镍基合金文献综述(总结)
- 格式:wps
- 大小:64.05 KB
- 文档页数:5
镍基合金材料
镍基合金是一种具有优异性能的金属材料,广泛应用于航空航天、石油化工、电力等领域。
镍基合金具有优异的耐高温、耐腐蚀、高强度和良好的加工性能,因此备受工程技术领域的青睐。
首先,镍基合金具有优异的耐高温性能。
在高温环境下,镍基合金能够保持较高的强度和韧性,不易发生变形和热膨胀,因此被广泛应用于航空发动机、航天器件等高温工作环境中。
其优异的高温性能使得镍基合金成为高温结构材料的首选。
其次,镍基合金具有良好的耐腐蚀性能。
在腐蚀介质中,镍基合金能够保持良好的稳定性和耐蚀性,不易发生腐蚀和氧化,因此被广泛应用于化工设备、海洋工程等腐蚀性环境中。
其优异的耐腐蚀性能使得镍基合金成为耐蚀材料的首选。
另外,镍基合金具有高强度和良好的加工性能。
镍基合金在高温环境下仍能保持较高的强度和硬度,同时具有良好的塑性和可加工性,能够满足复杂构件的加工需求,因此被广泛应用于航空航天、汽车制造等领域。
其优异的强度和加工性能使得镍基合金成为高性能结构材料的首选。
总的来说,镍基合金具有优异的耐高温、耐腐蚀、高强度和良好的加工性能,是一种非常重要的金属材料。
随着科学技术的不断发展,镍基合金的性能和应用领域将会得到进一步拓展和提升,为各个领域的工程技术提供更加可靠和高效的材料支撑。
镍基高温合金材料的研究进展一、本文概述镍基高温合金材料作为一种重要的金属材料,以其出色的高温性能、良好的抗氧化性和优异的力学性能,在航空航天、能源、化工等领域具有广泛的应用。
随着科技的快速发展,对镍基高温合金材料的性能要求日益提高,其研究进展也备受关注。
本文旨在全面综述镍基高温合金材料的最新研究进展,包括其成分设计、制备工艺、组织结构、性能优化以及应用领域等方面,以期为未来镍基高温合金材料的进一步发展提供理论支持和指导。
本文首先介绍了镍基高温合金材料的基本概念和特性,概述了其在不同领域的应用现状。
随后,重点分析了镍基高温合金材料的成分设计原理,包括合金元素的选取与配比,以及如何通过成分调控优化材料的性能。
在制备工艺方面,本文介绍了近年来出现的新型制备技术,如粉末冶金、定向凝固、热等静压等,并探讨了这些技术对材料性能的影响。
本文还深入探讨了镍基高温合金材料的组织结构特点,包括相组成、晶粒大小、位错结构等,并分析了这些结构因素对材料性能的影响机制。
在性能优化方面,本文总结了通过热处理、表面处理、复合强化等手段提高镍基高温合金材料性能的研究进展。
本文展望了镍基高温合金材料在未来的发展趋势和应用前景,特别是在新一代航空航天发动机、核能发电、高温传感器等领域的应用潜力。
通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和借鉴,推动镍基高温合金材料的进一步发展和应用。
二、镍基高温合金的基础知识镍基高温合金,也称为镍基超合金,是一种在高温环境下具有优异性能的特殊金属材料。
它们主要由镍元素组成,并添加了各种合金元素,如铬、铝、钛、钽、钨、钼等,以优化其热稳定性、强度、抗氧化性、抗蠕变性和耐腐蚀性。
镍基高温合金的这些特性使其在航空航天、能源、石油化工等领域具有广泛的应用。
镍基高温合金之所以能够在高温环境下保持优异的性能,主要得益于其微观结构的特殊性质。
这些合金在固溶处理和时效处理后,会形成一系列复杂的金属间化合物,如γ'、γ''和γ'″等,这些化合物在基体中弥散分布,起到了强化基体的作用。
镍基高温合金的研究和应用王睿【摘要】镍基高温合金是通常以镍铬为合金基体,并根据具体需求加入不同的合金元素,从而形成的单一奥氏体基体组织.由于镍元素在化学稳定性、合金化能力和想稳定性上的优势,镍基高温合金相对于铁基和钴基高温合金具有更优异的高温强度、抗疲劳性能、抗热腐蚀性、组织稳定性等性能.经过几十年发展和完善,我国高温合金领域在合金设计方法、合金种类、冶炼和热处理工艺、工业化管理等方面均取得了较大的进展,而凭借其独特的优势,镍基高温合金已经成为当代航空航天和燃气轮机工业中地位最重要的高温结构材料.本文主要从常见镍基高温合金分类、冶炼工艺和处理方式、强化机理以及合金化等方面,简要介绍了镍基高温合金的主要研究进展和实际应用.%Nickel-base high-temperature alloys are usually made of nickel-chromium alloy and different alloy elements are added according to specific requirements, thus forming a single austenitic matrix. Because of the advantages of chemical stability, alloying ability and relative stability of nickel element, Nickel-base high-temperature alloys has more excellent high temperature strength, fatigue resistance, thermal properties, such as corrosion resistance, stability of the organization. After decades of development and improvement, the high temperature alloys in China have made great progress in the aspects of alloy design methods, alloy types, smelting and heat treatment processes, industrialization management, etc. With their unique advantages, Ni-based superalloys have become themost important high temperature structural materials in the aerospace and gas turbine industries. In this paper, the main research progress andpractical application of nickel-based superalloy are briefly introduced from the aspects of classification, smelting process and treatment, strengthening mechanism and alloying of common Ni-based superalloys.【期刊名称】《化工中间体》【年(卷),期】2017(000)007【总页数】2页(P50-51)【关键词】镍基高温合金;航空航天【作者】王睿【作者单位】江苏省常州市武进区前黄高级中学国际分校江苏 213000【正文语种】中文【中图分类】T高温合金特指以镍、钴、铁或三者与铬的合金为基体,能够承受苛刻的机械应力和600℃以上高温环境的一类高温结构材料.它一般具有较高的室温和高温强度、良好的抗蠕变性能和疲劳性能、优良的抗氧化性和抗热腐蚀性能、优异的组织稳定性和使用可靠性.上个世纪50年代初,我国通过仿照前苏联,自主研制并生产了出第一款高温合金GH3030,从而拉开了我国对于高温合金研究和应用的序幕.20世纪60年代初,我国投入大量人力和物力研究高温合金等军工领域用材料,许多高温合金的研究和生产中心在此时得以建立,并且引进了大量的科研和检测设备.这一阶段,考虑到我国本身存在quot;缺钴少镍quot;的情况,因此我国在高温合金领域特别是铁基高温合金上取得了前所未有的突破,研究和生产均出具规模,生产了诸如GH4037、K417等多个牌号的高温合金.但是由于基体本身化学和物理性质的原因,铁基高温合金在多方面均远逊色与同成分的镍基高温合金,因此在改革开放后,镍基高温合金逐渐成为我国高温合金研究和生产的主体,通过全面紧扣镍原矿,引进欧美技术,我国在粉末镍基高温合金,单晶镍基高温合金和定向凝固柱晶高温合金等尖端领域均取得了重大突破,先后推出了FGH 系列粉末涡轮盘材料,第一、二代单晶镍基高温合金DD402、DD26等.本文主要从镍基高温合金常见分类、冶炼和制备工艺、强化机理和合金化、实际应用等几个方面来简要介绍了镍基高温合金的研究发展.镍基高温合金具有许多种类,通常按照成型工艺的不同,将其分为铸造高温合金和变形高温合金.铸造高温合金由铸造工艺制备,通常分为等轴晶、定向柱晶和单晶三种.而变形高温合金普遍由粉末工艺制备,分为粉末高温合金和弥散强化型高温合金,通常具有良好的冷热加工性能和力学性能.(1)粉末高温合金利用粉末冶金工艺制造而成的高温合金称为粉末高温合金.传统铸造-锻造工艺制成的高合金化高温合金,存在宏观偏析严重、难于成型、疲劳性低等缺点,因此在工艺生产中并未大规模使用.随着粉末工艺的推广,通过在真空或惰性气体气氛下,以制粉工艺将高合金化难变形高温合金制成细小粉末,再通过不同的成形法制成目标合金.由于晶粒细小、成分均匀、微观偏析轻微,故相对于传统铸造合金,粉末高温合金往往在热加工性能,屈服强度和疲劳强度等力学性能上均得到较大提升.目前我国常用的粉末高温合金主要有FGH系列等,其中80年代研制的FGH95是目前强度最高的粉末高温合金.(2)定向柱晶高温合金通过定向凝固技术,使得合金内的横向晶界被消除,制备出只保留了平行于主应力轴的单一晶界的合金称为定向柱晶高温合金.定向凝固柱晶工艺通过螺旋选晶器或籽晶法,只允许一个柱状晶生长,可制成消除一切晶界的单晶涡轮叶片或导向叶片.定向柱晶高温合金具有优异的高温强度和屈服强度,并且相较于单晶高温合金,工艺更为简单、制作成本和检验成本也更低,因此定向柱晶高温合金被广泛应用于涡轮叶片的制造.(3)单晶高温合金采用定向凝固工艺消除所有晶界的高温合金称为单晶高温合金.单晶高温合金同样采用定向凝固技术,但是在型壳设计上增加了单晶选择通道.由于合金内一切晶界被消除,合金化程度很高,其高温强度、疲劳性能等力学性能相对于等轴晶和定向柱晶高温合金有了大幅度的提高,因此在尖端航空领域,单晶高温合金得到广泛应用,比如美国F35战斗机涡轮叶片所采用的的即使第三代镍基单晶高温合金CMSX-10.但是单晶高温合计由于制造成本相对较高、工艺复杂,因此使用受到局限.不同种类的镍基高温合金采用的制备方式截然不同,定向柱晶高温合金和单晶高温合金均采用定向凝固技术,粉末高温合金采用粉末冶金工艺方法生产,而传统的铸造高温合金采用铸-锻工艺生产.粉末高温合金和单晶高温合金是时下应用最前沿的两类镍基高温合金,因此对于其制备方法的研究是具有直接代表意义的.(1)定向凝固技术制备单晶高温合金和定向柱晶高温合金通常采用定向凝固技术,二者差别在于单晶高温合金往往会增设单晶选择通道.现在常用的定向凝固技术有,高速凝固法(HRS)、液态金属冷却法(LMC)、发热剂法(EP)和功率降低法(PD)等,这其中高速凝固法和液态金属凝固冷却法是目前应用最广的制造工艺.高速凝固法(HRS)通过在加热区底部增设了隔热挡板,并且在水冷底盘添加水冷套,使浇注后型壳与加热器之间发生了相对移动,增大了挡板附近的温度梯度,从而实现细化组织,消除晶界各异性的目的.液态金属冷却法(LMC)则是通过加入一个冷却剂槽,通常以锡为冷却剂.当合金熔体浇注成型后,将其从加热器中移出并逐渐匀速浸入到液态锡冷却剂中,这样在合金凝固表面和内部形成了较大的温度梯度,促使晶粒以单一方向生长.通过控制诸如冷却剂温度、浸入速率等参数可以调整合金的晶粒尺寸.(2)粉末冶金工艺粉末冶金工艺通常分为粉末制备和粉末固结两个阶段.目前在实际生产中的粉末制备工艺主要采用气体雾化法和旋转电极法.气体雾化法又被称为AA法,首先将真空熔炼过的母合金加入到雾化设备中,在真空环境下进行重熔,熔解的合金经由漏嘴流出后,在高压气体流的冲击下被雾化成粉末,其中氩气是最常用的气体.旋转电极法则是将合金料在高速旋转,利用固定的钨电极产生等离子弧来连续熔化合金料,这样在离心力的作用下,形成的液滴飞出形成了细小的粉末.粉末制备成功后,需要进行固结以便成形.由于传统的高温合金粉末中往往含有难烧结且易氧化元素,因此在传统的直接烧结工艺下成形相当困难,必须引入高温高压气氛.目前常见的粉末固结方式有真空热压成形、热等静压成形、热挤压和锻造、电火花烧结等成型方法,其中热等静压和热挤压是国内常用的两个工艺.镍基高温合金的强化效应通常组织强化和工艺强化两种.第一种是因为高温合金中的合金元素和基体元素相互作用,引起组织的变化而产生的强化效应.工艺强化是通过改良生产工艺、处理方式、锻造工艺等来实现对高温合金性能的提升.众多强化方式中,合金化对于高温合金性能的改变尤为重要.镍可以通过固溶、形成第二相等方式与加入的合金元素相互作用,其中常见的合金元素有Cr,W,Mo,Re,Al,Ti,Ta,C,B,Zr和稀土元素等十余种合金元素,这些元素在合金中起着不同的作用.Cr是镍基高温合金中含量相对较高的一个元素,它以固溶态存在于基体中,从而改善镍基高温合金的抗氧化性和抗热腐蚀性.W和Mo通过提高扩散激活能,降低合金中的扩散,从而增强原子间结合力,提高合金的硬度和高温强度.Al 是最主要的γ'相形成元素,且在高温下能形成保护性的氧化膜,提高合金的抗氧化性能,因此Al也常被用于表面化处理.其他如C,B,Zr和稀土元素等微量元素,在镍基高温合金中的含量均在1%以下,但是也起着很强的作用.经过几十年的研究和发展,镍基高温合金虽已经在多个方面均取得较大的突破,但为了满足航空、航天领域对于高性能高温合金材料不断增加的需求,也为了应对相关领域的国际竞争,增加我国的制空竞争力,在以后得研究中仍得从以下几个方面加强:(1)建立和完善更有效的合金设计方法,通过调整合金元素的比例,改善制造工艺来得到强度更高,质量更轻,成本更低的镍基高温合金;(2)应该对尖端高温合金诸如第三代单晶高温合金、第五代粉末高温合金的研制,改善制备工艺,使得这类合金的性能和质量更加稳记录并完善合金的性能和数据;(3)要扩大应用范围,扩展对于民用燃气轮机中高温合金的研制和开发.总之,镍基高温合金是航空航天领域发展的核心关键,高温材料的强度决定了飞机发动机的推重比和性能,因此研究镍基高温合金是认识材料领域,了解我国乃至世界航空航天领域发展,探索我国国防事业的一块敲门砖.王睿,男,江苏省常州市武进区前黄高级中学国际分校;研究方向:材料类.【相关文献】[1]郭建亭.高温材料学[J].北京:科学出版社,2010.06.[2]张义文.粉末高温合金研究进展[J].中国材料进展,2013年第1期.[3]孙晓峰.镍基单晶高温合金研究进展[J].中国材料进展,2012年第12期.[4]王斌,Al对高温合金高温抗氧化性能的影响[J].材料热处理技术,2012年5月.。
镍基高温合金的发展综述本文简要介绍了镍基高温合金的概况以及合金各元素成分设计的发展,其中难溶元素的比例逐渐增加,但促进了TCP相的生成,添加一定比例的Ru元素有抑制TCP相生成的作用。
本文还探讨了未来镍基高温合金将向着更强、更轻、更便宜、更耐腐蚀的发展趋势。
标签:镍基高温合金的发展;Ru;Re;TCP相1 引言随着航空航天工业的不断发展,高温合金的开发与研究越来越被人们所关注。
高温合金是指能够在600℃温度以上条件下可以工作,并可以承受加大应力,有一定耐腐蚀性、抗氧化性等良好高温性能的合金[1]。
高温合金主要应用在航空航天发动机中,其中涡轮叶片、导向叶片、涡轮盘、燃烧室等部件几乎由高温合金制成。
按合金基体元素分类,高温合金主要分为铁基高温合金,钴基高温合金以及镍基高温合金[2]。
其中镍基高温合金拥有良好的组织结构及蠕变性能,是作为航空发动机的首选材料。
2 镍基高温合金概述镍基高温合金在航空航天领域应用比较广泛,约有40%的高温合金为镍基高温合金。
镍基高温合金主要成分为Ni、Co、Cr、W、Mo、Re、Ru、Al、Ta、Ti 等元素,基体为镍元素,含量在60%以上,主要工作温度段在950℃-1100℃,在此温度段内服役时,其有较高的强度,较强的抗氧化能力以及抗腐蚀能力。
镍基高温合金的发展始于英国的80Ni-20Cr合金,人们在其中添加了少量的Ti和Al,发现了强化相,继而开启了发展镍基高温合金的篇章[3]。
60年代初期,人们发现合金的中温性能较差,叶片在工作中有断裂情况发生,经研究发现,合金中境界出杂质较多,原子扩散速率较快,晶界成为在镍基高温合金服役中易发生裂纹的环节,基于这一问题,人们开始研究定向凝固技术。
定向凝固技术就是使合金在生长过程中只沿应力轴方向生长,具有代表性的合金是美国研制的PWA 1422。
从此镍基高温合金的发展进入到新的时期[4]。
但是随着航空航天也的发展,对合金性能的要求越来越高,纵向晶界仍然是影响其高温性能的主要病因。
镍基高温合金材料研究进展汇总第一篇:镍基高温合金材料研究进展汇总镍基高温合金材料研究进展姓名:李义锋镍基高温合金材料概述高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。
高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。
因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。
在整个高温合金领域中,镍基高温合金占有特殊重要的地位。
与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。
现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。
镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。
镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。
因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。
镍基高温合金是以镍为基体(含量一般大于50)、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。
它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。
除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。
镍基高温合金的发展综述1. 介绍镍基高温合金是一类在高温环境下具有优异性能的关键结构材料。
本文将全面、详细、完整且深入地探讨镍基高温合金的发展历程、特点、应用领域等相关内容。
2. 发展历程2.1 第一代镍基高温合金•由于20世纪40年代至50年代初钴基高温合金的应用限制,镍基高温合金得到迅速发展。
•第一代镍基高温合金主要在航空发动机领域得到应用,如涡轮叶片、燃烧室零部件等。
2.2 第二代镍基高温合金•第二代镍基高温合金在组织结构和配合元素方面进行了改进,提高了合金的性能。
•新的合金设计原则和制备工艺使得合金具有更好的高温强度、耐氧化性和抗蠕变性能。
•第二代镍基高温合金主要应用于航空航天、能源以及化工领域。
2.3 第三代镍基高温合金•第三代镍基高温合金通过引入奇异金属、微合金元素和稀土元素等进行改进,进一步提高合金性能。
•镍基单⽚晶高温合金、镍基镍二基体高温合金等新型合金在高温强度、耐腐蚀性和疲劳寿命等方面取得重要突破。
•第三代镍基高温合金在航空、汽车、石化等行业中得到广泛应用。
3. 特点3.1 高温强度•镍基高温合金具有优异的高温强度,能够在高温下保持较好的力学性能。
•合金中的强化相和固溶体相可以有效提高合金的抗拉强度和屈服强度。
3.2 耐氧化性•镍基高温合金具有出色的耐氧化性能,能够在高温下长时间稳定地抵抗氧化反应。
•氧化层的形成和增长能够减缓合金的氧化速率,提高合金的使用寿命。
3.3 抗蠕变性•镍基高温合金能够在高温下抵抗蠕变现象的发生,保持较好的形变能力和稳定性。
•合金中的蠕变阻滞相能够有效抑制晶间滑移和晶粒边界滑移,提高合金的抗蠕变能力。
3.4 耐腐蚀性•镍基高温合金具有优良的耐腐蚀性能,能够在酸碱等腐蚀介质中长时间稳定地使用。
•合金中的合金化元素和稀土元素能够提高合金的耐腐蚀性,延长合金的使用寿命。
4. 应用领域4.1 航空航天领域•镍基高温合金在航空发动机、航空轴承等关键部位的应用得到广泛推广。
镍基耐蚀合金的研究进展概述镍基耐蚀合金是一类具有优异耐蚀性能的合金材料,广泛应用于化工、石油、电力等行业中,以满足严苛环境下的材料需求。
本文将对镍基耐蚀合金的研究进展进行综述,包括合金成分、耐蚀性能、制备工艺等方面的内容。
一、合金成分镍基耐蚀合金的成分设计是其性能优越性的基础。
笔者整理了近年来国内外研究的合金成分数据,发现镍基耐蚀合金中常见的元素包括镍、铬、钼、钼、铜等。
例如,INCONEL 625合金由镍、铬、钼和铁构成,这些元素的合理配比可以使合金同时具备耐蚀和耐高温的特点。
二、耐蚀性能镍基耐蚀合金的耐蚀性能是其应用的关键指标。
随着研究的深入,学者们提出了各种评估耐蚀性能的方法,如研究合金的抗腐蚀性能、耐蚀性能和氯化物应力腐蚀开裂性能等。
研究表明,镍基耐蚀合金具有优良的耐蚀性能,可以在酸、碱、盐等复杂介质中长期稳定运行。
三、制备工艺制备工艺对镍基耐蚀合金的性能有着重要影响。
随着技术的不断进步,制备工艺也在不断演进。
例如,采用真空冶金技术可以获得高纯度的镍基耐蚀合金,提高其材料的机械性能和耐蚀性能。
此外,熔模铸造、等离子喷涂等技术也被广泛应用于合金制备过程中,以满足不同需求下对合金的要求。
四、应用前景镍基耐蚀合金在现代工业中应用广泛,其应用前景十分广阔。
首先,在化工领域中,镍基耐蚀合金可用于制备化学反应设备、化学储槽等,以抵抗酸、碱、盐等介质的腐蚀。
其次,在石油行业中,镍基耐蚀合金被广泛应用于油气开采、炼油等领域,以应对高温、高压和腐蚀性环境。
此外,电力、航空航天等领域也对镍基耐蚀合金的性能提出了更高的要求,推动了合金研究的不断深入。
结论镍基耐蚀合金作为一种重要的材料,在化工、石油、电力等行业中发挥着重要作用。
目前,对于镍基耐蚀合金的研究主要集中在合金成分的优化、耐蚀性能的评估和制备工艺的改进等方面,以满足不同环境下的要求。
随着技术的不断进步,相信镍基耐蚀合金的应用前景将更为广阔,为工业发展提供更可靠的材料支持。
第一部分:原镍宏观产量与宏观消费一、原镍生产(一)、镍地质资源概况据美国地质调查局报导,2007年世界镍储量为6700万吨,储量基础约为15000万吨。
世界陆地查明含镍品位在1%左右的资源量为14000万吨,其中72%属于红土型镍矿床,共、伴生矿产主要是铁和钴,主要分布在古巴、新喀里多尼亚、印度尼西亚、菲律宾、巴西、哥伦比亚和多米尼加等国;28%属于岩浆型铜镍硫化物矿床,共、伴生矿产主要有铜、钴、金、银及铂族元素,主要分布在澳大利亚、加拿大、俄罗斯、中国、南非、津巴布韦和博茨瓦纳等国,目前开采的主要是后一类矿床。
另外,大洋深海底的锰结核和锰结壳中还含有大量的镍资源。
中国已查明的镍金属储量为360万吨,且多数都已开发利用。
远景找矿主要在新疆、甘肃、吉林等省区进行,预测远景资源量在2000万吨以上。
我国镍矿类型主要分为硫化铜镍矿和红土镍矿两大类,但是以硫化铜镍矿为主,约占全国总量的86%,并且共伴生矿产多、综合利用价值高,红土镍矿约占总量的14%。
甘肃、陕西、吉林及新疆四省(区)的镍矿储约占全国总量的97.7%,其中特别是甘肃,其镍储量约占全国总量的70%。
世界的镍资源比较丰富,按目前的生产能力,查明储量和基础储量分别可以保证50年和100年,并且找矿潜力很大。
(二)、世界镍生产根据INSG报告,2010年全球原镍产量为144万吨,2011年升至160万吨,2010年全球原镍消费量为147万吨,2011年升至约154万吨,这表明:2010年全球镍市场短缺3万吨,而到了2011年,全球镍市场过剩6万吨。
英国金属研究局(CRU)统计出世界前十大精炼镍厂商见表1。
俄罗斯、巴西、中国、澳大利亚、瑞士是世界主要的精炼镍生产国。
表1 2011年世界十大精炼镍生产厂商近几年世界十大矿山镍生产国见表2。
俄罗斯、加拿大、澳大利亚、印度尼西亚和新喀里多尼亚是世界主要矿山镍生产国。
2005-2009年世界矿山镍生产情况单位:万吨资料来源:World Metal Statistics,Yearbook 20102010年以来,随着镍价的企稳回升,大部分在金融危机期间被迫减产或停产的企业陆续恢复生产。