科学领域,离散数学为算法设计、数据结构和计算机网络等问题提供了理论基础。
本文将为大家提供一些离散数学复习资料,帮助大家更好地掌握这门课程。
一、集合论集合论是离散数学的基础,它研究的是集合及其元素之间的关系。
在集合论中,我们需要了解集合的定义、运算、关系和函数等基本概念。
此外,还需要熟悉集合的证明方法,如直接证明、间接证明、归谬证明等。
在复习集合论时,可以通过做一些练习题来加深理解,同时也可以查阅一些相关的教材和参考资料。
二、图论图论是离散数学中的一个重要分支,它研究的是图及其性质和应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
在图论中,我们需要了解图的基本概念,如有向图和无向图、路径和回路、连通性和强连通性等。
此外,还需要掌握一些图的算法,如最短路径算法、最小生成树算法和网络流算法等。
复习图论时,可以通过绘制图和解决一些图的实际问题来加深理解。
三、逻辑逻辑是离散数学中的另一个重要分支,它研究的是推理和证明的规则。
在逻辑中,我们需要了解命题逻辑和谓词逻辑的基本概念,如命题、命题变量、逻辑连接词、真值表和推理规则等。
此外,还需要熟悉一些逻辑证明的方法,如直接证明、间接证明和数学归纳法等。
复习逻辑时,可以通过做一些逻辑推理题和证明题来提高逻辑思维能力。
四、代数代数是离散数学中的一个重要分支,它研究的是代数结构和运算。
在代数中,我们需要了解集合的代数结构,如半群、幺半群、群、环和域等。
此外,还需要掌握一些代数运算,如集合的并、交和补运算,以及代数方程的求解方法。
复习代数时,可以通过做一些代数运算题和代数方程的求解题来加深理解。
五、组合数学组合数学是离散数学中的一个重要分支,它研究的是离散对象的组合和排列问题。
在组合数学中,我们需要了解组合和排列的基本概念,如组合数、排列数、二项式系数和多项式系数等。
第一部分数理逻辑第一章命题逻辑重点:●熟练掌握联结词的定义;●掌握数理逻辑中命题的翻译及命题公式的定义;●熟记基本的等价公式和蕴涵公式;●利用真值表技术和公式法求公式的主析取范式和主合取范式;●熟练掌握应用基本推理方法完成命题逻辑推理:1.直接证法2.反证法3.CP规则难点:●如何正确地掌握对语言的翻译;●如何利用推理方法正确的完成命题推理。
第二章谓词逻辑重点:●谓词、量词、个体域的概念;●谓词逻辑中带量词命题的符号化;●熟记基本的谓词等价公式;●求公式的前束范式;●掌握谓词逻辑的推理规则以及能够熟练地完成一阶逻辑推理;难点:●谓词逻辑中带量词命题的符号化;●如何利用推理方法正确地完成一阶逻辑推理。
第二部分集合论第三章集合与关系重点:●掌握集合的五种基本运算和集合相等的证明方法;●幂集的概念以及和子集的关系;●序偶和笛卡尔积的概念;●关系定义及其和笛卡尔积之间的联系;●关系的复合;●关系的五种性质及其判断和证明;●关系的闭包;●等价关系定义、证明及其与等价类、集合的划分间的关系;●偏序关系的定义和证明,哈斯图;●偏序关系中的特殊元素;难点:●如何正确证明集合之间包含和相等关系;●如何正确地理解和判断关系的性质;●非常重要的关系性质的证明方法——按定义证明法;●如何正确地掌握等价关系及相应的等价类与集合划分之间的关系;●如何正确地理解和判断偏序关系中的八种特殊元素。
第四章函数重点:●能够判定某个二元关系是否是函数;●几种特殊的函数:满射,单射,双射;难点:●如何正确地判断三种特殊函数。
第三部分代数结构重点:●理解代数结构的构成和研究方法;●代数结构中运算的性质以及特殊元素;●广群⇒半群⇒独异点⇒群;●群的定义与性质;●环与域的判断和证明;●格的两种定义;●特殊格:分配格、有界格、有补格、有补分配格;●有补分配格与布尔代数之间的联系;难点:●循环群的判断和证明;●如何正确理解由偏序关系定义的格与由代数系统定义格之间的关系和区别;●如何正确理解布尔代数的概念。
《离散数学》期末复习提要课程的主要内容1、集合论部分(集合的基本概念和运算、二元关系和函数);2、数理逻辑部分(命题逻辑、谓词逻辑);3、图论部分(图的基本概念、特殊的图,树及其性质)。
一、各章复习要求与重点第一章命题逻辑[复习知识点]1、命题与联结词(否定、析取、合取、蕴涵、等价),复合命题2、命题公式与解释,真值表,公式分类(永真、矛盾、可满足),公式的等价3、析取范式、合取范式,极小(大)项,主析取范式、主合取范式4、公式类别的判别方法(真值表法、等值演算法、主析取/合取范式法)5、全功能集6、推理理论本章重点内容:命题与联结词、公式与解释、析取范式与合取范式、公式恒真性的判定、推理理论[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与解释的概念;掌握求给定公式真值表的方法,用基本等价式化简其他公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等价式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价的方法。
掌握24个重要等值式。
5、掌握推理理论,会写出推理的证明,掌握附加前提证明法和归谬发。
[本章重点习题]习题P31-36: 1.1,1.7-1.9,1.12,1.18,1.19,1.15 [疑难解析]1、公式恒真性的判定判定公式的恒真性,包括判定公式是恒真的或是恒假的。
具体方法有两种,一是真值表法,对于任给一个公式,主要列出该公式的真值表,观察真值表的最后一列是否全为1(或全为0),就可以判定该公式是否恒真(或恒假),若不全为0,则为可满足的。
二是推导法,即利用基本等价式推导出结果为1,或者利用恒真(恒假)判定定理:公式G 是恒真的(恒假的)当且仅当等价于它的合取范式(析取范式)中,每个子句(短语)均至少包含一个原子及其否定。
《离散数学》复习大纲本说明包括以下部分:考核说明及实施要求考核内容和要求第一部分集合论第二部分数理逻辑第三部分图论第四部分代数结构第一部分集合论(集合和二元关系)一、集合[考核知识点]集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan律等),文氏(Venn)图序偶与迪卡尔积[考核要求]理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
掌握集合的表示法和集合的交、并、差、补等基本运算。
掌握集合运算基本规律,证明集合等式的方法。
了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
二、二元关系[考核知识点]关系、关系矩阵与关系图复合关系与逆关系关系的性质(自反性、对称性、反对称性、传递性)关系的闭包(自反闭包、对称闭包、传递闭包)等价关系与等价类[考核要求]理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。
掌握求复合关系与逆关系的方法。
理解关系的性质(自反性、对称性、反对称性、传递性),掌握其判别方法(定义、矩阵、图) 掌握求关系的闭包 (自反闭包、对称闭包、传递闭包)的方法。
理解等价关系的概念,掌握等价类的求法。
理解单射、满射、双射等概念,掌握其判别方法。
三、 典型题第一章 集合1. 设A=∅, B={∅,a,{a}},求P(A)和P(B).2. 设A={1,2,3,4} , B={a,b,c}, 求A ⨯B 和B ⨯A.3. P21: 84. P22: 125.证明:B A B A =-6.思考题 P29: 15, 16第二章 关系1. 设A={1,2,3,4},A 上的关系R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4),(3,4)}, S=={(2,1), (1,2), (2,3), (1,4), (2,2), (2,4),(4,4)}, 求(1) R 和S 的关系图和关系矩阵(2) R-S(3) S R 1-(4) S R ⊕(5) A 上的恒等关系I A2. 设A={a ,b ,c },R 是A 上的关系R={(a,a),(a,c),(c,b)}, 求 ∞=1n n R3. 设R 是A 上的关系,请叙述R 具有自反性,反自反性,对称性,反对称性和传递性的含义4. 设A={1,2,3,4,5},A 上的关系R={(a,b)|a-b 是偶数},求R ,判断R 具有的性质。