土体应力应变特性
- 格式:ppt
- 大小:693.50 KB
- 文档页数:62
2-1.什么叫材料的本构关系?在上述的本构关系中,土的强度和应力-应变有什么联系? 答:材料的本构关系是反映材料的力学性质的数学表达式,表现形式一般为应力-应变-强度-时间的关系,也成为本构定律,本构方程。
土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大或不可控制的应变增量,它实际上是土的本构关系的一个组成部分。
2-7什么是加工硬化?什么是加工软化?请绘出他们的典型的应力应变关系曲线。
答:加工硬化也称应变硬化,是指材料的应力随应变增加而增加,弹增加速率越来越慢,最后趋于稳定。
加工软化也称应变软化,指材料的应力在开始时随着应变增加而增加,达到一个峰值后,应力随应变增加而下降,最后也趋于稳定。
加工硬化与加工软化的应力应变关系曲线如右图。
2-8什么的是土的压硬性?什么是土的剪胀性?答:土的变形模量随着围压提高而提高的现象,称为土的压硬性。
土的剪胀性指土体在剪切时产生体积膨胀或收缩的特性。
2-9简述土的应力应变关系的特性及其影响因素。
答:土是岩石风化形成的碎散矿物颗粒的集合体,通常是固、液、气三相体。
其应力应变关系十分复杂,主要特性有非线性,弹塑性,剪胀性及各向异性。
主要的影响因素是应力水平,应力路径和应力历史。
2-10定性画出在高围压(MPa 303<σ)和低围压(KPa 1003=σ)下密砂三轴试验的v εεσσ--)(131-应力应变关系曲线。
答:如右图。
横坐标为1ε,竖坐标正半轴为)(31σσ-,竖坐标负半轴为v ε。
2-13粘土和砂土的各向异性是由于什么原因?什么是诱发各向异性?答:粘土和砂土的各向异性是由于其在沉积过程中,长宽比大于1的针、片、棒状颗粒在重力作用下倾向于长边沿水平方向排列而处于稳定的状态。
同时在随后的固结过程中,上覆土体重力产生的竖向应力与水平土压力大小不等,这种不等向固结也造成了土的各向异性。
诱发各向异性是指土颗粒受到一定的应力发生应变后,其空间位置将发生变化,从而造成土的空间结构的改变,这种结构的改变将影响土进一步加载的应力应变关系,并且使之不同于初始加载时的应力应变关系。
筏板基础设计之沉降计算原理
筏板基础设计中的沉降计算原理是非常重要的,它涉及到土壤力学和结构工程的知识。
首先,让我们从土壤力学的角度来看。
筏板基础是一种承载结构荷载的基础形式,它通过分散荷载到较大的土体面积上来减小地基承载压力,从而减小地基沉降。
沉降计算的原理主要基于以下几个方面:
1. 土体压缩特性,土壤是一个多孔介质,当外部荷载作用于土体上时,土颗粒之间会发生压缩,导致土体沉降。
通过对土体的压缩性质进行实验和理论分析,可以得到土体的沉降特性,从而进行沉降计算。
2. 应力传递原理,筏板基础通过较大的接触面积将荷载传递到土体上,使得地基承载压力得到分散。
在沉降计算中,需要考虑到荷载在土体中的传递过程,以及不同深度处的土体应力分布情况,从而评估地基的沉降情况。
3. 土体的本构关系,土体的本构关系描述了土体的应力应变特性,通过本构关系可以得到土体的压缩模量、剪切模量等参数,从而进行沉降计算。
在结构工程中,沉降计算还需要考虑到筏板基础与上部结构的相互影响,以及不同荷载组合下的沉降情况。
此外,还需要考虑到地下水位变化、地基加固等因素对沉降的影响。
综上所述,筏板基础设计中沉降计算的原理涉及到土壤力学、结构工程以及工程实践经验等多个方面的知识,需要综合考虑土体的力学特性、结构荷载、地下水位等因素,以及进行合理的理论分析和实验验证,才能得到准确可靠的沉降计算结果。
土的应力应变关系
土的应力应变关系是指土体在受到外力作用时,其内部应力和应变之间的变化规律。
这种关系对于土力学和岩土工程领域的研究具有重要意义,因为它能够揭示土体在外力作用下的变形和破坏机理,为工程设计和施工提供重要的理论依据。
土的应力应变关系通常是非线性的,因为土是一种复杂的材料,其力学性质受到多种因素的影响,如土的种类、密度、含水量、应力历史等。
在受到外力作用时,土体会发生压缩、剪切和拉伸等变形,这些变形会引起土体内部应力的变化,而这些应力的变化又会反过来影响土体的变形。
为了描述土的应力应变关系,通常采用数学模型进行表达。
其中,最常用的模型是邓肯-张模型和剑桥模型。
邓肯-张模型是一种基于试验数据的经验模型,它通过对土体进行三轴压缩试验,得到土体的应力应变曲线,然后根据曲线形状和特征参数来建立数学模型。
剑桥模型则是一种基于土体微观结构的理论模型,它通过对土体的颗粒排列和相互作用进行分析,推导出土体的应力应变关系。
需要注意的是,土的应力应变关系受到多种因素的影响,如土的种类、密度、含水量、应力历史等,因此在具体应用中需要根据实际情况选择合适的模型,并进行必要的修正和调整。
同时,土的应力应变关系也受到土体边界条件和加载方式等因素的影响,因此在进行土力学和岩土工程研究时,需要综合考虑各种因素,建立更加准确和可靠的数学模型。
土力学原理
土力学原理是土木工程中的一项基础原理,用于研究土体在外力作用下的力学行为。
在土壤力学中,有许多重要的原理被广泛应用在土壤的设计和分析中。
土力学的研究对象是土体,土体是由颗粒、水分和空气等组成的多相材料。
土力学采用连续介质力学的观点来研究土体的力学性质。
其中最重要的三个原理分别是:
1. 应力-应变关系:应力-应变关系描述了土体在外力作用下的应变响应。
根据弹性理论,土体的线性弹性行为可以用胡克定律来描述,即应力与应变成正比。
这一原理在土体的设计和分析中非常重要。
2. 塑性力学原理:塑性力学原理用于描述土体的塑性行为。
在土体达到一定的应力水平后,它会发生塑性变形,即应力超过了土体的弹性极限。
塑性力学原理可以用来解释土体的流动、变形和稳定性。
在土体的基础工程和边坡稳定性分析中,塑性力学原理是十分重要的。
3. 应力传递原理:应力传递原理是土力学中非常基础的原理,它描述了土体内部应力的传递方式。
根据这一原理,土体内部的应力是从上部施加的外力通过土体颗粒之间的相互作用而传递的。
应力传递原理在土体的承载力和排水性能的研究中起到了重要的作用。
这些原理为土壤力学的研究提供了基础理论和方法,为土木工
程师在设计和分析土体结构时提供了指导。
通过深入学习和应用这些原理,可以更好地理解土壤的行为特性,从而做出科学、合理的工程决策。
1.说明土与金属材料的应力应变关系有什么主要区别。
土体的应力应变关系主要特点是其非线性与非弹性。
如下图,左边为金属材料,下图为土的材料。
金属材料开始时有一段直线。
而土体应力应变曲线显示出其很明显的非线性关系。
其应变很大一部分是塑性应变,而且土的变形为非弹性。
图1应力-应变关系图2什么是八面体正应力和八面体剪应力,八面体法向应变和八面体剪切应变?为什么土力学中常用P,q, v ε和_ε表示它们?等于一个土单元,应力作用点处主应力的方向为坐标轴时,同三个主应力平面斜角且同每个坐标轴夹角均相等。
等倾面上的正应力和剪应力称为八面体正应力,八面体剪应力。
等倾面上的法向应变和剪切应变称为八面体正应力,八面体剪应力。
土力学屈服主要由两部分组成,体积变化屈服,剪切屈服。
p,v ε表征体积变化。
而q,_ε表征剪切变化。
3部分准则破坏线可绘制在π平面上,能否绘制在八面体上。
不可以。
八面体是真实的物理空间面,π平面是为研究而定的物理空间面。
这是两者本质的不同。
对于八面体来说,这点他的屈服准则应该是固定的(真是的土粒物理面)。
4.什么是应变硬化?应变软化?典型的应力应变曲线土的宏观变形主要是由于土颗粒之间的位置的变化引起。
在不同应力条件下相同应力增量而引起的应变增量是不同的。
对于压密的砂土,超固结土来说,前一段曲线是上升的,应力达到峰值强度后,转为下降曲线。
即应力在减少,应变在增加。
这就是土的应变软化。
对于软土松砂来说,应力应变曲线一直上升,直至破坏,这种形态称为土的应变硬化。
图3 土的三轴试验a 1(13)~σσε−b 1~v εε5.土的压硬性?土的剪胀性?解释它们的微观机理。
随着压缩过程的进行,土的压缩模量和刚度逐步提高的现象称为土的压硬性。
由剪应力引起的体积变化称为土的剪胀性。
土的压硬性,表现在微观领域,是土颗粒与颗粒间的间距更近,土颗粒与土颗粒的粘结更加有效。
而土的剪胀性表现在微观领域,为土颗粒之间位置产生了变化。
土体屈服应力土体的屈服应力是指土体在受到外部荷载作用下,由于内部颗粒之间的相互作用而产生的抵抗变形的能力。
屈服应力是土体力学中重要的参数,它反映了土体的稳定性和变形特性。
本文将从土体的屈服应力的定义、影响因素以及工程应用等方面进行阐述。
土体的屈服应力是指土体在受到外界作用力时开始发生塑性变形的应力值。
当土体受到荷载作用时,土体内部的颗粒之间会发生位移和变形,从而产生内部的应力。
当这些内部应力达到一定的临界值时,土体就开始发生塑性变形,此时的应力即为屈服应力。
屈服应力是土体稳定性的重要指标,对于工程设计和土体的安全评估具有重要意义。
土体的屈服应力受到多种因素的影响。
首先,土体的颗粒特性是影响屈服应力的重要因素。
颗粒的形状、大小和组成等都会对土体的屈服应力产生影响。
例如,颗粒之间的接触面积越大,屈服应力就会越大。
其次,土体的含水量也是影响屈服应力的重要因素。
土体的含水量越高,颗粒之间的摩擦力就越小,屈服应力也就越小。
此外,土体的固结状态、孔隙率等也会对土体的屈服应力产生影响。
土体的屈服应力在工程中具有广泛的应用。
首先,在土体力学中,屈服应力是评估土体稳定性和强度的重要参数。
通过对土体的屈服应力进行测定和分析,可以判断土体是否具有足够的稳定性,从而指导工程设计和土体加固的措施。
其次,在土体工程中,屈服应力也是评估土体变形特性的重要指标。
通过对土体的屈服应力进行研究,可以预测土体在受到外界荷载时的变形情况,为工程设计提供参考。
土体的屈服应力是土体力学中重要的参数,它反映了土体的稳定性和变形特性。
土体的屈服应力受到多种因素的影响,包括颗粒特性、含水量、固结状态等。
屈服应力在工程中具有广泛的应用,可以用于评估土体的稳定性和强度,指导工程设计和土体加固的措施。
通过对土体的屈服应力进行研究和分析,可以更好地理解土体的力学行为,为工程建设提供科学依据。
土体变形曲线
土体变形曲线曲线是描述土体应力-应变关系的图示,通常分
为压缩、弹性回弹和剪切三个阶段。
其相关参考内容如下:
1. 压缩阶段:土体在受到外力作用时,开始发生压缩变形,此时应变与应力之间呈现出非线性关系,曲线呈现出S型。
这
是由于初始结构的断裂和颗粒间的重组导致的。
2. 弹性回弹阶段:当外力停止作用后,土体开始恢复部分变形,同时应力也开始降低,曲线呈现出反S型。
此时,土体的应
变与应力之间呈现出线性关系。
3. 剪切阶段:当外力进一步增加时,土体开始发生剪切变形,此时应变与应力之间仍然呈现出非线性关系,并且曲线的斜率不断增大。
这是因为土体中的颗粒开始滑动和旋转,导致土体内的应力和应变之间复杂的非线性关系。
土体变形曲线是土工领域中非常重要的一个概念,可以帮助工程师更好地理解土体的变形特性和力学行为,从而为设计和施工提供指导。
应力路径、应力历史对土体变形与土体强度的主要影响规律下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于题目"应力路径、应力历史对土体变形与土体强度的主要影响规律",我们可以编写如下的中文演示文章:1. 引言土体变形与强度受多方面因素的影响,其中应力路径和应力历史是非常重要的两个因素。