浅析超高强钢焊接
- 格式:doc
- 大小:144.00 KB
- 文档页数:11
建筑钢结构高强钢焊接的探讨前言:在进行高强钢焊接工作的过程中,涉及到很多环节,这些环节之间的联系需要给予充分重视,每一环节之间需要环环相扣,只有这样,才能够保证焊接质量。
随着相关技术的不断进步与相关研究的日益深入,当前出现了一些新的钢种,这些钢种尤其自身独特的特点,在焊接工艺方面的提升也非常迅速,与此同时,其信息化管理技术方面的要求也越来越高,具体表现为建立有针对性的专家系统。
一、培训取证方面在我国现行的关于钢结构焊接的相关规定中,对焊工考试取证的要求存在欠缺,在长期以来的实行的过程中,这种欠缺便对行业内部的管理工作带来了很大阻碍,持证上岗制度始终无法得到真正落实。
现阶段我国相关领域的焊工证种类很多,而其中一部分无法证明焊工在实际工作中的操作水平,但很多工程管理者却对此并不了解,导致焊工证的管理上存在混乱,操作过程中存在的问题也较多,工程质量也因此得不到有效保证。
上个世纪八十年代,英国的专家系统TWI在这个问题上开发了一系列软件,从而实现对焊工技术档案的有效管理,这种管理方法也被很多国家效仿。
我国虽然也存在类似软件,但并没有一套统一的执行标准,因此还没有实现通用化。
如今ISO正与IIW相沟通,尝试构建起一套国际性的焊工考试标准,在这套标准实行以后,焊工在考试过程中便不必再按照其他标准进行多次考试,相关的信息化档案管理软件,也会在此基础上得到统一[1]。
二、焊接实验方面随着钢结构焊接的不断发展,新的钢种也越来越多,现阶段的钢种普遍的发展方向是高强度与高韧性。
因此,高强钢在焊接过程中,对相关技术的要求也越来越高,而这些技术普遍都掌握在少数人手中,绝大多数企业想要接触新钢种,就必须要投入很多的人力、物力与财力,对新工艺的摸索也需要花费大量时间。
而专家系统,也就是高强钢焊接生产信息化,可以在很大程度上将全国范围内的相关焊接技术资源进行有效整合,从而大大降低相关技术在研发过程中的费用,不仅能够提升我国的焊接水平,还为相关企业进行新钢种研究打开了思路,有利于提升焊接质量[2]。
建筑钢结构高强钢高效焊接技术探讨摘要:伴随着我国经济的发展,建筑行业也在不断进步,建筑钢结构被广泛应用在建筑工程中,人们对钢结构强度提出了更高要求,而高强钢也将是建筑钢结构发展的重要趋势。
作为建筑钢结构制造、安装主要手段的焊接技术,毫无疑问必将发挥关键的作用。
目前及在可预见的未来,建筑钢结构焊接技术的水平、存在的主要质量问题及发展方向值得关注和探讨。
关键词:建筑钢结构;高强钢;高效焊接技术一、高强钢高效焊接技术对焊接材料提出的要求虽然高强钢高效焊接技术在实际应用时具有十分重要的技术应用优势,既能保证焊接质量,同时也能实现焊接效率的全面提升。
但是该技术在实际应用时却对焊接材料有着一定的要求,若在不符合焊接材料要求的材料中应用该技术,将可能会造成焊接技术效果难以得到切实发挥。
例如,针对低合金钢来说,高强钢在实际应用时可在结构方面突出众多应用优势,但同时其对低合金钢材料焊接所提出的要求也是十分严格的。
通常情况下,焊接人员所选用的高强钢焊接材料等级为ER50级或者ER55级材料。
而随着高强钢的强度等级不断提升,焊接人员也应当在满足焊接材料强度配比基本限制的基础上选择具有更高的强度配比材料。
例如,当需进行焊接处理的高强钢的屈强大小高于0.85时,为避免强度大小高于800MPa的调质钢焊接中出现冷裂纹这种不良情况,焊接人员不仅要就高强钢进行预热以及后热处理,同时在进行焊接材料选择时应当尽可能的选择低氢型材料和超低氢型材料作为焊接材料。
但是钢材研究工作与焊接材料研究工作在当前存在着一定的差异,实际抗拉强度高于800MPa的钢材在焊接操作时更应注重焊接材料的选择,避免运用低强匹配焊接材料进行焊接。
二、高强钢焊接特点与难点1.高强钢焊接HAZ脆化为了将热影响区的催化情况防止一定要使用适合的焊接工艺参数将高温停留时间缩短,同时防止奥氏体晶粒长大。
由于高强低碳调质钢HAZ区AC1-AC2区域在将M-A混合组织避免后可将抗脆能力有效改善,同时对该区域的冲击韧性提高提供有利条件。
Q420高强钢性能分析和焊接工艺研究张宇南通新华钢结构工程有限公司摘要:通过对低合金高强度结构钢的焊接影响因素的分析, 为制定合理的焊接工艺提供了依据, 应用该工艺保证了低合金高强度钢的焊接效果。
关键词:焊接性;影响因素;工艺引言自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb 、V 、Ti 等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢;(2)低合金高强度钢不再是“简易"生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。
高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能.如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。
1、焊接性试验的相关内容1.1 试验目的评价母材焊接性能的好坏,确定合理的焊接工艺参数。
1。
2 试验方法最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。
计算法(间接法):碳当量法、焊接裂纹敏感指数法。
B V Mo Ni Cu Cr Mn SiC Pcm H T Pcm Pc 510/15/60/20)/(30/60/600/++++++++=++=裂纹敏感指数 式中:g ml H mmT Pcm 100/%扩散氢含量,刚才厚度,开裂碳当量,---39214403.0-=︒>Pc C To Pc )(预热温度)有冷裂倾向(根部裂纹1。
3 焊接冷裂纹敏感性分析钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。
解析高强板焊接工艺论证摘要:煤碳作为一种重要能源,是保障我国经济快速发展的重要行业。
随着目前我国煤矿企业产量的逐步增加,煤矿生产中对相关开采设备的要求也越来越高,高强度钢在开采设备中的应用越来越广泛。
本文具体结合Q690高强板,通过对其焊接性能和在焊接过程中出现的冷裂、热裂以及气孔现象的分析,论证了高强板的焊接工艺。
关键词:低合金高强板;焊接参数;工艺论证随着我国煤矿产业的不断发展,煤矿厚煤层的大采、高综采逐渐成为主流开采方式,而大型液压支架作为大采工作的主要设备之一,其需求量日益增加。
大采综采对液压支架的稳定性、适应性和可靠性都提出了更高要求,在此背景下,人们对高强板的关注度越来越高,目前世界上其他国家所用的液压支架大部分都是Q690高强板。
1.高强板焊接性能的分析Q690是一种高强度的钢板,焊接性能优良、强度级别高,但也比较容易出现裂纹和缺口等问题,在焊接时可能会有以下几种现象:焊接件的断裂、开焊和焊件疲劳强度低。
因此,需对其进行焊接性能的分析。
1.1.高强板的可焊性参数确定高强板的可焊性是否足够主要有两个衡量参数:碳当量和焊接过程中的冷裂纹敏感指数。
据科学研究表明,若高强板的厚度低于50mm,则Q690高强度钢板的碳当量为0.65。
以下是焊接冷裂纹敏感性指数的测算公式:尽管低于0.45%,但由于高强度低合金板冷裂纹敏感性还可继续升高,当Cep大于0.43,Pcm值大于0.25时,热影响区的冷裂倾向明显增大,可焊性降低,这时就需要进行在焊接前进行预热及焊接后适当缓冷。
制定工艺要求时,应保证焊接区在低氢环境下,焊接材料经过脱脂处理后,能够有效使氢含量达到降低效果,同时还要使用较小的热输入,采用氩气和二氧化碳混合的方式保护焊方式进行焊接。
2.高强板的焊接工艺流程2.1.高强板焊接工艺参数的确定焊接工艺参数包括选择焊接速度、电流、电压以及焊丝直径。
在进行焊接操作时,热输入会导致热影响区的强度以及韧性降低。
基于防护型车用超高强钢焊接工艺研究摘要:随着科学技术的发展,社会的多样化需求,超高强度钢的应用领域逐渐广泛。
然而,由于其高强度,高硬度和高碳当量,超高强度钢的可焊性却随之降低,使其成为车辆防护结构中半弹性最薄弱环节。
鉴于此,本研究以超低碳马氏体不锈钢焊丝为填充材料,并配合工艺参数来分析当前超高强度钢的焊接性能,避免焊接后接头开裂,以确保高强度钢连接件的连接强度,并促进超高强度钢的广泛应用。
关键词:防护型;超高强钢;焊接1 超高强钢特点及可焊性1.1 超高强钢力学性能目前,国内外典型的超高强度钢主要有:瑞典SSAB生产的Amox500T和Amox600等等。
中国宝钢生产的P6500,该型号是我国钢铁研究机构的代表钢牌号,例如F601和F602。
表1列举了几种典型超高强度钢的力学性能,从数据可以看出,随着热处理技术的不断发展,超高强度钢的力学性能有了很大提升,强度大大高于普通高强度钢。
但是,由于该型材强度高(是普通高强度钢的2倍),而在焊接过程易受各种缺陷的影响,使其增加了焊接难度。
表1 几种超高强钢的力学性能参数1.2 超高强钢化学成分及焊接评价据统计,最先进的超高强度钢属于Cr-Ni-Mo系列合金钢,化学成分差异不大,其组成性能见表2所示[4]。
表2 超高强钢的化学成分(质量分数)2 MAG焊接工艺试验超高强钢的化学成分差别不大,可焊性相似。
为了进行测试,本研究选取中国钢铁科学研究院的F601钢板进行焊接试验分析。
2.1 焊接材料在超高强度钢中,由于热影响区的冷裂纹,再热裂纹和软化,导致车架构件接头的机械性能降低。
为符合建材材料的强度和韧性,根据化学成分的性质和强度匹配原理,选用超低碳马氏体不锈钢焊丝HS367,焊丝直径为1.2mm,其力学性能见表3所示。
由于超高强度钢板的高可压缩性和焊接时的浅熔深,使用体积分数为49%的He来增加熔深。
超低碳马氏体不锈钢的液滴润湿性较差,体积分数增加了2%。
氧气可改善保护气体的活性,从而实现无缺陷的焊接[2]。
BS系列高强钢简介Brief introduction开发历史工程机械用系列高强、超高强结构钢是宝钢于2000年在国内率先开发成功的一类热轧新产品,牌号大多采用“BS”开头,如第一代高强钢BS600MC和BS700MC已大量应用于工程机械、集装箱制造等行业。
2005年宝钢开发成功具有优良低温韧性的第二代高强钢,牌号为BS700MCK2、BS600MCJ4、BS550MCK4等等。
BS系列高强钢为低碳低合金结构钢,具有良好的可焊接性和冷成形性,可广泛应用于工程机械、车辆结构、集装箱等制造行业。
高强钢BS系列高强结构钢采用宝钢股份公司先进的冶炼技术、铌钛微合金化处理以及精确的控制轧制和控制冷却技术获得金相显微组织为少量铁素体加针状体组织。
制造工艺和金相组织保证了合格稳定的力学性能、加工性能和可靠的质量。
自从2000年开发成功以后,深受用户青睐,产销量逐年增加。
超高强钢选用高强钢代替传统产品可显著减小钢板的设计厚度,进而减轻结构的自重。
除此之外,BS系列高强钢还具有如下特点:• 优良的成形性,不同强度级别钢板均能够冷加工成形;• 良好的焊接性,钢板具有低焊接裂纹敏感性,焊接接头的性能优良;• 良好的低温冲击韧性。
制造工艺及交货状态生产工艺流程:BS系列高强钢采用氧气转炉冶炼镇静钢,经过二次精炼后进行连续铸造,连铸坯送热轧厂再加热并采用控轧控冷工艺轧制成卷,精整检验后可以钢卷状态交货,也可以矫直切板后以钢板状态交货。
交货状态:BS系列高强钢基本采用轧态(TMCP)交货。
所示,超出规格范围可与宝钢热轧高强钢产销研小组联系(附后)。
牌号Steel grade可供厚度Thickness,mm可供宽度Width,mm可供长度Length,mmBS550- 2.5-16 850-1750 2000-12000BS600- 2.5-16 850-1750 2000-12000BS700- 2.5-14 850-1600 2000-12000BS960- 4-10 950-1200 2000-12000牌号及可供规格范围Product range of dimensions宽度 (width), mm181014617913516812421571131800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800厚度 (Thickness), mm BS550 BS600 BS700 BS9602工程机械用高强度热连轧结构钢High Strength Cold Forming Hot-rolled Steel 供货技术条件及产品性能实绩Delivery ConditionB S 7 0 0 MC K 2K2:-20℃冲击值不小于40JJ4:-40℃冲击值不小于27JK4:-40℃冲击值不小于40J控轧控冷(非调质)生产的冷成型用钢宝钢结构钢屈服强度等级3力学*货标准牌号Steel Grade厚度Thickness mm拉伸试验(2)Tensile test冲击试验(3)CVN Impact test180°弯曲试验Bending test方向(1) 屈服强度Re, MPa抗拉强度Rm, MPa伸长率A5, %方向(1) 温度Temp., ℃冲击值IE, J方向(1) 弯心直径DiameterBS550MCK4 ≤16 T ≥550 ≥600 ≥18 L -20 ≥40 T d = 2aBS600MCJ4<10T≥600 ≥680 ≥15L -40 ≥27 T d = 2a10-16 ≥580 ≥680 ≥15BS700MCK23-8T≥700 750-950 ≥15L -20 ≥40 T d = 2a>8 ≥680 750-950 ≥15BS900MCJ4 3-10 L ≥900 ≥950 ≥10 L -40 ≥27 T d = 3aBS960MCJ4 3-10 L ≥960 ≥980 ≥10 L -40 ≥27 T d = 3aS500MC ≤16 L ≥500 550-700 ≥14 / / / T d = 1aS550MC ≤16 L ≥550 600-760 ≥14 / / / T d = 1.5a(BS600MC)≤16 L ≥600 650-820 ≥13 / / / T d = 2aS650MC ≤16 L ≥650 700-880 ≥12 / / / T d = 2aS700MC(BS700MC)≤6 L ≥700 750-950 ≥12 / / / T d = 2a注:(1) T= Transverse,试样方向垂直于轧制方向; L=longitude,试样方向平行于轧制方向。
高强度管线钢焊接性影响因素分析摘要:为了使X80~X120高强度管线钢焊接时获得高强韧性焊接接头,避免产生冷裂纹及热影响区脆化、软化等各种缺陷,针对高强度管线钢的焊接性影响因素进行了分析论述,包括冷裂纹产生的原因及影响因素、管线钢的HAZ软化及脆化影响因素等。
重点对管线钢的焊缝与管材的强韧匹配以及管线钢焊接工艺进行了分析研究。
研究结果表明,高强度管线钢焊接时,应依据等韧性原则来选用接头的匹配,选择合适的预热温度、含氢量较小的焊接材料、合理的焊接热输入,保证焊接接头具有足够的韧性,满足实际需要。
关键词:高强度管线钢;焊接性;影响引言随着管道油气输送技术向高压、大直径方向发展,对管线钢的韧性、强度和焊接性能的要求越来越高,全世界都在关注日益增大的天然气需求及亚洲经济扩张造成的高强度跨国管线的建设与使用问题,因而高等级管线钢的焊接也成为关注的焦点之一。
高强度管线钢一般指屈服强度大于500MPa的超低碳、微合金细晶粒管线钢,如X80、X90、X100、X120高强度管线钢,其主要微观组织为针状铁素体/贝氏体。
这类钢焊接存在的主要问题是焊接氢致裂纹、焊接热影响区局部脆化、软化及韧性下降,焊接接头的疲劳等。
在实际应用中,高强度管线钢焊接的主要目标是:焊接接头处获得较高的强度和韧性,避免产生冷裂纹及各种缺陷,能够达到实际应用要求。
1高强度管线钢的焊接性问题近年来,随着管道工程的发展以及焊接技术的进步,油气输送管道趋向于大直径,输送介质复杂,输送压力增大,而且管线的使用条件越来越苛刻。
因此,管道材料的研究正朝着高强度、高韧性以及优良的现场焊接性等多方面发展。
这就要求管线钢不仅具有优良的强韧性等综合力学性能,而且还要具有良好的焊接性。
焊接性的好坏是评价管线钢使用性能的主要指标之一。
焊接性、焊接材料以及相应的焊接工艺是管线钢焊接的三个基本要素,三者密不可分。
随着管线钢强度级别的提高和合金元素含量的增加以及焊接工艺条件的变化,都会引起各种焊接性问题。
浅析超高强度钢的焊接张勇摘要:针对性地介绍了超高强度钢焊接时如何合理选择工艺参数、存在的主要问题、注意事项及应采取的预防措施。
关键词:超高强度钢;焊接;冷裂纹;疲劳超高强度钢一般是指屈服强度大于700Mpa的细晶粒高强钢,如:HQ80(鞍钢)、STE690、STE890、STE960(德国)、WELDOX700、WELDOX900、WELDOX960、WELDOX1100(瑞典奥克隆德钢铁公司)等。
其焊接存在的主要问题为:焊接氢致裂纹(冷裂纹)、焊接热影响区软化及韧性下降、焊接接头的疲劳等。
本文针对高强钢焊接进行比较详细的分析和介绍。
1.高强钢焊接目标:在焊接接头处获得适当的强度(抗拉强度和疲劳强度),在焊接接头处获得良好的韧性,避免产生冷裂纹。
2.防止冷裂纹措施2.1 焊前预热预热对对接焊缝和根部焊道最为重要,焊接过程中和焊接后的温度越高,则氢越易从钢中逸出;钢板越厚,预热的必要性越大,以补偿厚板更快的冷却速度,而且厚板比薄板的碳当量(CE)值更高。
工件具体的预热温度和要求见表一与图一,如果不同钢种的焊接或所用焊材的碳当量比母材高,则预热温度由碳当量高的母材或焊材的碳当时决定。
2.2确保焊接面的清洁和干燥产生冷裂纹的主要原因是有应力存在的焊缝金属中有氢的存在。
焊件在组装前应彻底清除坡口表面及附近母材上的各种脏物(例如:氧化皮,铁锈,油污,水份等,这些脏物在焊接时分解出氢而导致焊缝产生延迟纹或气孔,使焊接接头性能受损),直至露出金属光泽并保证清理范围内无裂纹与夹层等缺陷。
2.3减小构件内应力通过采用良好的焊接顺序;合理组装,避免强力组对以减少构件的残余应力;焊接组装时应将工件压紧或垫置牢固,以防止因焊接受热而产生附加的应力和变形。
2.4选择含氢量小的焊接材料选用的焊接材料其熔敷金属含氢量应小于5ml/100g;为了避免吸潮,焊接材料应根据厂家的规定进行储存,使用前按厂应家要求重新烘焙,以免工件在焊后或使用过程中产生延迟冷裂纹。
2.5焊后后热消氢处理在焊接完成后,立即将焊件后热到150-250℃,并按每毫米板厚不少于5分钟进行恒温处理后缓冷(且总的恒温时间不得小于1小时),确保焊接接头中的残余氢能扩散逸出,减少延迟冷裂纹的产生。
2.5焊后热处理进行焊后热处理是为了减少焊接残余应力,高强钢焊后一般不进行焊后热处理,热处理会使接头的某些机械性能下降,如:冲击韧性等。
只有在设计规则有特殊说明时,方应进行焊后热处理。
但应注意其焊后热处理温度不能超过其调质回火温度。
图一:预热温度测量位置及当量板厚的确定S3=0 S1= S2钢板的当量板厚S K=S1+S2+S3,或至少为2倍板厚S1=距焊缝金属75mm内的平均厚度采用火焰预热时,焰芯距板间的距离应大于50mm注:1.如果环境湿度大或温度低于5℃,则表内所给温度应增加25℃;如果工件属刚性固定,预热温度应相应增加。
2.在当量板厚小于极限值,工件温度低于5℃或空气湿度大于65%时应将工件预热50℃~80℃。
3.适用于相应强度级别的铸钢。
举例:WELDOX900的极限当量板厚对应为20mm,即对T形接头必需从20/3=7mm板厚开绐预热,而对接接头则从20/2=10mm板厚起开始预热。
已知:S1=15mm S2= S1 .则:S K=S1+S2+S3S3=10mm=15mm+15mm+10mm= 40mm即Q450,Q390,Q345,Q295,Q235均不需预热;Q590,Q685,WELDOX900等需预热150℃3.高强钢焊接材料选择的一般原则3.1对于超高强度钢,由于强度提高,钢材塑性、韧性不断下降。
如果仍采用等强原则,选用高组配的焊接接头,焊缝的韧性将进一步降低,将可能导致由焊缝金属韧性不足引起低应力脆性破坏。
所以高强钢焊接时应采用等韧性原则,选择焊缝韧性不低于基体金属的低组配焊接接头比较合理。
采用低强的焊缝金属并不总是意味着焊接接头的强度一定低于母材,只要焊缝金属的强度不低于母材的87%,仍可保证接头与母材等强。
3.2焊接材料选择由焊接接头机械性能要求而定,选择焊材屈服强度时有以下选择原则:a 低强度焊接金属(焊缝金属屈服强度低于母材的屈服强度)b 等强度焊接金属(焊缝金属屈服强度等于母材的屈服强度)c 高强度焊接金属(焊缝金属屈服强度高于母材的屈服强度)当所焊钢种的屈服强度处于700~1100MPa之间,板材较厚时,需匹配不同成分的焊接材料。
例如:根部焊道采用软基焊料打底,填充与盖面采用高强度焊料;对角焊而言通常采用低强焊料。
选用低强焊接材料比选择高强焊接材料(屈服强度大于500Mpa)所具的优点是:焊缝金属的韧性大;焊接接头延伸性能好;产生裂纹的可3.3熔敷金属的含氢量应不超过5ml/100g,焊接金属的冲击韧性至少要与钢板的冲击韧性一样。
4.高强钢焊接参数高强钢焊接的主要问题焊接冷裂纹和焊缝热影响区韧性的降低,为此必须在选择含氢量低的焊接方法的同时应严格地控制焊接线能量,控制t8/5的冷却时间(焊缝从800℃冷却到500℃的时间,一般控到6-20秒,具体要根据钢材厂家提供的参数来确定)Q=η*U*I*60/(1000*V)Q=输入热量(Kj/mm)U=电压(V)I=电流(A)V=焊接速度(mm/min)η=电弧热效率(具体见右表)高强钢富氩气体保护焊(MAG)推荐焊接参数见图2、图3、图4、图5等图2:对接焊时,允许输入线能量与板厚的关系板厚du用UP和MAG焊接方法焊接对接焊缝时的允许线能量范围与Q590,Q685和WELDOX900的板厚之间的关系注:t8/5max=20s ηup=1 Emax=28.5KJ/cm dumax=2.8cmt8/5min=6s ηMAG=0.85 Emax=10.0KJ/cm dumax=1.6cmt8/5max=12s ηMAG=0.85 Emax=20.0KJ/cm dumax=2.3cm经验工式:板厚至25mm,T0=150℃适用板厚=最大线能量。
如:当施焊板材的厚度为20mm时其,允许输入的最大线能量为20KJ/cm。
“#”区域低温时良好的韧性。
图3:角接焊时,允许输入线能量与板厚间的关系板厚du用UP和MAG焊接方法焊接角焊缝时的允许线能量范围与Q590,Q685和WELDOX900的板厚之间的关系注:t8/5max=20s ηup=1 Emax=45KJ/cm dumax=32cm t8/5min=6s ηMAG=0.85 Emax=13.5KJ/cm dumax=19cmt8/5max=12s ηMAG=0.85 Emax=27KJ/cm dumax=26cm经验工式:板厚至35mm,T0=150℃适用板厚=最大线能量。
如:当施焊板材的厚度为20mm时其,允许输入的最大线能量为20KJ/c m#:由于填充材料而受到限制(低温时良好的韧性)。
图4:焊接速度与线能量的关系实芯焊丝(CARBOFIL NiMoCrφ1.2) 混合气体M21(80%Ar+20%CO2),线能量对CO2气体保护焊线能量可提高5%焊接速度(V)曲线①②③④⑤⑥⑦⑧电压(V)29 27 24 22 20 19 18 17 电流(A)300 275 250 225 200 175 150 125 Vz10.5 9.0 8.0 7.0 5.5 4.5 3.5 3.0 (m/min)注:Vz为焊丝送丝速度从图3中找出线能量的允许值,接着可用此值在图4中求得其余的焊接参数。
例:板厚为15mm的WELDOX900高强钢板,对接焊缝采用熔化极活性气体保护焊(MAG),焊丝直径φ1.2mm,从附图2查得板厚15mm时所需线能量至少为9.5J/cm,最大为13.5J/cm。
而从附图4中得出当电流为275A,送丝速度为9.5m/min时,应保持焊接速度在33~47cm/min之间。
如图5与图6所示:图5:图6:.5.高强钢焊接接头的疲劳高强钢焊缝失效的主要形式为疲劳,影响疲劳强度的因素有很多,如:动态应力、平均应力、焊接残余应力、基体材料的腐蚀、钢板厚度、载荷的频率和次数等。
对于焊接接头来说,其疲劳强度要比基体母材低很多,其抗疲劳性能很大程度上取决于焊缝的宏观和微观几何形状,也就是焊接质量。
在制造过程中,设计师、焊接工程师和焊接技工对焊接结构的疲劳性能起着决定性的作用。
在设计和制作的过程中应注意以下事项:a.在设计过程中尽可能使应力均匀,避开突然改变截面以及产生很大的刚度变化。
b.在高应力区尽可能采用对接焊代替角焊,如采用角焊在设计时要避免在根部发生起始疲劳裂纹。
c.不要把焊缝(即使不承受载荷)、孔洞等放在高应力区。
d.把焊缝附近的应力集中降到最低,即尽可能除掉多余的焊缝金属,使角焊缝和基体母材之间的凹面圆滑过渡,避免产生不连续的缺陷。
e.焊缝内部缺陷需视作与表面缺陷的应力集中在关联。
表面缺陷比内部缺陷更为危险(高达4-5倍)。
f.选择最好的焊接位置,最好是平焊,以保证焊接质量。
组对时不允许强行组对,以免造成附加残余应力。
g.对高应力的焊缝进行打磨或采用氩弧焊进行重熔的办法使焊缝与母材之间成圆滑过渡。
h.应通过采用合理的焊接顺序,来降低构件的焊接残余应力。
i.如条件允许应进行应力回复处理。
6.结论超高强度钢结构件制作虽然存在一定的难度,但只要合理地选择焊接方法及工艺参数,加强焊接与制作过程质量的控制,完全能制造出高质量的高强钢结构件,以取代目前大部分需从国外进口的局面。