高考数学难点-函数的连续及其应用
- 格式:pdf
- 大小:164.60 KB
- 文档页数:4
高考数学难点突破_难点33__函数的连续及其应用函数的连续及其应用是高考数学中的一个重要难点,对于很多学生来说,理解和掌握这个知识点是比较困难的。
本文将分为三个部分进行讲解,首先是函数连续的概念和定义;其次是连续函数的性质和判断方法;最后是函数连续的应用。
一、函数连续的概念和定义在数学中,函数连续是指函数在一些点上没有突变、断层,即在该点上没有跳跃,也没有突变的现象。
具体来说,对于函数f(x)在点x=a处连续,需要满足以下三个条件:1.函数在点x=a处存在;2.函数在点x=a处的左极限和右极限存在且相等;3.函数在点x=a处的极限等于函数在该点的函数值。
符号化表示如下:f(a-)=f(a+)=f(a)二、连续函数的性质和判断方法1.连续函数的四则运算性质:如果函数f(x)和g(x)在点x=a处连续,则它们的和、差、积、商也在点x=a处连续。
2.连续函数的复合函数性质:如果函数f(x)在点x=a处连续,函数g(x)在点x=b处连续,并且a是g(x)的定义域内特定点的函数值,则复合函数f(g(x))在点x=b处连续。
3.连续函数的初等函数性质:初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等,它们在其定义域上都是连续的。
对于函数连续的判断方法,可以通过根据定义依次检查函数是否满足连续的条件,也可以利用函数的性质进行判断。
三、函数连续的应用1.函数连续与导数的关系:对于连续函数f(x),在其定义域内的每个点上都有导数存在。
2.函数连续与极值的关系:对于连续函数f(x),在闭区间[a,b]上,如果f(x)在内部点取得最大值或最小值,则必然在[a,b]的边界点或者内部存在极值。
3.函数连续与介值定理的关系:对于连续函数f(x),如果[a,b]上f(a)和f(b)异号,那么在(a,b)内必然存在一些点c,使得f(c)=0。
4.函数连续与零点存在性的关系:对于连续函数f(x),如果f(a)和f(b)异号,则在(a,b)内必然存在一些点c,使得f(c)=0。
解决高考数学中的函数极限与连续性难题的方法在高考数学考试中,函数极限与连续性是一道难题,许多学生常常感到头疼。
然而,只要掌握正确的解题方法和技巧,这类题目不再是难题。
本文将介绍一些解决高考数学中的函数极限与连续性难题的方法,帮助学生们更好地应对这一考点。
一、关于函数极限函数极限是高考数学中常见的考点之一。
在解决函数极限难题时,一般可以采取以下步骤:1. 确定x趋于的值:首先,需要明确x的变化趋势,是否趋于无穷大、无穷小或某一特定值。
根据情况,选择使用不同的极限判断方法。
2. 分解式并化简:对于复杂的函数,可以通过分解式和化简的方式来更好地理解题目,找到解题的突破口。
将函数拆解成更简单的形式,有助于快速求解。
3. 利用常用极限公式:高考中涉及到的函数极限问题中,有许多常用的极限公式可以利用。
例如极限值为自然对数e、三角函数极限、指数函数极限等。
4. 利用洛必达法则:洛必达法则是许多函数极限问题中的常用技巧。
当遇到函数间的极限形式为“无穷与无穷相除”、“0/0”、“∞/∞”等不确定形式时,可使用洛必达法则将问题转化为求导数的形式,进一步求解。
5. 利用夹逼定理:夹逼定理是函数极限问题中常用的判断方法。
当某一函数趋于极限时,可以找到两个已知函数,一个极限值较小,一个极限值较大,通过这两个函数夹逼待求函数,从而确定其极限。
二、关于函数连续性函数连续性是另一个常见的考点,解决函数连续性难题可以采取以下方法:1. 确定函数的定义域:首先,需要明确函数的定义域,即x的取值范围。
根据定义域的特点,确定函数在该范围内是否连续。
2. 利用函数连续性的性质:函数连续性的性质是解决连续性问题的关键。
例如,有界闭区间上的连续函数一定有最大值和最小值等。
3. 分段讨论函数的连续性:对于分段函数,可以将函数分为不同的区间,并分别讨论每个区间上的连续性。
通过分段讨论,可以更好地理解函数在不同区间上的连续性特点。
4. 利用介值定理和零点定理:介值定理和零点定理是解决连续性问题的重要定理。
高考数学中的极限与连续性知识点高考数学作为考试中的一门重要科目,其中的极限与连续性是必考知识点之一。
本文将对这两个知识点进行详细介绍。
一、极限1. 定义极限是数列或函数自变量趋近于某一值时,因变量相应的取值趋近于一个确定的值或趋于无穷大或无穷小的现象。
数列或函数在自变量趋近于某一值时,与所趋近的值的相差越来越小,但却始终无法达到这一值。
2. 常见极限(1)$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$(2)$\lim _{x \rightarrow \infty} \left( 1+\frac{1}{x} \right) ^x=e$(3)$\lim _{x \rightarrow a} (x-a)^n f(x)=0 (n>0)$3. 求极限的方法(1)代入法:将趋近的值代入函数后直接计算。
(2)夹逼法:利用函数大小的矛盾(左右夹逼)进行推断。
(3)变形法:将式子化简后,使其成为已知极限的形式。
4. 连续性函数的连续性是指函数在定义域内任何一个点的函数值与极限值相等的状态。
也就是说,如果函数f(x)在x=a处极限存在且等于f(a),则称函数f(x)在x=a处连续。
如果函数在其定义域的任一点都连续,则称函数在其定义域内连续。
连续性是一个函数的基本属性。
5. 连续函数(1)定义:若一个函数在其定义域内的每个点都连续,则称这个函数为连续函数。
(2)充分必要条件:若函数f(x)在其定义域内各点均可导,则该函数连续,反之不一定成立。
(3)连续函数的性质:连续函数在其定义域内有以下几个性质:①有界性:有界函数的定义是指其在任意一个区间中都有界。
连续函数在有限区间内一定有界。
②最值性:有界函数在其定义域内一定存在最大值和最小值。
③介值性:连续函数在其定义域内根据介值定理,一个值介于函数值的最大值和最小值之间。
总之,在高考数学中,极限与连续性是非常重要的知识点。
理解和掌握好这两个知识点,有助于我们更深入地理解和掌握相关知识,为高考数学的考试打下较好的基础。
重难点第9讲 函数定义域、解析式与值域8大题型——每天30分钟7天掌握函数定义域、解析式与值域8大题型【命题趋势】函数的定义域、解析式与值域问题是高考数学的必考内容。
函数问题定义域优先,在解答函数问题时切记要先考虑定义域;函数解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题;基本不等式及“耐克函数”、“瘦腰函数”模型;数列的最大项、最小项;向量与复数的四则运算及模的最值;向量与复数的几何意义的最值;解析几何的函数性研究问题等;都需要转化为求最值问题。
在复习过程中,在熟练掌握基本的解题方法的同时,要多加训练综合性题目。
第1天 认真研究满分技巧及思考热点题型【满分技巧】一、求函数的定义域的依据函数的定义域是指使函数有意义的自变量的取值范围 1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥(21,)n k k N *=+∈其中中.3、零次幂的底数不能为零,即0x 中0x ≠.4、如果函数是一些简单函数通过四则运算复合而成的,那么它的定义域是各个简单简单函数定义域的交集。
【注意】定义域用集合或区间表示,若用区间表示熟记,不能用“或”连接,而应用并集符号“∪”连接。
二、抽象函数及定义域求法1、已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;2、已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.3、已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域.三、函数解析式的四种求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含有待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。
江苏高考数学重点难点一.函数(函数的概念、性质、初等函数与导数)【重难点】考察:函数的性质(单调性、奇偶性、周期性),初等函数的概念和性质(三角、指数、对数、幂)、导数的性质,运用以及函数与导数的结合(难点) (2014,第13题)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .19. 已知b a ,是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以b a ,为端点的开区间上单调性一致,求||b a -的最大值【解析】本题主要考查函数的概念、性质及导数等基础知识,考查灵活运用数 形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.本题属难题.二、三角形1. 两角和(差)的正弦、余弦和正切【重点】(2012,第15题)在ABC ∆中,已知3AB AC BA BC = .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 2.解三角形(正弦定理、余弦定理及其应用)正弦定理:a/sinA=b/sinB=c/sinC=2R余弦定理:a ²= b ²+ c ²- 2·b·c·c os A常考题,以中档题和难题为主例题:(2014,第14题)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ . (2012,第13题)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C b a a b c o s 6=+, 则BC A C tan tan tan tan +的值是__▲三. 平面向量必考题,以基础题和中档题考点为主,常考知识点:(1)平面向量的加法、减法和数乘运算(2) 平面向量的数量积(c 级考点)【重点】(2013,第15题)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2012,第13题)如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F在边CD 上,若AB AF AE BF的值是 ▲ .四.数列(等差数列和等比数列)【重难点必考,以难题为主】考察点:①求等差数列、等比数列的通项公式②数列的前n 项和:1、 用通项公式法: 规律:能用通项公式写出数列各项,从而将其和重新组合为可求数列和。
高考数学中的函数极限与连续性应用技巧数学作为高考重要科目之一,其中的函数极限与连续性是一项重要的考察内容。
函数极限与连续性的应用在高考中占据较大的比重,下面将介绍一些应用技巧,帮助同学们更好地应对高考数学考试。
一、一元函数极限的应用技巧在高考数学中,一元函数极限的应用经常涉及到函数的极限值、极值问题以及其他相关应用。
为了解决这些问题,以下是一些技巧和方法。
1. 利用函数极限求函数的极值:当函数极限存在时,可以通过极限的定义来求取函数的极值。
首先,找到函数的定义域和极限的边界条件;然后通过求导、求导数的零点以及边界点等方法,判断函数的极值存在性及其取值。
2. 利用函数极限解决趋向问题:对于一些趋向问题,我们可以利用函数极限的定义来解决。
一般来说,我们可以先将问题转化为数学表达式,然后通过函数极限的性质和操作方法来求取问题的解。
3. 利用函数极限推导变量间的关系式:在一些复杂的高考数学问题中,函数极限的应用可以帮助我们建立变量间的关系式。
通过对特定函数的极限进行分析,可以得到一定的关系式,进而解决问题。
二、连续函数的应用技巧连续性是高考数学中另一个重要的概念,相对于函数极限,连续函数的应用要略显复杂。
以下是一些应用技巧。
1. 利用连续函数求函数值:当一个函数是连续的时,可以通过直接将自变量的值代入函数表达式中,求得函数的函数值。
对于较复杂的函数,可以利用函数的性质和运算法则进行简化。
2. 利用连续函数解决函数存在性与唯一性问题:对于给定的方程或不等式,我们可以通过构造连续函数来解决其存在性与唯一性问题。
通过建立恰当的连续函数,并利用连续函数不变性、介值定理等技巧,可以判断给定方程或不等式是否存在解,以及解的个数和范围。
3. 利用连续函数解决极值问题:在高考中,我们常常遇到一些求函数的最大值和最小值的问题。
对于连续函数来说,可以通过求取函数的导数,找到导函数的零点和定义域的边界点,来判断函数的极值点和取值。
高三函数最难的部分知识点函数作为高中数学的重要内容,对于高三学生来说,掌握其难点是提高数学成绩的关键。
本文将深入探讨高三数学中函数最难的部分知识点,帮助学生理解和应用这些概念,以便在高考中取得优异成绩。
一、函数的极限与连续性函数的极限是描述函数值随自变量变化而趋向于某一特定值的性质。
对于函数f(x),当x趋近于a时,如果f(x)趋近于某一确定的值L,那么我们说函数f(x)在x趋近于a时的极限是L,记作lim(x→a) f(x) = L。
理解极限的概念需要对“趋近于”和“无限接近”有深刻的认识,这是函数学习中的一个难点。
连续性是函数极限的直接应用。
一个函数在某一点连续,意味着在这一点附近,函数的值随着自变量的微小变化而变化,且这种变化是没有跳跃的。
如果一个函数在其定义域内的每一点都连续,我们就称这个函数是连续函数。
不连续的点称为间断点,间断点的分类和处理是学习中的又一难点。
二、导数与微分导数是函数图像变化率的数学表达,它描述了函数在某一点的切线斜率,即函数在该点的局部性质。
导数的计算涉及到极限的概念,因此理解导数首先要对极限有深刻的理解。
导数的计算规则,如乘积法则、商法则和链式法则,是解决复杂函数求导问题的基础。
微分则是导数的另一种表现形式,它描述了当自变量有一个微小变化时,函数值的近似变化量。
对于函数f(x),其在x点的微分记作df(x)或f'(x)dx,其中f'(x)是函数在x点的导数。
掌握微分的概念和计算方法,对于理解和应用导数至关重要。
三、函数的极值与最值函数的极值是指在函数图像上局部最大或最小值点的函数值。
寻找函数的极值点通常需要计算函数的一阶导数,并找出导数为零的点,这些点可能是极大值点或极小值点。
然后通过二阶导数测试或其他方法来判断这些点是极大值点还是极小值点。
这个过程涉及到导数的综合运用,是函数学习中的高级知识点。
最值问题则涉及到函数在整个定义域内的最大值和最小值。
高考数学中的函数极限与连续性理解与应用函数是数学中一个非常重要的概念,而数学中的函数极限与连续性是函数理论中的核心内容。
在高考数学中,函数极限与连续性的理解与应用是考生们必须掌握的知识点。
本文将深入探讨函数极限与连续性的概念、性质以及应用,帮助读者更好地理解与应用这一知识。
一、函数极限函数极限是函数理论中的重要概念,它描述了函数随着自变量趋近于某一特定值时的变化情况。
函数极限的计算需要借助计算方法和理论,下面以一些典型的例子来介绍函数极限的概念与计算方法。
例1:计算函数 f(x) = 2x^2 + 3x - 1 在 x = 2 处的极限。
解:要求函数在 x = 2 处的极限,可以使用直接代入法。
将 x = 2 代入函数 f(x) = 2x^2 + 3x - 1 中,得到 f(2) = 2*2^2 + 3*2 - 1 = 13。
因此,函数 f(x) 在 x = 2 处的极限为 13。
对于一些特殊的函数,无法使用直接代入法来计算极限。
这时,我们需要使用极限的定义与性质,通过近似与比较来求取极限的值。
例2:计算函数 g(x) = (x^2 - 4)/(x - 2) 在 x = 2 处的极限。
解:将 x = 2 代入函数 g(x) = (x^2 - 4)/(x - 2) 中,得到 g(2) = 0/0。
这时我们无法直接计算极限。
通过因式分解,我们可以将函数 g(x) 化简为 g(x) = x + 2,那么在 x = 2 处的极限即为 g(2) = 4。
这两个例子展示了函数极限的计算方法,但实际问题中的函数极限更多是通过近似与推导来求取的,需要借助函数极限的性质与定义进行计算。
二、函数连续性函数连续性是函数在定义域内没有突变或断裂的性质,它描述了函数图像在定义域内的连续变化。
函数连续性的理解与判断需要借助连续函数的定义与性质,下面将对函数连续性进行详细讨论。
连续性的定义:函数 f(x) 在点 x = a 处连续,是指在 x = a 处的函数值等于极限值,即f(a) = lim(x→a) f(x)。
难点33函数的连续及其应用函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系.●难点磁场(★★★★)已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性;(2)求f (x )的连续区间.●案例探究[例1]已知函数f (x )=242+-x x ,(1)求f (x )的定义域,并作出函数的图象;(2)求f (x )的不连续点x 0;(3)对f (x )补充定义,使其是R 上的连续函数.命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法.知识依托:本题是分式函数,所以解答本题的闪光点是能准确画出它的图象.错解分析:第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式.技巧与方法:对分式化简变形,注意等价性,观察图象进行解答.解:(1)当x +2≠0时,有x ≠-2因此,函数的定义域是(-∞,-2)∪(-2,+∞)当x ≠-2时,f (x )=242+-x x =x -2,其图象如上图(2)由定义域知,函数f (x )的不连续点是x 0=-2.(3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 22-=-→-→x x f x x =-4.因此,将f (x )的表达式改写为f (x )=⎪⎩⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x 则函数f (x )在R 上是连续函数.[例2]求证:方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b .命题意图:要判定方程f (x )=0是否有实根.即判定对应的连续函数y =f (x )的图象是否与x 轴有交点,因此根据连续函数的性质,只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可.本题主要考查这种解题方法.知识依托:解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正.错解分析:因为本题为超越方程,因而考生最易想到画图象观察,而忽视连续性的性质在解这类题目中的简便作用.证明:设f (x )=a sin x +b -x ,则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0,又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根.因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b .●锦囊妙计1.深刻理解函数f (x )在x 0处连续的概念:等式lim 0x x →f (x )=f (x 0)的涵义是:(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;(2)lim 0x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0x x →f (x )=f (x 0).函数f (x )在x 0处连续,反映在图象上是f (x )的图象在点x =x 0处是不间断的.2.函数f (x )在点x 0不连续,就是f (x )的图象在点x =x 0处是间断的.其情形:(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0x x →f (x )≠f (x 0);(2)lim 0x x →f (x )存在,但f (x 0)不存在.(3)lim 0x x →f (x )不存在.3.由连续函数的定义,可以得到计算函数极限的一种方法:如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0x x →f (x )=f (x 0).●歼灭难点训练一、选择题1.(★★★★)若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于()A.23 B.32 C.1 D.02.(★★★★)设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<21 11 2110 x x x x 则f (x )的连续区间为()A.(0,2)B.(0,1)C.(0,1)∪(1,2)D.(1,2)二、填空题3.(★★★★)xx x x arctan 4)2ln(lim 21--→=_________.4.(★★★★)若f (x )=⎪⎩⎪⎨⎧≥+<--0 0 11x bx a x x x 处处连续,则a 的值为_________.三、解答题5.(★★★★★)已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0( 1)0( 121211x x x x (1)f (x )在x =0处是否连续?说明理由;(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性.6.(★★★★)已知f (x )=⎪⎩⎪⎨⎧≥+<--)0()0(11x bx a x x x (1)求f (-x );(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续.7.(★★★★)求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根.8.(★★★★)求函数f (x )=⎪⎩⎪⎨⎧>-≤)1( 21(log )1( 2x x x x 的不连续点和连续区间.参考答案难点磁场解:(1)lim 1--→x f (x )=3,lim 1+-→x f (x )=-1,所以lim 1-→x f (x )不存在,所以f (x )在x =-1处不连续,但lim 1-→x f (x )=f (-1)=-1,lim 1--→x f (x )≠f (-1),所以f (x )在x =-1处右连续,左不连续lim 1-→x f (x )=3=f (1),lim 1+→x f (x )不存在,所以lim 1→x f (x )不存在,所以f (x )在x =1不连续,但左连续,右不连续.又lim 0→x f (x )=f (0)=0,所以f (x )在x =0处连续.(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5].歼灭难点训练一、1.解析:]11][11)1()[11(]11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f 2311111)0(11111(323=+++=++++++=f x x x 答案:A2.解析:11lim )(lim 11==++→→x x x f21)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x 即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续.答案:C 二、3.解析:利用函数的连续性,即)()(lim 00x f x f x x =→,π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x 答案:π121,0)(lim )(lim 21111lim 11lim )(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f xx x x f x x x x x 解析答案:21三、5.解:f (x )=⎪⎩⎪⎨⎧=≠+-)0( 1)0(12111x x x (1)lim 10-→x f (x )=-1,lim 0+→x f (x )=1,所以lim 0→x f (x )不存在,故f (x )在x =0处不连续.(2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续,所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数.6.解:(1)f (-x )=⎪⎩⎪⎨⎧≥-<-+)0( )0( 11x bx a x x x (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续,lim 0-→x f (x )=lim 0-→x x x --11=21111lim )11(lim 00=-+=-+--→→xx x x x x lim 0+→x f (x )=lim 0+→x (a +bx )=a ,因为要f (x )在x =0处连续,只要lim 0+→x f (x )=lim 0+→x f (x )=lim 0+→x f (x )=f (0),所以a =217.证明:设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续,且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,所以必存在a ∈(-∞,+∞),b ∈(-∞,+∞),使f (a )·f (b )<0,所以f (x )的图象至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根.8.解:不连续点是x =1,连续区间是(-∞,1),(1,+∞)。