2018-2019学年上海市七宝中学高一下学期期中数学试题(解析版)
- 格式:doc
- 大小:1.38 MB
- 文档页数:16
上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m 的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴. 学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x >0恒成立,结合即可得出.【详解】(1)。
2018-2019学年上海市闵行区七宝中学高一下学期期末数学试题一、单选题1.已知{}n a 、{}n b 都是公差不为0的等差数列,且lim 2nn na b →∞=,12n n S a a a =++⋯+,则22lim nn nS nb →∞的值为( ) A .2B .-1C .1D .不存在【答案】C【解析】首先根据lim 2n n n a b →∞=求出数列{}n a 、{}n b 公差之间的关系,再代入22lim nn nSnb →∞即可。
【详解】因为{}n a 和{}n b 都是公差不为零的等差数列,所以设()()11121?1n n b b n d a a n d =+-=+- 故()()11121limlim 21nn n n a n d a b b n d →∞→∞+-==+-,可得122d d =又因为()112112n n n d a a a na -+++=+和()21121n b b n d =+-代入则()()1112122122lim lim 21212n n n nn n d na S d nb nb n n d d →∞→∞⎛⎫-+ ⎪=⨯== ⎪+- ⎪ ⎪⎝⎭. 故选:C . 【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。
2.设{}n a 是公比为()01q q <<的无穷等比数列,若{}n a 的前四项之和等于第五项起以后所有项之和,则数列21{}n a -是( ) A .公比为12的等比数列B .公比为2的等比数列C .公比为2或2-的等比数列D的等比数列【答案】B【解析】根据题意可得42n S S =,带入等比数列前n 和即可解决。
【详解】根据题意,若{}n a 的前四项之和等于第五项起以后所有项之和, 则42n S S =,又由{}n a 是公比为()01q q <<的无穷等比数列,则()4111211a q a q q-=--,变形可得412q =,则q =,数列{}21n a -为{}n a 的奇数项组成的数列,则数列{}21n a -为公比为2q =列; 故选:B . 【点睛】本题主要考查了利用等比数列前n 项和计算公比,属于基础题。
上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________ 【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。
一、选择题1.(0分)[ID :12420]若四棱锥的三视图如图,则此四棱锥的四个侧面的面积中最大值为( )A .3B .13C .32D .332.(0分)[ID :12409]如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+3.(0分)[ID :12399]设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.(0分)[ID :12383]直线(2)4y k x =-+与曲线2320x y y +-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞5.(0分)[ID :12374]如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256π C .25π D .100π6.(0分)[ID :12357]如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .87.(0分)[ID :12345]若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm 8.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形9.(0分)[ID :12341]正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π10.(0分)[ID :12393]点A 、B 、C 、D 在同一个球的球面上,2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A .1256πB .8πC .2516πD .254π11.(0分)[ID :12388]一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+412.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭D .53,12413.(0分)[ID :12365]如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32π C .4πD .34π 14.(0分)[ID :12418]如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立 D .不存在点G ,使平面EFG ⊥平面ABD 成立15.(0分)[ID :12334]如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF ,则1AFFA 的值为( )A .1B .12或2 C .22或2 D .13或3 二、填空题16.(0分)[ID :12489]若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.17.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .18.(0分)[ID :12461]如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.19.(0分)[ID :12525]已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,23PA PC ==,则三棱锥P ABC -外接球的半径为______.20.(0分)[ID :12519]已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.21.(0分)[ID :12481]直线10ax y ++=与连接A (4,5),B (-1,2)的线段相交,则a 的取值范围是___.22.(0分)[ID :12470]已知平面α,β,γ是空间中三个不同的平面,直线l ,m 是空间中两条不同的直线,若α⊥γ,γ∩α=m ,γ∩β=l ,l⊥m,则 ①m⊥β;②l⊥α;③β⊥γ;④α⊥β.由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上). 23.(0分)[ID :12507]在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,﹣1)的距离之和最小的点的坐标是 .24.(0分)[ID :12434]在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.25.(0分)[ID :12429]已知点()1,0A -,()2,0B ,直线l :50kx y k --=上存在点P ,使得2229PA PB +=成立,则实数k 的取值范围是______.三、解答题26.(0分)[ID :12596]如图,梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,现将SCD ∆沿CD 翻折到PCD ∆位置,使23PB =(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值; (3)求AB 与平面BDE 所成的角的正弦值.27.(0分)[ID :12545]如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AFC --的正切值.28.(0分)[ID :12617]如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .29.(0分)[ID :12577]如图,在梯形ABCD 中,AB CD ∥,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)证明:BC ⊥平面ACFE ;(2)设点M 在线段EF 上运动,平面MAB 与平面FCB 所成锐二面角为θ,求cos θ的取值范围.30.(0分)[ID :12568]在直角坐标系xOy 中,直线l 的参数方程为32112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 所在直线为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为22)4πρθ=-.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长度.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.B5.C6.C7.B8.A9.A10.D11.D12.D13.A14.C15.B二、填空题16.3【解析】【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化17.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积18.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其19.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查20.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C(2a)当∠MFN最大时过点MNF的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<9021.或【解析】【分析】判断直线恒过定点P(0-1)计算PAPB的斜率再利用数形结合求a的取值范围【详解】解:由直线ax+y+1=0的方程判断直线恒过定点P(0-1)如图所示计算且或则或即实数a的取值范围22.②④【解析】【分析】对每一个选项分析判断得解【详解】根据已知可得面β和面γ可成任意角度和面α必垂直所以直线m可以和面β成任意角度①不正确;l⊂γl⊥m所以l⊥α②正确;③显然不对;④因为l⊂βl⊥α23.(24)【解析】【分析】【详解】取四边形ABCD对角线的交点这个交点到四点的距离之和就是最小值可证明如下:假设在四边形ABCD中任取一点P在△APC中有AP+PC>AC在△BPD中有PB+PD>BD24.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接25.【解析】【分析】先求出直线经过的定点设直线上的点坐标由可求得点的轨迹方程进而求得斜率的取值范围【详解】解:由题意得:直线因此直线经过定点;设点坐标为;化简得:因此点为与直线的交点所以应当满足圆心到直三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】由四棱锥的三视图,还原几何体如图,可证得,CD PD ⊥CB PB ⊥,分别计算四个侧面三角形的面积,比较即得解. 【详解】由四棱锥的三视图,还原几何体如图,其中底面ABCD 为矩形,PA ⊥平面ABCD由于,,CD AD CD PA AD PA A CD ⊥⊥=∴⊥平面PAD ,CD PD ∴⊥同理可证:CB PB ⊥1111222,2332222PAB PAD S PA AB S PA AD ∆∆∴=⨯=⨯⨯==⨯=⨯⨯= 111122332,213132222PBC PCD S PB BC S CD PD ∆∆=⨯=⨯==⨯=⨯= 故四棱锥的四个侧面的面积中最大值为32故选:C 【点睛】本题考查了利用三视图还原几何体,侧面三角形面积的计算,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.2.B解析:B 【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B .3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO ,即满足2PO ,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO故2222000103634PO x y y y ==+-+ 解得0825y ,0605x 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO ,从而得到不等式求出参数的取值范围.4.B解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221kk -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B.【点睛】 本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.5.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心, 半径长度为1522AD =, 所以表面积为25π.6.C解析:C【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2,所以在平面图形中OB=2,OA=4, OA⊥OB,所以面积为12442S=⨯⨯=.选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.7.B解析:B【解析】【分析】【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).考点:1.三视图读图的能力;2.几何体的体积公式.8.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.9.A解析:A【解析】【分析】【详解】PO上,正四棱锥P-ABCD的外接球的球心在它的高1记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,12AO =,由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积10.D解析:D 【解析】 试题分析:根据题意知,ABC 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 11.D解析:D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为π×12+12×2π×1×2+2×2=3π+4 ,选D.12.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.13.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 2由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径3DE = 2343S ππ== 故选A【点睛】求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.14.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误;在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.15.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =,所以BD ⊥平面11AAC C ,1C F 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =, 所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题16.3【解析】【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化解析:3【解析】【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有 2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题. 17.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积 18.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其解析:105. 【解析】【分析】 连接1CD 、CM ,取1CD 的中点N ,连接MN ,可知11//A B CD ,且1CD M ∆是以1CD 为腰的等腰三角形,然后利用锐角三角函数可求出1cos CD M ∠的值作为所求的答案.【详解】如下图所示:连接1CD 、CM ,取1CD 的中点N ,连接MN ,在正方体1111ABCD A B C D -中,11//A D BC ,则四边形11A BCD 为平行四边形, 所以11//A B C D ,则异面直线1A B 和1D M 所成的角为1CD M ∠或其补角,易知1111190B C D BC C CDD ∠=∠=∠=,由勾股定理可得1CM D M ==1CD N 为1CD 的中点,则1MN CD ⊥,在1Rt D MN ∆中,111cos 5D N CD M D M ∠==, 因此,异面直线1A B 和1D M所成角的余弦值为5,故答案为5. 【点睛】 本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.19.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查解析:2【解析】【分析】设三棱锥P ABC -外接球球心为O ,半径为R ,如图所示作辅助线,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,解得答案. 【详解】设三棱锥P ABC -外接球球心为O ,半径为R ,90BAC ∠=︒,故O 在平面ABC 的投影为BC 中点1O ,D 为AC 中点,PA PC =,故PD AC ⊥,侧面PAC ⊥底面ABC ,故PD ⊥底面ABC .连接1O D ,作OH PD ⊥于H ,易知1OO DH 为矩形,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,PD =,12OH DO ==,122CO,解得R =故答案为:2.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.20.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN <90解析:22(2)(1)2x y -+-=【解析】【分析】【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切. ()()22232122a a ---+-=,∴a=1或9,a=1时,2,∠MCN=90°,∠MFN=45°,a=9时,r=52MCN <90°,∠MFN <45°,则所求圆的方程为22(2)(1)2x y -+-=考点:圆的标准方程 21.或【解析】【分析】判断直线恒过定点P (0-1)计算PAPB 的斜率再利用数形结合求a 的取值范围【详解】解:由直线ax+y+1=0的方程判断直线恒过定点P (0-1)如图所示计算且或则或即实数a 的取值范围解析:32a ≤-或3a ≥ 【解析】【分析】判断直线0ax by c ++=恒过定点P (0,-1),计算PA 、PB 的斜率,再利用数形结合求a 的取值范围.【详解】解:由直线ax+y+1=0的方程,判断直线恒过定点P (0,-1),如图所示,计算513402PA k +==-,21310PB k +==--- 且PA k k ≥或PB k k ≤,则PA a k ≤-或PB a k ≥-,即实数a 的取值范围是:32a ≤-或3a ≥. 故答案为:32a ≤-或3a ≥. 【点睛】本题考查直线的斜率与直线方程的应用问题,是基础题. 22.②④【解析】【分析】对每一个选项分析判断得解【详解】根据已知可得面β和面γ可成任意角度和面α必垂直所以直线m 可以和面β成任意角度①不正确;l ⊂γl⊥m 所以l⊥α②正确;③显然不对;④因为l ⊂βl⊥α 解析:②④【解析】【分析】对每一个选项分析判断得解.【详解】根据已知可得面β和面γ可成任意角度,和面α必垂直.所以直线m 可以和面β成任意角度,①不正确;l ⊂γ,l⊥m,所以l⊥α,②正确;③显然不对;④因为l ⊂β,l⊥α,所以α⊥β,④正确.故答案为②④【点睛】本题主要考查空间线面垂直和面面垂直的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.23.(24)【解析】【分析】【详解】取四边形ABCD 对角线的交点这个交点到四点的距离之和就是最小值可证明如下:假设在四边形ABCD 中任取一点P 在△A PC 中有AP +PC >AC 在△BPD 中有PB +PD >BD解析:(2,4)【解析】【分析】【详解】取四边形ABCD 对角线的交点,这个交点到四点的距离之和就是最小值.可证明如下: 假设在四边形ABCD 中任取一点P ,在△APC 中,有AP +PC >AC ,在△BPD 中,有PB +PD >BD ,而如果P 在线段AC 上,那么AP +PC =AC ;同理,如果P 在线段BD 上,那么BP +PD =BD.如果同时取等号,那么意味着距离之和最小,此时P 就只能是AC 与BD 的交点. 易求得P(2,4).24.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O ,半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.25.【解析】【分析】先求出直线经过的定点设直线上的点坐标由可求得点的轨迹方程进而求得斜率的取值范围【详解】解:由题意得:直线因此直线经过定点;设点坐标为;化简得:因此点为与直线的交点所以应当满足圆心到直解析:⎡⎢⎣⎦【解析】【分析】先求出直线l 经过的定点,设直线上的p 点坐标,由2229PA PB +=可求得点P 的轨迹方程,进而求得斜率k 的取值范围.【详解】解:由题意得:直线:(5)l y k x =-,因此直线l 经过定点(5,0);设点P 坐标为0(x ,0)y ;2229PA PB +=,∴22220000(1)22(2)9y x y x +++++=化简得:2200020x y x +-=,因此点p 为2220x y x +-=与直线:(5)l y k x =-的交点. 所以应当满足圆心(1,0)到直线的距离小于等于半径 ∴1解得:[k ∈故答案为[k ∈ 【点睛】本题考查了求轨迹方程,一次函数的性质,考查了直线与圆的位置关系,是中档题.三、解答题26.(1)证明见解析;(2;(3)3.【解析】【分析】(1)通过折叠关系得PD CD ⊥,计算并证明PD BD ⊥,即可得证线面垂直;(2)结合已证结论以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,分别通过平面BCD 和平面BDE 的法向量求出其余弦值,再求出正弦值;(3)计算出平面BDE 的法向量与AB 的方向向量的夹角余弦值的绝对值即可.【详解】(1)梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,2DA =,四边形ABCD 为平行四边形,AB BC ⊥,2AB DA ==,22BD =, 所以四边形ABCD 为正方形,CD DS ⊥,折叠后,CD DP ⊥,2PD =,23PB =,在三角形PBD 中,2224812PD BD PB +=+==, 所以BD DP ⊥,,CD DB 是平面ABCD 内两条相交直线,所以PD ⊥面ABCD ;(2),,DA DC DP 两两互相垂直,以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图所示:则(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(0,1,1)D A B C P E(2,2,0),(0,1,1)DB DE ==,设平面BDE 的法向量为(,,)n x y z =则2200DB n x y DE n y z ⎧⋅=+=⎨⋅=+=⎩,解得y z x z =-⎧⎨=⎩,令1z =,取(1,1,1)n =- 由(1)可知,PD ⊥面ABCD ,取平面ABCD 的法向量(0,0,2)DP =3cos ,32DP n ==⨯ 根据图形,二面角E BD C --的平面角的余弦值为33 所以二面角E BD C --2;(3)(0,2,0)AB =,由(2)可得平面BDE 的法向量(1,1,1)n =-设直线AB 与平面BDE 所成的角为θ, 23sin cos ,323AB n θ-===⨯. 所以AB 与平面BDE 所成的角的正弦值33. 【点睛】此题考查立体几何中的线面垂直的证明,空间几何体中求二面角和线面角的三角函数值,建立空间直角坐标系解决问题更加清晰明了,注意容易计算出错和公式记错.27.(1)见证明;(2) 23【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】(1)PA ⊥面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又底面ABCD 为菱形,60ABC ∠=,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥ AE ∴⊥面PAD ;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=, 在Rt PAD ∆中,233PA = PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M ,正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠== 【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 28.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,所以//DE 平面ABC .【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.29.(1)证明见解析 (2)71cos ,72θ⎡⎤∈⎢⎥⎣⎦【解析】【分析】(1)先证明BC AC ⊥,结合面面垂直性质定理即可得到BC ⊥平面ACFE ;(2) 建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系, 求出平面MAB 与平面FCB 的法向量,表示cos θ,求函数的值域即可.【详解】解:(1)证明:在梯形ABCD 中,因为//AB CD ,1===AD DC CB ,60ABC ∠=︒所以2AB =,所以2222cos603AC AB BC AB BC ︒=+-=,所以222AB AC BC =+,所以BC AC ⊥.因为平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,因为BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令()03FM λλ=≤≤,则()0,0,0C ,()3,0,0A,()0,1,0B ,(),0,1M λ. ∴()3,1,0AB =-,(),1,1BM λ=-.设()1,,n x y z =为平面MAB 的一个法向量,由11·0·0n AB n BM ⎧=⎪⎨=⎪⎩得300x y x y z λ⎧+=⎪⎨-+=⎪⎩,取1x =,则()11,3,3n λ=, ∵()21,0,0n =是平面FCB 的一个法向量1212cos n n n n θ⋅∴==⋅=∵0λ≤≤0λ=时,cos θ,当λ=cos θ有最大值12. ∴1cos 72θ⎤∈⎥⎣⎦. 【点睛】本题考查线面垂直的证明,二面角的度量,考查推理能力、计算能力以及空间想象能力,属于中档题.30.(1)22220x y x y +--=;(2【解析】【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可得曲线C 的直角坐标方程;(2)把直线参数方程化为普通方程,曲线C 是圆,因此由垂径定理计算弦长,即求出圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为)4πρθ=-,所以()cos cos sin sin 2cos sin 44ππρθθθθ⎫=+=+⎪⎭ 即()22cos sin ρρθρθ=+.因为222cos ,sin ,x y x y ρθρθρ===+,所以222()x y x y +=+,所以曲线C 的直角坐标方程为22220x yx y +--= (2)因为直线l 的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t为参数),所以)x-=-= 所以l 的直角坐标方程为0x -+=所以圆心()1,1到直线l的距离12d==, 所以AB ===AB 【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化.考查圆的弦长问题.求圆弦长,一般用几何方法,即求出圆心到弦所在直线距离(弦心距),由勾股定理计算弦长.。
2018-2019学年七宝高一开学考数学试卷一、填空题1. 已知函数()f x 是幂函数,且()()2416f f =,则()f x 的解析式为____________2.若cos 63πα⎛⎫−=⎪⎝⎭,则5cos 6πα⎛⎫+= ⎪⎝⎭____________ 3. 不等式101x x −≥+的解集为____________ 4. 若不等式210x kx k −+−>对()1,2x ∈恒成立,则实数k 的取值范围是____________5. 函数cos cot sin tan sin cos tan cot x x x x y x x x x=+++的值域是____________ 6. 若1sin cos 5αα+=,0απ≤≤,那么tan α的值是____________ 7. 函数()y f x =的反函数为()1y f x −=,如果函数()y f x =的图像过点()2,2−,那么函数()121y f x −=−+的图像一点过点____________8. 定义在正整数集上的分段函数()11551x x f x x x x =⎧⎪⎪=⎨⎪−⎪⎩是的倍数是其它整数,则满足()1f f x =⎡⎤⎣⎦的所有x 的值的和等于____________9. 2sin 1cos αα=+,则tan α=____________10.已知tan tan αβ⋅=,求()()2cos 22cos αβ−−=____________ 11. 若关于x 的方程()221log 2log 1log log log 2x a x a a x x x x −−+=恰有一解,求a 的取值范围____________ 12. ()()*1,,p,q x x f x q q x p N q Z p p ⎧⎪=+⎨=∈∈⎪⎩是无理数且互素,则()f x 在78,89x ⎛⎫∈ ⎪⎝⎭上的最大值是____________二、选择题13.“tan a θ=”是“1cos 2sin 2a θθ−=”的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分又不必要条件14. 已知()22430230x x x f x x x x ⎧−+≤=⎨−−+>⎩,不等式()()2f x a f a x +>−在[],1a a +上恒成立,则实数a 的取值范围是( )A. ()2,0−B. (),0−∞C.(0,2)D. (),2−∞−15. 有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同(3)若sin 0α>,则α是第一或第二象限角;(4)ABC 中,若A>B ,则sinA>sinB ,其中正确命题的个数是( )A. 1个B. 2个C. 3个D. 4个16. 设()f x 是定义域为R 的以3位周期的奇函数,且()20f =,则方程()0f x =在区间()6,6−内解的个数的最小值为( )A. 15B. 13C. 11D. 9三、解答题17. 已知函数()()0,1,x b f x a a a b R +=>≠∈.(1)若()f x 为偶函数,求b 的值;(2)若()f x 在区间[)2,+∞上是增函数,试求,a b 应满足的条件.18. 某电影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票不超过10元时,票可全部售出,当每张票价高于10元时,每提高一元,将有30张票不能售出,为了获得更好的收益,需要影院定一个合适的票价,符合的基本条件是:①为方便找零和算账,票价定为1元的整数倍;②影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.(1)设定价为()*x x N ∈元,净收入为y 元,求y 关于x 的表达式;(2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?。
七宝中学高一开学考数学试卷一.填空题1.已知函数是幂函数,且,则的解析式为________()f x 2(4)(16)f f =()f x 【答案】12x 【解析】【分析】设,根据条件建立方程求出的值即可.()f x x α=α【详解】设,()f x x α=(4),2f (16)f =,2416αα∴⨯=即,则,,1624αα=42α=12α=即,12()f x x =故答案为:12()f x x=【点睛】本题主要考查幂函数解析式的求解,利用待定系数法建立方程是解决本题的关键.2.已知,则_________cos()6πα-=5cos()6πα+=【答案】【解析】试题分析:因为,,cos()6πα-=所以,=。
5cos()cos[()]cos()666πππαπαα+=--=--考点:本题主要考查三角函数诱导公式。
点评:简单题,注意观察角之间的关系,灵活选用公式。
3.不等式的解集为________101xx -≥+【答案】(]1,1-【解析】【分析】由题得,解不等式组即得不等式的解集.(1)(1)010x x x -+≥⎧⎨+≠⎩【详解】由题得,(1)(1)010x x x -+≥⎧⎨+≠⎩所以.11x -<≤故答案为:(]1,1-【点睛】本题主要考查分式不等式的解法,意在考查学生对这些知识的理解掌握水平.4.若不等式x 2﹣kx+k ﹣1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 .【答案】(﹣∞,2]【解析】试题分析:根据题意,分离参数,利用函数的单调性,即可得到实数k 的取值范围.解:不等式x 2﹣kx+k ﹣1>0可化为(1﹣x )k >1﹣x 2∵x ∈(1,2)∴k <=1+x∴y=1+x 是一个增函数∴k≤1+1=2∴实数k 取值范围是(﹣∞,2]故答案为:(﹣∞,2]考点:一元二次不等式的应用.5.函数的值域是________sin |cos |tan |cot ||sin |cos |tan |cot x x x x y x x x x =+++【答案】{0,2,4}-【解析】【分析】直接对分象限讨论去绝对值得答案.x 【详解】由题意可知不在坐标轴上,x 当为第一象限角时,函数;x sin |cos |tan |cot |sin cos tan cot 4|sin |cos |tan |cot sin cos tan cot x x x x x x x xy x x x x x x x x =+++=+++=当为第二象限角时,函数;x sin |cos |tan |cot |sin cos tan cot 2|sin |cos |tan |cot sin cos tan cot x x x x x x x x y x x x x x x x x =+++=---=-当为第三象限角时,函数;x sin |cos |tan |cot |sin cos tan cot 0|sin |cos |tan |cot sin cos tan cot x x x x x x x xy x x x x x x x x =+++=--++=当为第四象限角时,函数.x sin |cos |tan |cot |sin cos tan cot 2|sin |cos |tan |cot sin cos tan cot x x x x x x x x y x x x x x x x x =+++=-+--=-函数的值域是数集,,.∴sin |cos |tan |cot ||sin |cos |tan |cot x x x x y x x x x =+++{42-0}故答案为:{0,2,4}-【点睛】本题考查了三角函数值的符号,体现了分类讨论的数学思想方法,是基础题.6.若,则_______1sin cos 5θθ+=(0)θπ≤≤tan θ=【答案】43-【解析】【分析】先由,结合同角三角函数基本关系,得到,判断出,1sin cos 05θθ+=>12sin cos 025θθ=-<2πθπ<≤再由求出正弦与余弦,即可得出结果.1sin cos 512sin cos 25θθθθ⎧+=⎪⎪⎨⎪=-⎪⎩【详解】因为,1sin cos 05θθ+=>所以,故,()21sin cos 25θθ+=12sin cos 025θθ=-<所以,;因此;sin 0θ>cos 0θ<2πθπ<≤由,解得1sin cos 512sin cos 25θθθθ⎧+=⎪⎪⎨⎪=-⎪⎩4sin 53cos 5θθ⎧=⎪⎪⎨⎪=-⎪⎩所以.4tan 3θ=-故答案为43-【点睛】本题主要考查三角函数中给值求值的问题,熟记同角三角函数基本关系即可,属于常考题型.7.函数的反函数为,如果函数的图像过点,那么函数()y f x =()1y f x -=()y f x =()2,2-的图像一定过点.()121y f x -=-+【答案】【解析】试题分析:由于函数的图像过点,则它的反函数图象过,则,()2,2-()1y f x -=对于函数,令,则,则()121y f x -=-+的图像一定过点.()121y f x -=-+考点:互为反函数图像关系 ;8.定义在正整数集上的分段函数,则满足的所有的值的和11()551x x f x x x x =⎧⎪⎪=⎨⎪-⎪⎩是的倍数是其它整数{[()]}1f f f x =x 等于________【答案】320【解析】【分析】根据已知中分段函数,结合,求出所有的值,进而可得答()1,1,551,x x f x x x x =⎧⎪⎪=⎨⎪-⎪⎩是的倍数是其它整数{[()]}1f f f x =x 案.【详解】函数, ()1,1,551,x x f x x x x =⎧⎪⎪=⎨⎪-⎪⎩是的倍数是其它整数{[()]}1f f f x =,或,,[()]1f f x ∴=[()]5f f x =[()]2f f x =,或,或,或,或,或,或.()1f x ∴=()5f x =()2f x =()25f x =()6f x =()=10f x ()=3f x ,或,或,或,或,或,或,或,或,或1x ∴=5x =2x =25x =6x =10x =3x =125x =26x =,或,或,或或,或.30x =7x =50x =11,x =15x =4x =由,15225610312526307+50+11154320++++++++++++=故答案为:320【点睛】本题考查的知识点是分段函数的应用,本题算繁不算难,细心计算即可.9.若,则________2sin 1cos αα=+tan α=【答案】或043【解析】【分析】根据同角三角函数平方关系求解.【详解】因为,,所以,因此或2sin 1cos αα=+22sin cos 1αα+=25sin 4 sin 0αα-=sin 0α=当时,当时,4sin .5α=sin 0α=cos 1tan 0αα=-=,;4sin 5α=34cos tan .43αα==综上或0.4tan 3α=【点睛】本题考查同角三角函数平方关系,考查基本转化与求解能力,属基础题.10.已知________tan tan αβ⋅=(2cos2)(2cos2)αβ--=【答案】3【解析】【分析】由题得,再通分把已知代进去化简即得解.22221tan 1tan (2cos 2)(2cos 2)(21tan 1tan αβαβαβ----=--++【详解】由题得22221tan 1tan (2cos 2)(2cos 2)(21tan 1tan αβαβαβ----=--++22221+3tan 1+3tan ()()1tan 1tan αβαβ=++22222219(tan tan )+3(tan tan )1(tan tan )tan tan αβαβαβαβ++=+++222222224+3(tan tan )129(tan tan )443(tan tan )(tan tan )3αβαβαβαβ+++==++++=3故答案为:3【点睛】本题主要考查二倍角公式和万能公式,意在考查学生对这些知识的理解掌握水平.11.若关于的方程恰有一解,求的取值范围________x 21log log (2)1log 2log 2log 2a x a x a x a x --+=a 【答案】{2}【解析】【分析】逐步化简得到,再根据仅有一解分析得到不等式组,解不等式组即得解.120111a a x a x x x a x a⎧>≠⎪<⎪⎨>≠⎪⎪=+=-⎩且且或【详解】原方程等价于22222201101102001log log (2)log (1)a a a a x a x x x x a x a >≠⎧⎪->-≠⎪⎪>⎪⎨->⎪⎪>≠⎪+-=-⎪⎩且且且等价于,22212001log [(2)]log (1)a a a x x x x a x a ⎧>≠⎪->⎪⎨>≠⎪⎪-=-⎩且且等价于212001(2)]1a a a x x x x a x a ⎧>≠⎪->⎪⎨>≠⎪⎪-=-⎩且且等价于120111a a x a x x x a x a ⎧>≠⎪<⎪⎨>≠⎪⎪=+=-⎩且且或因为方程仅有一解,所以,或,或,或.1(0,2)1(0,2)a a a a +∈⎧⎨-∉⎩1(0,2)1=1a a a +∈⎧⎨-⎩1(0,2)1(0,2)a a a a +∉⎧⎨-∈⎩111(0,2)a a a +=⎧⎨-∈⎩解之得.2a =故答案为:{2}【点睛】本题主要考查对数方程的解的个数,考查对数函数,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.,求在上的最大值________*()1,,,,x x f x q qx p q p qp p ⎧⎪=+⎨=∈∈⎪⎩N Z 是无理数且互素()f x 78(,)89【答案】1617【解析】当是无理数时,时,,而.只需证是有理数时.即可.x 78(,)89x ∈8()9f x x =<15168(17179f =>x 16()17f x …【详解】, 77888899+<<+即;71588179<<由定义可得.15168(17179f =>只需证时有理数时,x 16():17f x …(1)若时,是无理数时,.78(,89x ∈x 816()917f x x =<<(2)若时,是有理数时,此时设,其中,且;78(,89x ∈x p x q =(,)1p q =0p q <<由于,7889p q <<,可得∴7898q p p q <⎧⎨<⎩8171989q q p -+⨯……即;639648q q +-…;17q ∴…因此;8111169()(17q p p f x f q q q +++===…综上在上的最大值为.()f x 78(,)891617故答案为:1617【点睛】本题考查了分段函数的讨论和最值问题,注意分段情况,同时考查了不等式的证明,属于中档题.二.选择题13.“”是“”的( )tan a θ=1cos2sin 2aθθ-=A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【解析】【分析】先考查充分性,再考虑必要性得解.【详解】当时,,但是当时,分母为零,没tan a θ=21cos 22sin sin sin 22sin cos cos a θθθθθθθ-====0θ1cos2sin 2θθ-有意义.所以“”是“”的非充分条件;tan a θ=1cos2sin 2aθθ-=当时,.1cos2sin 2aθθ-=2(),2k k k Z x πθπ≠∈∴≠所以,21cos 22sin sin =tan sin 22sin cos cos aθθθθθθθθ-===所以“”是“”的必要条件.tan a θ=1cos2sin 2aθθ-=所以“”是“”的必要非充分条件.tan a θ=1cos2sin 2aθθ-=故选:B【点睛】本题主要考查三角函数的定义域和三角恒等变换,考查充分必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知f (x )=,不等式f (x+a )>f (2a-x )在[a ,a+1]上恒成立,则实数a 的取2x 4x 3,x 02x 2x 3,x 0-+≤⎧⎪--+>⎨⎪⎩值范围是( )A.B.C.D.(),2∞--(),0∞-()0,2()2,0-【答案】A 【解析】试题分析:二次函数的对称轴为,则该函数在上单调递减,则243y x x =-+2x =(,0)-∞,同样函数在上单调递减,2433x x -+≥223y x x =--+(0,)+∞2-233x x ∴-+<在R 上单调递减;由得到,即;则在()f x ∴()()2f x a f a x +>-2x a a x +<-2x a <2x a <上恒成立;则,实数的取值范围是,故选A ;[,1]a a +2(1),2a a a +<∴<-a (,2)-∞-考点:1.分段函数的单调性;2.恒成立问题;15.有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同;(3)若,则是第一或第二象限角;(4)△中,若,则;其中正确sin 0α>αABC A B >sin sin A B >命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】【分析】(1),根据终边相同的角的同名三角函数值相等,判断命题正确;(2),根据终边不同的角的同名三角函数值也可能相等,判断命题错误;(3),当时,是第一或第二象限角,或为终边在轴的正sin 0α>αy 半轴上,判断命题错误;(4),根据大角对大边,利用正弦定理即可判断结论正确.【详解】对于(1),终边相同的角的同名三角函数值相等,所以比值相等,(1)正确;对于(2),终边不同的角的同名三角函数值也可能相等,如,5sinsin66ππ=所以比值也可能相同,(2)错误;对于(3),若,则是第一或第二象限角,或终边在轴的正半轴上,(3)错误;sin 0α>αy 对于(4),中,若,则,ABC ∆A B >a b >由正弦定理得,2sin sin a bR A B ==,2sin 2sin R A R B ∴>,(4)正确;sin sin A B ∴>综上,其中正确命题的序号为(1)和(4),共2个.故选:.B 【点睛】本题主要考查了命题的真假判断,涉及三角函数的定义,角的取值和三角函数的符号,是基础题.16.设是定义域为的以3为周期的奇函数,且,则方程在区间内解的个()f x R (2)0f =()0f x =(6,6)-数的最小值为()A. 15B. 13C. 11D. 9【答案】A【解析】【分析】根据题意,由奇函数的性质可得,结合函数的周期性可得(3),,结合(0)0f =f 0=(3)0f -=(2)分析可得(2)(5),进而可得(1)和(1)f 0=f f =(1)0f =-=(2)(5)f f f -=-=0=f (4),;结合奇偶性与周期性可得,进而可得f =0=(4)(1)0f f -=-=33()(022f f -==,综合可得答案.99()(022f f -==【详解】根据题意,是定义在上的奇函数,则,()f x R (0)0f =又由是周期为3的周期函数,则(3),,()f x f 0=(3)0f -=又由(2),则(2)(5),f 0=f f =(1)0f =-=又由函数为奇函数,则(1),(2)(5)f f f -=-=0=则有(1)(4),,f f =0=(4)(1)0f f -=-=又由函数是以3为周期的奇函数,故有且,()f x 33(()22f f -=-33()(22f f -=则有,33()()022f f -==则有,99()()022f f -==综合可得:方程在区间内解至少有:,,,,,0,1,2,3,4,5,()0f x =(6,6)-5-4-3-2-1-,,,,共15个;92-32-3292故选:.A 【点睛】本题考查函数的奇偶性与周期性的综合应用,注意分析,属于基础题.33()(022f f -==三.解答题17.已知函数.()(0,1,)x b f x a a a b R +=>≠∈(1)若为偶函数,求的值;()f x b (2)若在区间上是增函数,试求、应满足的条件.()f x [)2,+∞a b 【答案】(2)且0b =1a >2b ≥-【解析】【详解】试题分析:(1)若函数是偶函数则;(2)对于含有绝对值号的函数的单调性的有关题目,先去绝对值号(注意一定要明确自变量的取值范围,选择与之对应的对应关系),写成分段函数,然后再逐段进行讨论。
2018-2019学年上海市七宝中学高一下学期开学考试数学试题一、单选题 1.“tan a θ=”是“1cos2sin 2a θθ-=”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】B【解析】先考查充分性,再考虑必要性得解. 【详解】当tan a θ=时,21cos22sin sin sin 22sin cos cos a θθθθθθθ-===,但是当=0θ时,1cos2sin 2θθ-分母为零,没有意义. 所以“tan a θ=”是“1cos2sin 2a θθ-=”的非充分条件;当1cos2sin 2a θθ-=时,2(),2k k k Z x πθπ≠∈∴≠. 所以21cos22sin sin =tan sin 22sin cos cos a θθθθθθθθ-===, 所以“tan a θ=”是“1cos2sin 2a θθ-=”的必要条件.所以“tan a θ=”是“1cos2sin 2a θθ-=”的必要非充分条件.故选:B 【点睛】本题主要考查三角函数的定义域和三角恒等变换,考查充分必要条件的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知f (x )=2x 4x 3,x 02x 2x 3,x 0-+≤⎧⎪--+>⎨⎪⎩,不等式f (x+a )>f (2a-x )在[a ,a+1]上恒成立,则实数a 的取值范围是( )A.(),2∞--B.(),0∞-C.()0,2D.()2,0-【答案】A【解析】试题分析:二次函数243y x x =-+的对称轴为2x =,则该函数在(,0)-∞上单调递减,则2433x x -+≥,同样函数223y x x =--+在(0,)+∞上单调递减,2-233x x ∴-+<()f x ∴在R 上单调递减;由()()2f x a f a x +>-得到2x a a x +<-,即2x a <;则2x a <在[,1]a a +上恒成立;则2(1),2a a a +<∴<-,实数a 的取值范围是(,2)-∞-,故选A ;【考点】1.分段函数的单调性;2.恒成立问题;3.有下列命题:(1)终边相同的角的同名三角比的值相等;(2)终边不同的角的同名三角比的值不同;(3)若sin 0α>,则α是第一或第二象限角;(4)△ABC 中,若A B >,则sin sin A B >;其中正确命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】(1),根据终边相同的角的同名三角函数值相等,判断命题正确;(2),根据终边不同的角的同名三角函数值也可能相等,判断命题错误;(3),当sin 0α>时,α是第一或第二象限角,或为终边在y 轴的正半轴上,判断命题错误;(4),根据大角对大边,利用正弦定理即可判断结论正确. 【详解】对于(1),终边相同的角的同名三角函数值相等,所以比值相等,(1)正确; 对于(2),终边不同的角的同名三角函数值也可能相等,如5sin sin66ππ=, 所以比值也可能相同,(2)错误;对于(3),若sin 0α>,则α是第一或第二象限角,或终边在y 轴的正半轴上,(3)错误;对于(4),ABC ∆中,若A B >,则a b >, 由正弦定理得2sin sin a bR A B==, 2sin 2sin R A R B ∴>,sin sin A B ∴>,(4)正确; 综上,其中正确命题的序号为(1)和(4),共2个.故选:B . 【点睛】本题主要考查了命题的真假判断,涉及三角函数的定义,角的取值和三角函数的符号,是基础题.4.设()f x 是定义域为R 的以3为周期的奇函数,且(2)0f =,则方程()0f x =在区间(6,6)-内解的个数的最小值为( ) A.15 B.13C.11D.9【答案】A【解析】根据题意,由奇函数的性质可得(0)0f =,结合函数的周期性可得f (3)0=,(3)0f -=,结合f (2)0=分析可得f (2)f =(5)(1)0f =-=,进而可得(2)(5)f f f -=-=(1)0=和f (1)f =(4)0=,(4)(1)0f f -=-=;结合奇偶性与周期性可得33()()022f f -==,进而可得99()()022f f -==,综合可得答案.【详解】根据题意,()f x 是定义在R 上的奇函数,则(0)0f =, 又由()f x 是周期为3的周期函数,则f (3)0=,(3)0f -=, 又由f (2)0=,则f (2)f =(5)(1)0f =-=, 又由函数为奇函数,则(2)(5)f f f -=-=(1)0=, 则有f (1)f =(4)0=,(4)(1)0f f -=-=,又由函数()f x 是以3为周期的奇函数,故有33()()22f f -=-且33()()22f f -=,则有33()()022f f -==,则有99()()022f f -==,综合可得:方程()0f x =在区间(6,6)-内解至少有:5-,4-,3-,2-,1-,0,1,2,3,4,5,92-,32-,32,92,共15个;故选:A . 【点睛】本题考查函数的奇偶性与周期性的综合应用,注意分析33()()022f f -==,属于基础题.二、填空题5.已知函数()f x 是幂函数,且2(4)(16)f f =,则()f x 的解析式为________ 【答案】12x【解析】设()f x x α=,根据条件建立方程求出α的值即可.【详解】设()f x x α=,2f (4)(16)f =, 2416αα∴⨯=,即1624αα=,则42α=,12α=, 即12()f x x =, 故答案为:12()f x x = 【点睛】本题主要考查幂函数解析式的求解,利用待定系数法建立方程是解决本题的关键.6.已知cos()6πα-=,则5cos()6πα+=_________ 【答案】【解析】试题分析:因为,cos()63πα-=, 所以,5cos()cos[()]cos()666πππαπαα+=--=--=。
2018-2019学年上海市上海中学高一下期中考试数学试题一、单选题1.若则在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】根据三角函数值在各个象限的正负,判断出角的终边所在的象限.【详解】由于,故角为第一、第四象限角.由于,故角为第二、第四象限角.所以角为第四象限角.故选D.【点睛】本小题主要考查三角函数值在各个象限的正负值,根据正切值和余弦值同时满足的象限得出正确选项.2.函数的部分图像如图,则可以取的一组值是A.B.C.D.【答案】C【解析】试题分析:∵,∴,,又由得.3.在△ABC中,分别为三个内角A、B、C的对边,若则△ABC的形状是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】利用正弦定理化简得:,再利用二倍角公式整理得:,解三角方程即可得解。
【详解】由正弦定理化简得:,整理得:,所以又,所以或.所以或.故选:D【点睛】本题主要考查了正弦定理及三角恒等变换,还考查了正弦的二倍角公式及三角函数的性质,属于中档题。
二、填空题4.函数的最小正周期是_________.【答案】【解析】直接由周期公式得解。
【详解】函数的最小正周期是:故填:【点睛】本题主要考查了的周期公式,属于基础题。
5.已知点P在角的终边上,则_______.【答案】0【解析】求出到原点的距离,利用三角函数定义得解。
【详解】设到原点的距离,则所以,,所以【点睛】本题主要考查了三角函数定义,考查计算能力,属于基础题。
6.已知扇形的周长为10 cm,面积为4 cm2,则扇形的圆心角α的弧度数为__________.【答案】【解析】由题意或,则圆心角是,应填答案。
7.在△ABC中,若则△ABC为_______(填“锐角”或直角”或“钝角”)三角形.【答案】钝角【解析】整理得,利用可得,问题得解。
【详解】因为,所以,又,所以,所以所以为钝角,故填:钝角【点睛】本题主要考查了三角恒等变换及转化思想,属于基础题。
2018-2019学年上海市闵行区七宝中学高一下学期期中考试数学试卷一. 填空题1. 函数12sin(4)y x =-的最小正周期是 【答案】:2π 【解析】:242T ππ== 2. 函数cos2y x =的对称轴方程是 【答案】2k x π=,k ∈Z 【解析】:2x k π=,k ∈Z3. 在平面直角坐标系中,已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直 线3y x =上,则sin2θ= 【答案】35【解析】:sin 22sin cos θθθ= 4. 若锐角α、β满足3cos 5α=,5cos()13αβ+=-,则cos β= 【答案】3365【解析】:()cos cos cos sin sin αβαβαβ+=- 5. 函数2sin(2)3y x π=-的单调递减区间为【答案】511[,]1212k k ππππ++,k ∈Z 【解析】:22,2,322x k k k Z πππππ⎡⎤-∈-++∈⎢⎥⎣⎦6. 已知2sin 5x =-(32x ππ<<),则x = (用反正弦表示) 【答案】2arcsin5π+ 【解析】:,02x ππ⎛⎫-∈-⎪⎝⎭7. 方程sin x x =的解是 【答案】7212x k ππ=+或13212x k ππ=+,k ∈Z 【解析】:先用辅助角公式8. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,且224()S a b c =+-, 则cos C =【答案】0【解析】:1sin 2S ab C =,222cos 2a b c C ab +-=9. 若将函数()cos()8f x x πω=-(0ω>)的图像向左平移12π个单位后,所得图像对应的 函数为偶函数,则ω的最小值是 【答案】32【解析】:()()f x f x -= 10. 已知函数sin(2)cos(2)sin(2)cos(2)()||22x x x x f x ππππ+-=+,对任意x ∈R ,都有不等式12()()()f x f x f x ≤≤恒成立,则21||x x -的最小值为 【答案】38【解析】:比较sin(2)cos(2)x x ππ和的大小 11. 已知函数1sin()()20192019x xx f x π-=+(x ∈R ),下列命题:① 函数()f x 是奇函数;② 函数()f x 在区间[2,2]ππ-上共有13个零点; ③ 函数()f x 在区间(0,1)上单调递增; ④ 函数()f x 的图像是轴对称图形.其中真命题有 (填所有真命题的序号) 【答案】②④ 【解析】()()112f x f x x -=∴=为()f x 的对称轴,故①错④对; ()()0,sin 0,,.f x x x k k Z π=∴=∴=∈所以区间[2,2]ππ-有654321,0,1,2,3,4,5,6------,,,,,共计13个零点,故②对;()()()01,f f f x =∴在区间(0,1)不可能单调,故③错。
上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__ 【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x <a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当 n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项, f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明. 【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。
七宝中学高一期中数学试卷2019.04一. 填空题1. 函数12sin(4)y x =-的最小正周期是2. 函数cos2y x =的对称轴方程是3. 在平面直角坐标系中,已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直 线3y x =上,则sin2θ=4. 若锐角α、β满足3cos 5α=,5cos()13αβ+=-,则cos β= 5. 函数2sin(2)3y x π=-的单调递减区间为6. 已知2sin 5x =-(32x ππ<<),则x = (用反正弦表示)7. 方程sin x x =的解是8. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,且224()S a b c =+-, 则cos C = 9. 若将函数()cos()8f x x πω=-(0ω>)的图像向左平移12π个单位后,所得图像对应的 函数为偶函数,则ω的最小值是 10. 已知函数sin(2)cos(2)sin(2)cos(2)()||22x x x x f x ππππ+-=+,对任意x ∈R ,都有不等式12()()()f x f x f x ≤≤恒成立,则21||x x -的最小值为 11. 已知函数1sin()()20192019x xx f x π-=+(x ∈R ),下列命题:① 函数()f x 是奇函数;② 函数()f x 在区间[2,2]ππ-上共有13个零点; ③ 函数()f x 在区间(0,1)上单调递增; ④ 函数()f x 的图像是轴对称图形.其中真命题有 (填所有真命题的序号) 12. 已知k 是正整数,且12019k ≤≤,则满足方程sin1sin2sin sin1sin2sin k k ︒+︒+⋅⋅⋅+︒=︒⋅︒⋅⋅⋅︒的k 有 个二. 选择题13. “[,]22x ππ∈-”是“sin(arcsin )x x =”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分条件又非必要条件 14. 将函数sin()12y x π=-图像上的点(,)4P t π向左平移s (0s >)个单位,得到点P ',若 P '位于函数sin 2y x =的图像上,则( )A. 12t =,s 的最小值为6πB. t =,s 的最小值为6πC. 12t =,s 的最小值为12πD. 2t =,s 的最小值为12π15. 若方程212cos sin 0x x a --+=有实数解,则实数a 的取值范围( ) A. 9(,]8-∞ B. 9[2,]8- C. 9[0,]8 D. 9[1,]8- 16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥于D ,OE AC ⊥于E , OF AB ⊥于F ,则::OD OE OF 等于( )A. ::a b cB. cos :cos :cos A B CC. sin :sin :sin A B CD. 111::a b c三. 解答题17. 已知7cos(23)25θπ-=,且θ是第四象限角; (1)求cos θ和sin θ的值;(2)求3cos()sin()22tan [cos()1]tan()cos()ππθθθπθπθθ--++---的值.18. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知2a b -=,4c =,sin 2sin A B =. (1)求△ABC 的面积S ;(2)求sin(2)A B -的值.19. 已知函数()2sin 2f x x x =-. (1)求()y f x =的最小正周期和对称中心;(2)将()f x 的图像向左移α(0α>)个单位得函数()y g x =的图像,若(0,)2πα∈,()y g x =的一条对称轴为12x π=,求()y g x =,[0,]2x π∈的值域.20. 如题所示:扇形ABC 是一块半径为2千米,圆心角为60°的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道PQ 、QR 、RP ,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,直线PQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、QR 每年能产生的经济效益分别为每千米300万元,200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)21. 给出集合{()|(2)(1)(),}M f x f x f x f x x =+=+-∈R . (1)若()sin3xg x π=,求证:函数()g x M ∈;(2)由(1)可知,()sin3xg x π=是周期函数且是奇函数,于是张三同学得出两个命题:命题甲:集合M 中的元素都是周期函数;命题乙:集合M 中的元素都是奇函数,请对此给 出判断,如果正确,请证明;如果不正确,请举出反例;(3)设P 为常数,且0P ≠,x ∈R ,求()sin h x px M =∈的充要条件并给出证明.参考答案一. 填空题 1.2π2. 2k x π=,k ∈Z3. 354. 33655. 511[,]1212k k ππππ++,k ∈Z6. 2arcsin 3π+7. 7212x k ππ=+或13212x k ππ=+,k ∈Z 8. 0 9. 3210. 38 11.②④ 12. 11二. 选择题13. B 14. A 15. B 16. B三. 解答题 17.(1)4cos 5θ=,3sin 5θ=-;(2)38.18.(1;(2)32.19.(1)T π=,(,0)122k ππ+,k ∈Z ;(2)[-.20.(1)2+;(2)1222万元.21.(1)略;(2)甲真命题,周期为6,乙假命题,如cos3xy π=;(3)略.。
2018-2019学年上海市闵行区七宝中学高一(下)期末数学试卷一.填空题1.(3分)方程cos x=sin的解为x=.2.(3分)设{a n}为等差数列,若a1+a5+a9=π,则a2+a8=.3.(3分)求值:=.4.(3分)函数y=arccos(sin x),的值域是.5.(3分)设数列{a n}的前n项和S n,若a1=﹣1,S n=0(n∈N*),则{a n}的通项公式为.6.(3分)利用数学归纳法证明不等式“1+++…+(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了项.7.(3分)若f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,则b﹣a的最小值为.8.(3分)设数列{an}的通项公式为a n=,则(a1+a2+…+a n)=.9.(3分)已知数列{a n}中,其前n项和为S n,,则S9=10.(3分)对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.11.(3分)△ABC中,sin2A≤sin2B+sin2C﹣sin B sin C,则A的取值范围为.12.(3分)关于x的方程x2﹣4 arctan(cos x)+π•a2=0只有一个实数根,则实数a=.13.(3分)等差数列{a n}前n项和为S n,已知(a2﹣2)3+2013(a2﹣2)=sin,(a2013﹣2)3+2013(a2013﹣2)=cos,则S2014=.14.(3分)数列{a n}的前n项和为S n,若数列{a n}的各项按如下规律排列:,,,,,,,,,…,,,…,,…有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为T n=;④若存在正整数k,使S k<10,S k+1≥10,则a k=.其中正确的结论是.(将你认为正确的结论序号都填上)二.选择题15.(3分)已知{a n}、{b n}都是公差不为0的等差数列,且=2,S n=a1+a2+…+a n,则的值为()A.2B.﹣1C.1D.不存在16.(3分)设{a n}是公比为q(0<|q|<1)的无穷等比数列,若{a n}的前四项之和等于第五项起以后所有项之和,则数列{a2n﹣1}是()A.公比为的等比数列B.公比为的等比数列C.公比为或﹣的等比数列D.公比为或﹣的等比数列17.(3分)函数图象的一条对称轴在内,则满足此条件的一个φ值为()A.B.C.D.18.(3分)若数列{a n}的前n项和为S n,则下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)数列{S n}是递增数列的充要条件是数列{a n}的各项均为正数;(3)若{a n}是等差数列(公差d≠0),则S1•S2…S k=0的充要条件是a1•a2…a k=0.(4)若{a n}是等比数列,则S1•S2…S k=0(k≥2,k∈N)的充要条件是a n+a n+1=0.其中,正确命题的个数是()A.0个B.1个C.2个D.3个三.解答题19.已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A(a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n+1>b n?若存在,求出λ的值,若不存在,请说明理由.20.已知函数f(x)=2sin x cos x+3sin2x+cos2x﹣2,x∈R;(1)求函数f(x)在(0,π)上的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=.,c=2,求△ABC的面积S△ABC的值;21.已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.22.已知数列{a n}满足:a1=1,a n+1=,b n=a2n﹣2;(1)求a2、a3、a4;(2)求证:数列{b n}为等比数列,并求其通项公式;(3)求和T n=a2+a4+…+a2n;23.已知{a n},{b n}为两非零有理数列(即对任意的i∈N*,a i,b i均为有理数),{d n}为一无理数列(即对任意的i∈N*,d i为无理数).(1)已知b n=﹣2a n,并且(a n+b n d n﹣a n d n2)(1+d n2)=0对任意的n∈N*恒成立,试求{d n}的通项公式.(2)若{d n3}为有理数列,试证明:对任意的n∈N*,(a n+b n d n﹣a n d n2)(1+d n2)=1恒成立的充要条件为.(3)已知sin2θ=(0<θ<),d n=,试计算b n.2018-2019学年上海市闵行区七宝中学高一(下)期末数学试卷参考答案与试题解析一.填空题1.(3分)方程cos x=sin的解为x=2k(k∈Z).【解答】解:因为方程cos x=sin=cos=cos(﹣),所以x=2kπ±(k∈z),故答案为:2kπ±(k∈z).2.(3分)设{a n}为等差数列,若a1+a5+a9=π,则a2+a8=.【解答】解:∵a1+a5+a9=π=3a5,∴a5=,∴a2+a8=2a5=,故答案为:3.(3分)求值:=.【解答】解:由题意,sin[arccos(﹣)]==.故答案为:.4.(3分)函数y=arccos(sin x),的值域是.【解答】解:当时,<sin x≤1,由于反余弦函数是定义域[﹣1,1]上的减函数,且arccos(﹣)=,arccos1=0,所以值域为故答案为:.5.(3分)设数列{a n}的前n项和S n,若a1=﹣1,S n=0(n∈N*),则{a n}的通项公式为a n=.【解答】解:n≥2时,a n=S n﹣S n﹣1=a n+1﹣,化为:a n+1=3a n.n=1时,﹣1=a1=a2,解得a2=﹣2.不满足上式.∴数列{a n}在n≥2时成等比数列.∴n≥2时,a n=﹣2×3n﹣2.∴a n=.故答案为:a n=.6.(3分)利用数学归纳法证明不等式“1+++…+(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了2k项.【解答】解:由题意,n=k时,最后一项为,n=k+1时,最后一项为,∴由n=k变到n=k+1时,左边增加了2k+1﹣(2k+1)+1=2k,故答案为:2k.7.(3分)若f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,则b﹣a的最小值为.【解答】解:根据f(x)=2sin x﹣1=0,即sin x=,故x=2kπ+,或x=2kπ+,∵f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,∴不妨假设a=(此时,k=0),则此时b的最小值为28π+,(此时,k=14),∴b﹣a的最小值为28π+﹣=,故答案为:π8.(3分)设数列{an}的通项公式为a n=,则(a1+a2+…+a n)=.【解答】解:数列{a n}的通项公式为a n=,则a1+a2+…+a n=1+2+3+=6+,则(a 1+a2+…+a n)=[6+]=.故答案为:.9.(3分)已知数列{a n}中,其前n项和为S n,,则S9=377【解答】解:,则S9=(1+4+16+64+256)+(3+7+11+15)=+36=341+36=377.故答案为:377.10.(3分)对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.【解答】解:∵∴a1+2a2+…+na n=∵∴a1+2a2+…+na n=①∴a1+2a2+…+(n﹣1)a n﹣1=②①﹣②得﹣=∴故答案为:11.(3分)△ABC中,sin2A≤sin2B+sin2C﹣sin B sin C,则A的取值范围为(0,60°].【解答】解:利用正弦定理化简sin2A≤sin2B+sin2C﹣sin B sin C得:a2≤b2+c2﹣bc,变形得:b2+c2﹣a2≥bc,∴cos A=≥=,又A为三角形的内角,则A的取值范围是(0,60°].故答案为:(0,60°]12.(3分)关于x的方程x2﹣4 arctan(cos x)+π•a2=0只有一个实数根,则实数a=±1.【解答】解:设f(x)=x2﹣4arctan(cos x)+π•a2,则f(﹣x)=(﹣x)2﹣4arctan(cos (﹣x))+π•a2=x2﹣4arctan(cos x)+π•a2=f(x)∴f(x)为偶函数,其图象关于y轴对称,又依题意f(x)只有一个零点,故此零点只能是x=0,所以0﹣4arctan(cos0)+π•a2=0,∴﹣4arctan1+π•a2=0,∴﹣4×+π•a2=0,∴a2=1,∴a=±1,故答案为:±113.(3分)等差数列{a n}前n项和为S n,已知(a2﹣2)3+2013(a2﹣2)=sin,(a2013﹣2)3+2013(a2013﹣2)=cos,则S2014=4028.【解答】解:(a2﹣2)3+2013(a2﹣2)=sin=,①(a2013﹣2)3+2013(a2013﹣2)=cos=﹣,②①+②得,(a2﹣2)3+2013(a2﹣2)+(a2013﹣2)3+2013(a2013﹣2)=0,即(a2﹣2+a2013﹣2)[(a2﹣2)2﹣(a2﹣2)(a2013﹣2)+(a2013﹣2)2]+2013(a2﹣2+a2013﹣2)=0,∴a2﹣2+a2013﹣2=0,即a2+a2013=4,∴S2014==1007×(a2+a2013)=4028,故答案为:4028.14.(3分)数列{a n}的前n项和为S n,若数列{a n}的各项按如下规律排列:,,,,,,,,,…,,,…,,…有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为T n=;④若存在正整数k,使S k<10,S k+1≥10,则a k=.其中正确的结论是①③④.(将你认为正确的结论序号都填上)【解答】解:①前24项构成的数列是:,,,,,,,,,,,,…,,,,∴a24=,故①正确;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是,1,,2,…,由等差数列定义=(常数)所以数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差数列,故②不正确.③∵数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差数列,所以由等差数列前n项和公式可知:Tn=,故③正确;④由③知S k<10,S k+1≥10,即:,,∴k=7,a k=.故④正确.故答案为:①③④.二.选择题15.(3分)已知{a n}、{b n}都是公差不为0的等差数列,且=2,S n=a1+a2+…+a n,则的值为()A.2B.﹣1C.1D.不存在【解答】解:因为{a n}和{b n}都是公差不为零的等差数列,所以设b n=b1+(n﹣1)d1a n=a1+(n﹣1)d2故==2,可得d1=2d2又因为a1+a2+…+a n=na1+和b2n=b1+(2n﹣1)d1代入则=(2×)==1.故选:C.16.(3分)设{a n}是公比为q(0<|q|<1)的无穷等比数列,若{a n}的前四项之和等于第五项起以后所有项之和,则数列{a2n﹣1}是()A.公比为的等比数列B.公比为的等比数列C.公比为或﹣的等比数列D.公比为或﹣的等比数列【解答】解:根据题意,若{a n}的前四项之和等于第五项起以后所有项之和,则S n=2S4,又由{a n}是公比为q(0<|q|<1)的无穷等比数列,则=2,变形可得q4=,则q=±,数列{a2n﹣1}为{a n}的奇数项组成的数列,则数列{a2n﹣1}为公比为q2=的等比数列;故选:B.17.(3分)函数图象的一条对称轴在内,则满足此条件的一个φ值为()A.B.C.D.【解答】解:函数图象的对称轴方程为:x=k∈Z,函数图象的一条对称轴在内,所以当k=0 时,φ=故选:A.18.(3分)若数列{a n}的前n项和为S n,则下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)数列{S n}是递增数列的充要条件是数列{a n}的各项均为正数;(3)若{a n}是等差数列(公差d≠0),则S1•S2…S k=0的充要条件是a1•a2…a k=0.(4)若{a n}是等比数列,则S1•S2…S k=0(k≥2,k∈N)的充要条件是a n+a n+1=0.其中,正确命题的个数是()A.0个B.1个C.2个D.3个【解答】解:数列{a n}的前n项和为S n,故S n=a1+a2+a3+…+a n,若数列{a n}是递增数列,则数列{S n}不一定是递增数列,如当a n<0 时,数列{S n}是递减数列,故(1)不正确.由数列{S n}是递增数列,不能推出数列{a n}的各项均为正数,如数列:0,1,2,3,…,满足{S n}是递增数列,但不满足数列{a n}的各项均为正数,故(2)不正确.若{a n}是等差数列(公差d≠0),则由S1•S2…S k=0不能推出a1•a2…a k=0,例如数列:﹣3,﹣1,1,3,满足S4=0,但a1•a2•a3•a4≠0,故(3)不正确.若{a n}是等比数列,则由S1•S2…S k=0(k≥2,k∈N)可得数列的{a n}公比为﹣1,故有a n+a n+1=0.由a n+a n+1=0可得数列的{a n}公比为﹣1,可得S1•S2…S k=0(k≥2,k∈N),故(4)正确.故选:B.三.解答题19.已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A(a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n+1>b n?若存在,求出λ的值,若不存在,请说明理由.【解答】解:(1)设f(x)=0,x2+(2﹣n)x﹣2n=0得x1=﹣2,x2=n.所以a n=n(4分)(2)b n=3n+(﹣1)n﹣1•λ•2n,若存在λ≠0,满足b n+1>b n恒成立即:3n+1+(﹣1)n•λ•2n+1>3n+(﹣1)n﹣1•λ•2n,(6分)恒成立(8分)当n为奇数时,⇒λ<1(10分)当n为偶数时,⇒(12分)所以(13分),故:λ=﹣1(14分)20.已知函数f(x)=2sin x cos x+3sin2x+cos2x﹣2,x∈R;(1)求函数f(x)在(0,π)上的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=.,c=2,求△ABC的面积S△ABC的值;【解答】解:(1)因为f(x)=2sin x cos x+3sin2x+cos2x﹣2=sin2x+2sin2x﹣1=sin2x﹣cos2x=2sin(2x﹣),由﹣+2kπ≤+2kπ,k∈Z,得﹣+kπ≤x≤+kπ,k∈Z,又x∈(0,π),所以0<x≤或≤x<π,所以函数f(x)在(0,π)上的递增区间为:(0,],[,π),(2)因为f(A)=2,∴2sin(2A﹣)=2,∴sin(2A﹣)=1,∴2A﹣=+2kπ,k∈Z,∴A=+kπ,k∈Z,∵0<A<π,∴A=.∴B=,在三角形ABC中由正弦定理得=,∴a===,S△ABC=ac sin B=×2×sin=.21.已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.【解答】解:(1)f(x)=2sin x,F(x)=f(x)+f(x+)=2sin x+2sin(x+)=2(sin x+cos x),F()=2,F(﹣)=0,F(﹣)≠F(),F(﹣)≠﹣F(),所以,F(x)既不是奇函数,也不是偶函数.(2)f(x)=2sin2x,将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x+)+1的图象,所以g(x)=2sin2(x+)+1.令g(x)=0,得x=kπ+或x=kπ+(k∈z),因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.22.已知数列{a n}满足:a1=1,a n+1=,b n=a2n﹣2;(1)求a2、a3、a4;(2)求证:数列{b n}为等比数列,并求其通项公式;(3)求和T n=a2+a4+…+a2n;【解答】解:(1)a1=1,a n+1=,可得a2=1+a1=1+=;a3=a2﹣4=﹣,a4=3+a3=;(2)证明:b n=a2n﹣2=a2n﹣1+2n﹣1﹣2=(a2n﹣2﹣4n+4)+2n﹣1﹣2=(a2n﹣2﹣2)=b n﹣1,可得数列{b n}为公比为,首项为﹣等比数列,即b n=﹣()n;(3)由(2)可得a2n=2﹣()n,T n=a2+a4+…+a2n=2n﹣(++…+)=2n﹣=2n﹣1+()n.23.已知{a n},{b n}为两非零有理数列(即对任意的i∈N*,a i,b i均为有理数),{d n}为一无理数列(即对任意的i∈N*,d i为无理数).(1)已知b n=﹣2a n,并且(a n+b n d n﹣a n d n2)(1+d n2)=0对任意的n∈N*恒成立,试求{d n}的通项公式.(2)若{d n3}为有理数列,试证明:对任意的n∈N*,(a n+b n d n﹣a n d n2)(1+d n2)=1恒成立的充要条件为.(3)已知sin2θ=(0<θ<),d n=,试计算b n.【解答】解:(1)∵,∴,即,∴,∵a n≠0,∴,∴.(2)∵,∴,∴,∵{a n},{b n},为有理数列,{d n}为无理数列,∴,∴,以上每一步可逆.(3),∴25tanθ=12+12tan2θ.∵,∴,当n=2k(k∈N*)时,∴当n=2k﹣1(k∈N*)时,∴,∴为有理数列,∵,∴,∴,∵{a n},{b n},为有理数列,{d n}为无理数列,∴,∴,∴当n=2k(k∈N*)时,∴当n=2k﹣1(k∈N*)时,∴,∴.。
2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷一.填空题1.函数f(x)=的定义域为.2.已知集合,B={y|y=x2},则A∩B=3.不等式>2的解集是4.“若a>1且b>2,则a+b>3”的否命题是5.已知﹣1<a<b<1,则a﹣b的取值范围是6.若A={x||x|<a},B={x|x<﹣2},且A∩B=∅,则a的取值范围是7.若不等式(a﹣2)x2+2(a﹣2)x﹣4<0的解集为R,则实数a的取值范围是.8.若函数f(x﹣2)=x2﹣x+1,则f(2x+1)=9.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为.10.已知函数,g(x)=x2﹣3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,则a的取值范围是11.当x∈R+时,可以得到不等式,,…,由此可以推广为,则P=12.已知数集A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i、j(1≤i≤j≤n),a j+a i与a j﹣a i两数中至少有一个属于集合A,现给出以下四个命题:①数集{0,1,3,5,7}具有性质P;②数集{0,2,4,6,8}具有性质P;③若数集A具有性质P,则a1=0;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,则a1+a3=2a2;其中真命题有(填写序号)二.选择题13.如图,I为全集,M、P、S是I的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S14.下列各组函数中,表示同一函数的是()A.f(x)=x与B.与C.与D.f(x)=2x(x∈{1})与g(x)=2x2(x∈{1})15.已知a,b∈R+,那么“a2+b2<1”是“ab+1>a+b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油三.解答题17.设集合A={x|﹣1≤x≤2},集合B={x|2m<x<1}.(1)若“x∈A”是“x∈B”的必要条件,求实数m的取值范围;(2)若B∩∁R A中只有一个整数,求实数m的取值范围.18.练习册第21页的题“a>0,b>0,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当a=b时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若a>0,b>0,c>0,则,并指出等号成立的条件;(2)试将上述不等式推广到n(n≥2)个正数a1、a2、…、a n﹣1、a n的情形,并证明.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值y万元与技术改造投入x万元之间的关系满足:①y与10﹣x和x的乘积成正比;②当x=5时,y=100;③,其中t为常数,且.(1)设y=f(x),求出f(x)的表达式,并求出y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入的x的值.20.设数集A由实数构成,且满足:若x∈A(x≠1且x≠0),则.(1)若2∈A,试证明A中还有另外两个元素;(2)集合A是否为双元素集合,并说明理由;21.已知x>0,设a=x2+2x+1,b=x2+7x+1,c=mx(m>0,m为常数).(1)求的最小值及相应的x的值;(2)设A={x|a﹣c=0},若A∩R+=∅,求m的取值范围;(3)若对任意x>0,以、、为三边长总能构成三角形,求m的取值范围.2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷参考答案与试卷解析一.填空题1.【解答】解:由,解得0≤x≤2且x≠1.∴函数的定义域为[0,1)∪(1,2].故答案为:[0,1)∪(1,2].2.【解答】解:解1﹣x2≥0得,﹣1≤x≤1;∴A=[﹣1,1];又x2≥0;∴B=[0,+∞);∴A∩B=[0,1].故答案为:[0,1].3.【解答】解:∵,∴>0,即<0,解得:﹣<x<0,故不等式的解集是(﹣,0),故答案为:(﹣,0)4.【解答】解:命题“若a>1且b>2,则a+b>3”的否命题是“若a≤1或b≤2,则a+b≤3”,故答案为:若a≤1或b≤2,则a+b≤35.【解答】解:∵﹣1<a<1,﹣1<b<1∴﹣1<﹣b<1,∴﹣1﹣1<a﹣b<1+1∴﹣2<a﹣b<2,又a<b,∴a﹣b<0故答案为:(﹣2,0)6.【解答】解:根据题意得,A={x|﹣a<x<a};B={x|x<﹣2},且A∩B=∅,当A=∅时,a≤0;当A≠∅时,有﹣a≥﹣2,∴a≤2,所以a的取值范围为(﹣∞,2].故答案为:(﹣∞,2].7.【解答】解:由题意,a=2时,不等式为﹣4<0恒成立,满足题意,所以a=2成立;a≠2时,不等式(a﹣2)x2+2(a﹣2)x﹣4<0的解集为R,等价于,解得﹣2<a<2;综上得到a的范围是(﹣2,2];故答案为:(﹣2,2].8.【解答】解:令x﹣2=t,则x=t+2,∴f(t)=(t+2)2﹣(t+2)+1=t2+3t+3,∴f(2x+1)=(2x+1)2+3(2x+1)+3=4x2+10x+7,故答案为:4x2+10x+7.9.【解答】解:∵x>a,∴x﹣a>0,∴2x+=2(x﹣a)++2a≥2+2a=2a+4,即2a+4≥7,所以a≥,即a的最小值为当且仅当x=a+1时取等号.故答案为.10.【解答】解:由f(x)>1,得>1,化简整理得<0,解得﹣2<x<﹣1或2<x<3,即f(x)>1的解集为A={x|﹣2<x<﹣1或2<x<3}.由g(x)<0得x2﹣3ax+2a2<0,即(x﹣a)(x﹣2a)<0,g(x)<0的解集为:B={x|2a<x<a,a<0},由题意A∩B=∅,因此a≤﹣2或﹣1≤2a<0,故a的取值范围是{a|a≤﹣2或﹣≤a<0},故答案为:(﹣∞,﹣2]∪[﹣,0).11.【解答】解:∵x∈R+时可得到不等式,,…,∴在p位置出现的数恰好是分母的指数的指数次方∴p=n n故答案为:n n12.【解答】解:①数集A={0,1,3,5,7},由于7﹣5=2,7+5=12,2,12∉A,故不具有性质P;②数集A={0,2,4,6,8},由于0,2,4,6,8构成等差数列,首项为0,公差为2,具有性质P;③若数集A具有性质P,可令i=j可得2a i与0两数中至少有一个属于集合A,当i=n时,2a n∉A,即有0∈A则a1=0正确;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,由③可得a1=0,令j=n,i>1,则∵“a i+a j与a j﹣a i两数中至少有一个属于A”,∴a i+a j不属于A,∴a n﹣a i属于A.令i=n﹣1,那么a n﹣a n﹣1是集合A中某项,a1不行,是0,a2可以.如果是a3或者a4,那么可知a n﹣a3=a n﹣1,那么a n﹣a2>a n﹣a3=a n﹣1,只能是等于a n了,矛盾.所以令i=n﹣1可以得到a n=a2+a n﹣1,即有a3=2a2,则a1+a3=2a2,故④正确.故答案为:②③④.二.选择题13.【解答】解:图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集即是∁I S的子集则阴影部分所表示的集合是(M∩P)∩∁I S故选:C.14.【解答】解:A.f(x)=x的定义域为R,g(x)=的定义域为[0,+∞),定义域不同,不是同一函数;B.的定义域为{x|x≤﹣2,或x≥2},的定义域为{x|x≥2},定义域不同,不是同一函数;C.,f(0)=﹣1,,g(0)=1;(0,﹣1)是f(x)图象上的点,不在g(x)的图象上,不是同一函数;D.f(x)=2x(x∈{1})表示点(1,2),g(x)=2x2(x∈{1})表示点(1,2),函数图象相同,是同一函数.故选:D.15.【解答】解:由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.16.【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h 时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确;故选:D.三.解答题17.【解答】解:(1)因为“x∈A”是“x∈B”的必要条件,所以“x∈B“是“x∈A“的充分条件,所以B⊆A,所以或2m≥1,解得:﹣≤m或m≥,所以m;(2)因为A=[﹣1,2],所以∁R A=(﹣∞,﹣1)∪(2,+∞),又B∩∁R A中只有一个整数,所以这个整数必定是﹣2,故2m∈[﹣3,﹣2),所以m∈[﹣,﹣1)18.【解答】证明:(1)∵,∴,当且仅当a=b=c时等号成立;(2)∵+a2++a3+…++a1≥2a1+2a2+…+2a n﹣1+2a n,∴.当且仅当a1=a2=…=a n﹣1=a n时取等号19.【解答】解:(1)由题意可设y=k(10﹣x)x,∵当x=5时,y=100,∴k(10﹣5)×5=100,∴k=4,∴y=f(x)=4x(10﹣x),∵,t∈[,1],∴x∈[0,],(2)由(1)可知y=4x(10﹣x)=﹣4(x﹣5)2+100,∵x∈[0,],t∈[,1],令f(t)=,则f(t)=10•=10()=10(1﹣),显然f(t)在[,1]上是单调递增,∵f()=5,∴≥5,∴y=﹣4(x﹣5)2+25,x∈(0,],当x=5时,y max=25,因此售价y的最大值为25万元,此时的技术改造投入的资金为5万元20.【解答】证明:(1)∵数集A由实数构成,且满足:若x∈A(x≠1且x≠0),则.2∈A,∴=﹣1∈A,=,∈A,∴A中还有另外两个元素﹣1,.解:(2)∵x∈A,,,,,,故集合A中至少有3个元素,∴集合A不是双元素集合.21.【解答】解:(1)由已知得==(2x++9),∵x>0,∴x+≥2,∴的最小值为,当x=1时取等号;(2)A={x|a﹣c=0},即有A={x|x2+2x+1=mx},由m>0,x2+2x+1=(x+1)2≥0,可得x>0,由m=x++2≥2+2=4,当且仅当x=1时,取得等号,又A∩R+=∅,可得m<4,即m的范围是(0,4);(3)∵b>a>0,∴>>0.∴,即对x>0恒成立.∴对x>0恒成立,∵+≥+=5(x=1取得等号),∴5>,即m<25.又∵﹣=≤=1,∴>1,即m>1.综上得1<m<25.。
上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。
上海市2018-2019学年七宝中学高一上学期数学期中考试一. 填空题1.函数的定义域为________【答案】【解析】【分析】根据分母不为零以及偶次根式下被开方数非负列不等式组,解得定义域.【详解】由题意得,即定义域为【点睛】本题考查函数定义域,考查基本求解能力.2.已知集合,,则________【答案】【解析】【分析】求出集合A,B,即可得到.【详解】由题集合集合故.故答案为.【点睛】本题考查集合的交集运算,属基础题3.不等式的解集是________【答案】【解析】【详解】不等式,则故答案为.【点睛】本题主要考查分式不等式的解法,体现了转化的数学思想,属于中档题.4.“若且,则”的否命题是__________________.【答案】若或,则【解析】【分析】根据原题与否命题的关系,写出否命题即可.【详解】“若且,则”的否命题是“若或,则”.即答案为:若或,则【点睛】本题考查根据原命题写出否命题,属基础题.5.已知,则的取值范围是________【答案】【解析】【分析】作出可行域,目标函数z=a-b可化为b=a-z,经平移直线可得结论.【详解】作出所对应的可行域,即(如图阴影),目标函数z=a-b可化为b=a-z,可看作斜率为1的直线,平移直线可知,当直线经过点A(1,-1)时,z取最小值-2,当直线经过点O(0,0)时,z取最大值0,∴a-b的取值范围是,故答案为:.【点睛】本题考查线性规划,准确作图是解决问题的关键,属中档题.6.若,,且,则的取值范围是_【答案】【解析】【分析】对a进行分类讨论,根据A与B的交集为空集确定出a的范围即可.【详解】由题,,且,当时,,则;当时,,则可得故的取值范围是.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.若关于的不等式的解集是,则实数的取值范围是____【答案】【解析】略8.若函数,则________【答案】【解析】【分析】设,求出的解析式,再将代入即可.【详解】设,则则即即答案为.【点睛】本题考查函数解析式的求解,涉及换元和函数的性质,属中档题.9.若关于的不等式在上恒成立,则实数的最小值是__【答案】【解析】【分析】关于的不等式在上恒成立,即求,将不等式式配凑成基本不等的形式,利用基本不等式求最小值,进而求得的最小值.【详解】∵关于的不等式在上恒成立,∴,∵x>,∴,当且仅当,即时取等号,∴,∴,解得,,∴实数a的最小值为.故答案为.【点睛】本题考查函数的恒成立问题,以及应用基本不等式求最值.对于函数的恒成立问题,一般选用参变量分离的方法进行处理,转化成函数的最值问题.在应用基本不等式求最值的时候,要特别注意不等式取等号的条件.属于基础题.10.已知函数,(),若不存在实数使得和同时成立,则的取值范围是________【答案】【解析】【分析】通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.【详解】由f(x)>1,得>1,化简整理得,解得即的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为B={x|2a<x<a,a<0}.由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0}.即答案为.【点睛】本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.11.当时,可以得到不等式,,,由此可以推广为,则________【答案】【解析】【分析】本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值【详解】∵x∈R+时可得到不等式,∴在p位置出现的数恰好是分母的指数的指数次方即答案为.【点睛】本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向12.已知数集(,)具有性质:对任意、(),与两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集()具有性质,则;其中真命题有________(填写序号)【答案】②③④【解析】【分析】利用a i+a j与a j-a i两数中至少有一个属于A.即可判断出结论.【详解】①数集中,,故数集不具有性质;②数集满足对任意、(),与两数中至少有一个属于集合,故数集具有性质;③若数列A具有性质P,则a n+a n=2a n与a n-a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④当n=5时,取j=5,当i≥2时,a i+a5>a5,由A具有性质P,a5-a i∈A,又i=1时,a5-a1∈A,∴a5-a i∈A,i=1,2,3,4,5∵0=a1<a2<a3<a4<a5,∴a5-a1>a5-a2>a5-a3>a5-a4>a5-a5=0,则a5-a1=a5,a5-a2=a4,a5-a3=a3,从而可得a2+a4=a5,a5=2a3,故a2+a4=2a3,即答案为②③④.【点睛】本题考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.二. 选择题13.如图,为全集,、、是的三个子集,则阴影部分所表示的集合是()A. B.C. D.【答案】C【解析】【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出即可.【详解】图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集,即是C U S的子集则阴影部分所表示的集合是(M∩P)∩(∁U S).故选:C.【点睛】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.14.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. ()与()【答案】D【解析】【分析】若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.【详解】对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数;对于B选项的定义域为的定义域为∴不是同一函数;对于C选项,f(0)=-1,g(0)=1,f(0)≠g(0),∴不是同一函数.对于B选项,f(x)的定义域为,g(x)的定义域为,且且两函数解析式化简后为同一解析式,∴是同一函数.故选D.【点睛】本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属于基础题.15.已知,则“”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.【详解】由题意可知:a,b∈R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.【点睛】本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.16. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】试题分析:对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.考点:1、数学建模能力;2、阅读能力及化归思想.三. 解答题17.设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由“”是“”的必要条件,得B⊆A,然后分,m>三种情况讨论求解实数m 的取值范围;(2)把中只有一个整数,分,m>时三种情况借助于两集合端点值间的关系列不等式求解实数m的取值范围.【详解】(1)若“”是“”,则B⊆A,∵A={x|-1≤x≤2},①当时,B={x|2m<x<1},此时-1≤2m<1⇒;②当时,B=∅,有B⊆A成立;③当时B=∅,有B⊆A成立;综上所述,所求m的取值范围是.(2)∵A={x|-1≤x≤2},∴∁R A={x|x<-1或x>2},①当时,B={x|2m<x<1},若(∁R A)∩B中只有一个整数,则-3≤2m<-2,得②当m当时,不符合题意;③当时,不符合题意;综上知,m的取值范围是.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.18.练习册第21页的题“,,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若,,,则,并指出等号成立的条件;(2)试将上述不等式推广到()个正数、、、、的情形,并证明.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据题设例题证明过程,类比可得证明;(2)根据题设例题证明过程,类比可得证明;【详解】(1),∴,当且仅当时等号成立;(2)故.当且仅当时等号成立;【点睛】本题考查基本不等式的运用,考查不等式的证明,考查求函数的最值,属于中档题.19.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 与和的乘积成正比;② 当时,;③,其中为常数,且.(1)设,求出的表达式,并求出的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入的的值.【答案】(1),;(2).【解析】【分析】(1)列出f(x)的表达式,求函数的定义域时,要注意条件③的限制性.(2)本题为含参数的二次函数在特定区间上求最值,结合二次函数的图象及单调性解决,注意分类讨论.【详解】(1)设,当时,可得k=4,∴∴定义域为,t为常数,;(2)因为定义域中函数在上单调递减,故.【点睛】本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,牵扯字母太多,容易出错.20.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.【答案】(1) ,;(2)见解析;(3).【解析】【分析】(1)根据集合的互异性进行求解,注意条件2∈A,把2代入进行验证;(2)可以假设A为单元素集合,求出其等价条件,从而进行判断;(3)先求出集合A中元素的个数,=1,求出x的值,从而求出集合A.【详解】(1)证明:若x∈A,则又∵2∈A,∴∵-1∈A,∴∴A中另外两个元素为,;(2),,,且,,,故集合中至少有3个元素,∴不是双元素集合;(3)由,,可得,所有元素积为1,∴,、、,∴.【点睛】本题考查了元素和集合的关系,考查集合的含义,分类讨论思想,是一道中档题.21.已知,设,,(,为常数).(1)求的最小值及相应的的值;(2)设,若,求的取值范围;(3)若对任意,以、、为三边长总能构成三角形,求的取值范围.【答案】(1),;(2);(3).【解析】【分析】(1)代入利用基本不等式即可得出;(2),若,即方程没有实根或没有正实根,由此可求的取值范围;(3)由于b>a>0,可得>>0.由三角形的三边的大小关系可得对x>0恒成立,结合即可得出.【详解】(1)。
2018-2019学年上海市闵行区七宝中学高一(下)期末数学试卷.填空题公式为b -a 的最小值为2 2 211. (3 分)△ ABC 中,sin A < sin B+sin C - sinBsinC ,贝U A 的取值范围为2 212.( 3分)关于x 的方程x - 4 arctan ( cosx ) + n ?a = 0只有一个实数根,则实数a =3 13. (3 分)等差数列{a n }前 n 项和为 S n ,已知(a 2- 2) +2013 (a 2- 2) = sin3-2) +2013 (a 2013 - 2)= cos14. ( 3分)数列{a n }的前n 项和为S n,若数列{a n }的各项按如下规律排列: 1. (3 分)方程cosx = sin —的解为x =2. (3 分)设{a n }为等差数列,若 a i +a 5+a 9= n 贝V a 2+a 8=3. (3 分) 求值:4. (3 分)函数 y = arccos (sinx ), 5. (3 分)设数列{a n }的前n 项和Si ,若a i =- 1, S n 0 ( n N *),则{a n }的通项 6. (3 分) 利用数学归纳法证明不等式“ 1 >-(n > 2, n N * )” 的过程 中,由 “ n = k ”变项7. (3 分) 若 f (x )= 2sinx - 1 在区间[a , b] (a , b R 且a v b )上至少含有 30个零点,则 9. (3分)设数列{a n }的通项公式为a n ' (a 〔+a 2+ …+a n )= (3分)已知数列{a n }中,其前n 项和为S n , 为正奇数 ,为正偶数 ,则S 9 = 10. (3分)对于正项数列{a n },定义 为{a n }的“光阴”值,现知 某数列的“光阴”值为 ,则数列{a n }的通项公式为 ,(a 2013,则 S2Q 14=,…有如下运算和结论:, , ,,第1页(共14页)①a24②数列a i, a2+a3, a4+a5+a6, a7+a8+a9+a io,…是等比数列;③数列a i, a2+a3, a4+a5+a6, a7+a8+a9+a io,…的前n 项和为T n ------------------- ;④若存在正整数k,使S k V 10, S k+i> 10,则a k其中正确的结论是________ .(将你认为正确的结论序号都填上)二.选择题15. (3分)已知{a n}、{b n}都是公差不为0的等差数列,且一2, S n= a i+a2+…+a n,贝U ---------- 的值为()A . 2B . - 1 C. 1 D .不存在16. (3分)设{a n}是公比为q (0V |q|v 1 )的无穷等比数列,若{a n}的前四项之和等于第五项起以后所有项之和,则数列{a2n-1}是()A .公比为-的等比数列B .公比为一的等比数列C .公比为一或一的等比数列D .公比为r或=的等比数列17. (3分)函数V V-图象的一条对称轴在 -,-内,则满足此条件的一个$值为()A . —B . - C. 一D.—18. (3分)若数列{a n}的前n项和为S n,则下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)数列{ $}是递增数列的充要条件是数列{a n}的各项均为正数;(3 )若{a n}是等差数列(公差d M 0),贝y S1?S2…S<= 0的充要条件是a1?a2…a k= 0.(4)若{a n}是等比数列,则S1?S2…S k= 0 (k> 2, k N)的充要条件是a n+a n+1 = 0. 其中,正确命题的个数是()A . 0个B . 1个C. 2个 D . 3个三.解答题第2页(共14页)219. 已知函数f (x )= x + (2 - n ) x - 2n 的图象与x 轴正半轴的交点为 A (a n , 0) , n = 1 , 2, 3,…(1)求数列{a n }的通项公式;正整数n ,都有b n+i > b n ?若存在,求出 入的值,若不存在,请说明理由.2 220.已知函数 f (x )= 2 sinxcosx+3sin x+cos x - 2, x R ;(1)求函数f (乂)在(0, n)上的单调递增区间;(2)在厶ABC 中,内角A 、B 、C 所对边的长分别是 a , b , c ,若f (A )=2,求△ ABC 的面积S MBC 的值;21.已知函数f (x )= 2sin (3X ),其中常数 3>0.(H) 令3 = 2,将函数y = f (x )的图象向左平移一个单位,再向上平移 到函数y = g (x )的图象.对任意 a R ,求y = g (x )在区间[a , a+10 n 上的零点个数的所有可能.(1 )求 a 2、a 3、a 4;(2) 求证:数列{b n }为等比数列,并求其通项公式;(3) 求禾口 T n = a 2+a 4+ …+a 2n ;23.已知{a n } , {b n }为两非零有理数列(即对任意的 i N , a i , b i 均为有理数),{d n }为一无 理数列(即对任意的i N * , d i 为无理数).2 2 *(1)已知b n =- 2a n ,并且(a n +b n d n - a n d n ) (1+d n )= 0对任意的n N 恒成立,试求 {d n }的通项公式.3 * 2 2(2 )若{d n }为有理数列,试证明:对任意的 n N , ( a n +b n d n - a n d n ) (1 + d n )= 1恒成 立的充要条件为(2 )令为正整数),问是否存在非零整数 入,使得对任意 (I)令3= 1,判断函数-的奇偶性,并说明理由.1个单位,得 22.已知数列{a n }满足:a i = 1, a n+i,为正奇数,b n = a 2n - 2; ,为正偶数,试计算b n.(3) 已知sin2 B — (0v 0< —), d n第3页(共14页)。
2018-2019学年上海市七宝中学高一下学期期中数学试题一、单选题 1.“22x ππ⎡⎥∈-⎤⎢⎣⎦,”是“()sin arcsin x x =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分条件又非必要条件【答案】B【解析】根据充分条件和必要条件的定义分别进行判断即可. 【详解】arcsin y x =的定义域为[1-,1], sin(arcsin )[1x x x ∴=⇔∈-,1],[2x π∈-,]2π推不出[1x ∈-,1],[1x ∈-,1][2x π⇒∈-,]2π,∴ “[2x π∈-,]2π是“sin(arcsin)x =”的必要非充分条件.故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,考查反三角函数,根据充分条件和必要条件的定义是解决本题的关键.2.将函数πsin 12y x ⎛⎫=- ⎪⎝⎭图象上的点π,4P t ⎛⎫⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数sin2y x =的图象上,则A .12t s =,的最小值为π6B .2t s =的最小值为π6C .12t s =,的最小值为π12D .2t s=的最小值为π12 【答案】A 【解析】【详解】 由题意得ππ1sin 4122t ⎛⎫=-=⎪⎝⎭,排除B,D;平移后π1,42P s ⎛⎫- ⎪⎝⎭',而P '位于函数sin2y x =的图象上,所以1πsin2cos224s s ⎛⎫=-= ⎪⎝⎭,而0s >,则s 的最小值为π6,排除C.故选A.3.若方程212cos sin 0x x a --+=有实数解,则实数a 的取值范围是( )A.98⎛⎤-∞ ⎥⎝⎦, B.928⎡⎤-⎢⎥⎣⎦,C.908⎡⎤⎢⎥⎣⎦, D.918⎡⎤-⎢⎥⎣⎦, 【答案】B【解析】把方程化为22cos sin 1a x x =+-,利用三角函数即可求出a 的取值范围. 【详解】方程212cos sin 0x x a --+=可化为22cos sin 1a x x =+-,则22192sin sin 12(sin )48a x x x =-++=--+,由sin [1x ∈-,1],∴21(sin )[04x -∈,25]16, 2192(sin )[248x ∴--+∈-,9]8,即实数a 的取值范围是[2-,9]8.故选:B . 【点睛】本题主要考查了三角函数的性质与应用问题,是基础题.4.如图,在△ABC 中,BC=,a AC=b ,AB=c ,O 是△ABC 的外心,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,则OD:OE:OF 等于( )A.::a b cB.cos :cos :cos A B CC.sin :sin :sin A B CD.111::a b c【答案】B【解析】作出ABC ∆的外接圆,连接OA 、OB 、OC ,由垂径定理和圆周角定理可得12B AOC AOE ∠=∠=∠,同理可知A BOD ∠=∠、C AOF ∠=∠,若设O 的半径为R ,可用R 分别表示出OD 、OE 、OF ,进而可得到它们的比例关系. 【详解】如图,连接OA 、OB 、OC ;22BOC BAC BOD ∠=∠=∠, BAC BOD ∴∠=∠;同理可得:BOF BCA ∠=∠,AOE ABC ∠=∠; 设O 的半径为R ,则:cos cos OD R BOD R A =∠=∠, cos cos OE R AOE R B =∠=∠, cos cos OF R BOF R C =∠=∠,故::cos :cos :cos OD OE OF A B C =∠∠∠, 故选:B .【点睛】此题主要考查了三角形的外接圆、圆周角定理及垂径定理的综合应用,解题的关键是能够作出已知三角形的外接圆,难度中等.二、填空题5.函数()12sin 4y x =-的最小正周期是________. 【答案】2π 【解析】根据三角函数的周期公式求解即可. 【详解】函数12sin(4)y x =-,所以函数()f x 的周期22||42T πππω===. 故答案为:2π. 【点睛】本题主要考查三角函数周期的求法,是基本知识的考查. 6.函数cos 2y x =的对称轴方程是________.【答案】,2k x k Z π=∈ 【解析】根据余弦函数cos y x =的对称轴方程x k π=,k Z ∈,运用整体法可得cos 2y x =的对称轴方程.【详解】 cos2y x =,令2x k =π,k Z ∈,则,2k x k Z π=∈, cos2y x ∴=的对称轴方程为:,2k x k Z π=∈.故答案为:,2k x k Z π=∈. 【点睛】本题考查了余弦型函数图象的对称轴的求法,考查了整体思想,属基础题.7.在平面直角坐标系中,已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3y x =上,则sin2θ=_______. 【答案】35【解析】利用任意角的三角函数的定义求得tan θ,再利用同角三角函数的基本关系、二倍角的正弦公式,求得sin 2θ的值. 【详解】角θ的顶点在平面直角坐标系xOy 原点O ,始边为x 轴正半轴,终边在直线3y x =上,tan 3θ∴=2222sin cos 2tan 63sin 21105sin cos tan θθθθθθθ∴====++,故答案为:35. 【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、二倍角的正弦公式,属于基础题.8.若锐角αβ、满足()35cos cos 513ααβ=+=-,,则cos β=______. 【答案】3365【解析】由已知利用同角三角函数基本关系式可求sin()αβ+,sin α的值,利用两角差的余弦公式即可计算得解. 【详解】αQ 、β为锐角,(0,)αβπ∴+∈,5cos()13αβ+=-,3cos 5α=,12sin()13αβ∴+==,4sin 5α=,5312433cos cos[()]cos()cos sin()sin ()13513565βαβααβααβα∴=+-=+++=-⨯+⨯=. 故答案为:3365. 【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题. 9.函数2sin 23y x π⎛⎫=-⎪⎝⎭的单调递减区间为________. 【答案】511,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】由题意利用正弦函数的单调性,求得该函数的单调减区间. 【详解】对于函数2sin(2)3y x π=-,令3222232k x k πππππ+-+剟,k Z ∈, 求得5111212k x k ππππ++剟, 可得它的单调递减区间为5[12k ππ+,11]12k ππ+,k Z ∈, 故答案为:5[12k ππ+,11]12k ππ+,k Z ∈. 【点睛】本题主要考查正弦函数的单调性,意在考查学生对这些知识的理解掌握水平,属于基础题.10.已知2sin 5x =-3()2x ππ<<,则x =________(用反正弦表示) 【答案】2arcsin 5π+【解析】【详解】 由于2arcsin5表示[]22ππ-,上正弦值等于25的一个锐角,由2sin 5x =- 3()2x ππ<<,则2arcsin 5x π=+,故答案为2arcsin 5π+.点睛:本题考查反三角函数的运用,解题的关键理解反三角函数的定义,用正确的形式表示出符号条件的角,本题重点是理解反三角函数定义,难点是表示出符合条件的角.11.方程sin x x _______.【答案】7212x k ππ=+或132,12x k k Z ππ=+∈【解析】利用三角恒等变换化方程为sin()32x π-=,求出方程的解即可.【详解】方程sin x x =12(sin )2x x ∴=sin()3x π∴-=, 解得234x k πππ-=+或3234x k πππ-=+,k Z ∈; 即7212x k ππ=+或132,12x k k Z ππ=+∈ 故答案为:7212x k ππ=+或132,12x k k Z ππ=+∈ 【点睛】本题考查了三角函数的化简与三角方程的应用问题,意在考查学生对这些知识的理解掌握水平,是基础题.12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且224S (a b)c =+-,则cosC =______. 【答案】0【解析】由三角形面积公式和余弦定理可将224S (a b)c =+-化为2absinC 2abcosC 2ab =+,进而可求出结果.【详解】因为1S ab 2sinC =,余弦定理222c a b 2abcosC =+-,又224S (a b)c =+-,所以有2absinC 2abcosC 2ab =+,即sinC cosC 1-=C 14π⎛⎫-= ⎪⎝⎭, 因此C 244k πππ-=+或()3C 2k Z 44k πππ-=+∈,所以C 22k ππ=+或()C 2k Z k ππ=+∈,因为C 三角形内角,所以C 2π=,故cosC 0=.故答案为0 【点睛】本题主要考查解三角形,熟记余弦定理和三角形面积公式即可求出结果,属于常考题型. 13.若将函数()cos()8f x x πω=-(0>ω)的图像向左平移12π个单位后,所得图像对应的函数为偶函数,则ω的最小值是________ 【答案】32【解析】由三角函数图象的平移变换得:g()cos()128x x ωππω=+-,因为g()x 为偶函数,所以=,128k k Z ωπππ-∈,由(0)>ω,所以ω的最小值为32,得解.【详解】解答:解:将函数()cos()(0)8f x x πωω=->的图象向左平移12π个单位后,所得图象对应的函数为g()cos ()+cos(+),128128x x x ππωππωω⎡⎤=-=-⎢⎥⎣⎦因为g()x 为偶函数, 所以3=,12,1282k k Z k k Z ωπππω-∈∴=+∈, 由0>ω, 所以ω的最小值为32, 故答案为:32. 【点睛】本题考查了三角函数图象的平移变换及函数的奇偶性,属中档题.14.已知函数()()()()()sin 2cos 2sin 2cos 222x x x x f x ππππ+-=+,对任意x R ∈,都有不等式()()()12f x f x f x ≤≤恒成立,则21x x -的最小值为_________. 【答案】38【解析】先化简函数的解析式,再作出函数一个周期的图象,由三角函数的性质,确定21||x x -的最小值为相邻最小值与最大值处横坐标差的绝对值,即可得解.【详解】由22cos 2()cos 22cos 2sin x sin x xf x x sin x x ππππππ≥⎧=⎨<⎩,所以函数在一个周期的图象如图所示,因为对任意x ∈R ,都有不等式12()()()f x f x f x 剟恒成立, 即当1x x =时,函数()y f x =取最小值,当2x x =时,函数()y f x =取最大值, 则21||x x -的最小值为513848-=. 故答案为:38.【点睛】本题考查考查三角函数的图象和性质,确定21||x x -的最小值为相邻最小值与最大值处横坐标差的绝对值是关键,属于中档题. 15.已知函数()()()1sin 20192019x xx f x x R π-=∈+,下别列命题: ①函数()f x 是奇函数; ②函数()f x 在区间[]22ππ-,上共有13个零点; ③函数()f x 在区间()01,上单调递增;④函数()f x 的图像是轴对称图像。