期末总结_高等土力学
- 格式:ppt
- 大小:661.50 KB
- 文档页数:55
第二章 土的本构关系(一)概述材料的本构关系是反映其力学性能的数学表达式,一般为应力-应变时间-强度的关系,也称本构定律、本构方程。
土的强度是土受力变形的一个阶段,即微小应力增量小,发生无限大(或不可控制)应变增量,实际是本构关系一个组成部分,是土受力变形的最后阶段。
第一应力不变量kk z y x I σσσσ=++=1第二应力不变量kk yz xz xy z y z x y x I στττσσσσσσ=---++=2222第三应力不变量22232xyz xz y yz x yz xz xy z y x I τστστστττσσσ---+= 坐标系选择使剪应力为零 3211σσσ++=I ,3231212σσσσσσ++=I 3213σσσ=I 球应力张量)(31)(3131321332211σσσσσσσσ++=++==kk m 偏应力张量ii kk ij ij s δσσ31-=,其中⎩⎨⎧=≠=j i j i ii 10δ,克罗内克解第一偏应力不变量01≡=kk s J 第二偏应力不变量()()()[]23123222126121σσσσσσ-+-+-==ji ij s s J 第二偏应力不变量()()()213312321322227131σσσσσσσσσ------==ki jk ij s s s J 1.土的应力应变特性:非线性(应变/加工硬化、应变/加工软化)、剪胀性、弹塑性、各向异性、结构性、流变性(蠕变、应力松弛)。
加工硬化:应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定(正常固结黏土、松砂)加工软化:应力一开始随应变增加而增加,超过一个峰值后,应力随应变增加而减小,最后趋于稳定(超固结黏土、松砂)剪胀性:剪应力引起的体积变化,含剪胀和剪缩土的结构性:由土颗粒空间排列集合、土中各相和颗粒间作用力造成,可明显提高土的强度和刚度。
灵敏度:原状黏性土与重塑土的无侧限抗压强度之比土的蠕变:应力状态不变条件下,应变随时间逐渐增长的现象,随土的塑性、活动性、含水量增加而加剧土的应力松弛:维持应变不变,材料内应力随时间逐渐减小的现象压硬性:土的变形模量(指无侧限,压缩模指完全侧限)随围压而提高的现象。
高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。
二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。
在力学中,本构关系泛指普遍的应力—应变关系。
因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。
因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。
例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。
因此应力和应变之间存在着唯一对应的关系。
当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。
塑性本构关系要比弹性本构关系复杂得多。
如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。
本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。
各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。
非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。
弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。
即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。
土力学心得期末总结一、引言土力学是土木工程中的一门基础课程,主要研究土体在荷载作用下的力学性质及其应用。
通过学习土力学可以了解土体的力学特性,并解决土体工程中的各种问题。
本文将对期末总结进行详细阐述。
二、理论学习1. 弹性力学弹性力学是土力学的基础,主要研究线弹性情况下土体的力学性质。
通过学习弹性力学,我了解到了土体在受力后会产生变形,而变形会导致土体内部的应力情况发生变化,从而影响土体的稳定性。
在实际工程中,需要根据土体的弹性特性对土体进行合理的受力设计。
2. 塑性力学塑性力学是土力学中较为复杂的一部分,主要研究土体的塑性变形特性。
在学习塑性力学的过程中,我了解到了土体的塑性变形是由于土体中颗粒之间的摩擦力和吸力引起的。
在实际工程中,需要对土体的塑性特性进行准确评估,进而采取相应的处理措施,确保土体的稳定和安全。
3. 荷载传递理论荷载传递理论是土力学中的重要内容,主要用于研究土体在外部荷载作用下的变形和破坏规律。
通过学习荷载传递理论,我了解到了土体的变形行为是由于荷载在土体内部传递引起的。
在实际工程中,需要通过合理设计荷载传递路径,减小荷载对土体的损伤,确保土体的稳定和安全。
4. 应力路径与破裂理论应力路径与破裂理论是土力学中的重要内容,主要用于研究土体的应力变化规律和破裂机制。
通过学习应力路径与破裂理论,我了解到了土体在荷载作用下会发生应力变化,并由此引起土体的破坏。
在实际工程中,需要根据土体的应力变化规律对土体进行合理的设计和施工,以确保土体的稳定和安全。
三、实践应用1. 土体的力学性质测试在实验室中,我通过对土体进行力学性质测试,了解了土体的基本力学性质。
通过测量土体的体积重、含水量以及抗剪强度等指标,可以评估土体的稳定性和安全性,为工程设计提供依据。
2. 土体的加固与处理在实际工程中,我参与了一些土体的加固与处理工程。
通过对土体的改良、加固和处理,可以提高土体的稳定性和安全性,满足工程对土体强度和稳定性的要求。
土力学与基础工程期末总结一、引言土力学与基础工程是土木工程专业的一门重要课程,主要研究土壤的物理力学性质和土体的结构、变形与破坏规律,以及土体与基础工程的相互作用关系。
本学期土力学与基础工程课程内容涵盖了土壤的力学性质、土的应力分析、地下水流动、地基的承载力与变形等方面的知识。
在学习过程中,我通过课本的学习、实验的实践和习题的考核等方面全面提高了我对土力学与基础工程的理解和应用能力。
在此期末总结中,我将从学习的内容、实验的实践和应用的能力等方面进行总结。
二、学习内容1. 土壤力学性质的学习:本门课程首先讲解了土壤的力学性质,包括土的颗粒级配、孔隙比、堆实度等,通过学习了解土壤的基本物理性质,为后续学习提供了基础。
2. 土的应力分析:土的应力分析是土力学与基础工程中的重要内容,通过学习,了解了土体受力的基本原理和方法,掌握了计算土体内应力和应变的计算方法。
3. 地下水流动:地下水流动对土体的力学性质和地基工程的设计与施工非常重要。
课程讲解了地下水流动的基本规律和计算方法,研究了地下水对土体的影响,为日后的工程实践提供了基础。
4. 地基承载力与变形:地基承载力与变形是土力学与基础工程中的核心内容,学习了地基承载力的计算方法及其与土质、开挖等因素的关系;同时研究了土体的变形特性和变形机制,深入理解了地基的变形原因和控制方法。
5. 基于基础工程实践的案例分析:在课程的最后阶段,老师安排了一些基础工程实践的案例分析,通过对实际工程的分析,将课程中学到的知识运用到实践中,提高了我们的解决问题的能力。
三、实验实践1. 水贯入试验:在本学期的实验实践中,我们进行了水贯入试验,通过观察水贯入试验过程中的现象,了解了土壤的渗透性质,并学习了水贯入试验的数据处理和分析方法。
2. 压缩试验:压缩试验是土力学与基础工程中的重要实验之一,通过实验可以了解土体的压缩性质,掌握了压缩试验的操作流程和数据处理方法。
3. 剪切试验:剪切试验是土壤力学研究中的基本实验之一,通过实验可以获得土壤的剪切性质,学习了剪切试验的操作方法和数据处理技巧。
第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。
更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。
(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。
固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。
初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。
5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。
土力学期末知识点总结第一章土的物理性质和工程分类在地基设计中,需要满足地基的强度条件和变形条件这两个条件。
土是由完整坚固岩石经过风化、剥蚀、搬运和沉积而形成的。
根据成因的不同,第四纪沉积物可以分为残积物、坡积物、洪积物、冲积物、海相沉积物、湖沼沉积物、冰川沉积物和风积物。
与其他材料(如钢材)相比,土具有强度低、压缩性大和透水性大的特性。
与一般建筑材料相比,土具有散体性、多相性、成层性和变异性等特性。
土的三相组成包括固体、液体和气体。
它们的比例与土的物理力学性质有关系。
当含水量增加时,土的抗剪强度会降低。
粒度成分是工程上常用来描述土的颗粒组成情况的指标,它是不同粒径颗粒的相对含量。
土中的水可以按静电引力的不同分为结合水和自由水。
结合水包括强结合水和弱结合水,自由水包括重力水和毛细水。
在粒度分析累计曲线法中,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好。
土的毛细现象是指土在表面张力作用下,沿着细小孔隙向上或其它方向移动的现象。
它会对工程产生不利的影响,如路基冻害、地下室潮湿和土地的沼泽化等,从而引起地基承载力下降。
土粒间的连接关系包括接触连接、胶结连接、结合水连接和冰连接。
土的结构包括单粒结构、蜂窝结构和絮状结构。
土的构造包括层状构造、分散构造、结核状构造和裂隙构造。
土的基本指标测定方法包括土的密度测定方法(环刀法)、土的含水量测定方法(烘干法)和土的相对密度测定方法(比重瓶法)。
土的三相比例指标包括土的密度、土粒密度、含水量、干密度、饱和密度、浮重度、孔隙比、孔隙率和饱和度。
它们的计算公式分别为ρ=m/v、ρ=ms/vs、ω=mω/ms、ρd=ms/v、ρsat=(mw+ms)/v、γ’=γsat-γw、e=vv/vs、n=vv/v和XXX。
例如,试验土样体积为60cm3,质量为300g,烘干后质量为260g,则该土样的干密度为4.35g/cm3.粘性土的可塑性大小可以用塑性指数来衡量,而液性指数可以用来描述土体的状态。
第一部分:概念总结1.土的密度:单位体积土的质量。
2.相对密度:土粒密度与4 ℃时纯水密度之比。
3.土的含水率:土中水的质量与土粒质量之比4.孔隙比:土中孔隙体积与土粒体积之比。
5.孔隙率:土中孔隙体积与土总体积之比以百分数计。
6.土的饱和度:土中被水充满孔隙体积与空隙总体积之比。
7.土的饱和密度:土中孔隙被水充满时土的密度。
8.土的干密度;单位体积中土粒的质量。
9.土的有效重度:对于地下水以下的土体,由于受到水的浮力作用,将扣除水浮力后单位体积所受的重力。
10.渗透力:水在土体中渗流,受到土骨架的阻力,同时水也对土骨架施加推力,单位体积所受到的水推力。
11.临界水力梯度:土颗粒之间压力等到零,土颗粒处于悬浮状态,而失去稳定时的水头。
12.管涌:水在土中渗流时,土中的一些细小颗粒在渗透力作用下,可能通过粗颗粒的孔隙被水流带走的现象。
13.流砂:土颗粒之间压力等于零,处于悬浮状态而失去稳定的现象。
14.有效应力:土中总应力的一部分由土颗粒间接触面承担的力。
15.孔隙水压力:土中总应力的一部分由土体孔隙的水及气体承担的力。
16.超净孔隙水压力:由渗流所引起的,即超过静水位的那部分测压管水柱所产生的孔隙水应力。
17.土的抗剪强度:指土体对外荷载所产生的剪应力的极限抵抗能力。
18.地基承载力:指地基土单位面积上所能承受荷载的能力。
第二部分:简答论述总结1.粗粒划分原则(1)应满足在一定粒度范围内,土的工程性质相近原则,超过了这个粒径范围,土的性质就要发生质的变化。
(2)粗粒界限的确定,则视起主导作用的特性而定,而且要考虑与目前粒度成分的测定技术相适应。
2.颗粒级配的测定即表示方法(1)测定方法①筛选法②静水沉降分析法②静水分析法又分为:比重计法和移液管法(2)表示方法有①列表法②累计曲线法累计曲线法又分为:粒径分布曲线和粒组频率曲线。
3.土按颗粒级配的分类①巨粒:漂石(块石)粒(d > 200mm) 卵石(碎石)粒(200mm > d > 60mm )②粗粒:砾粒{粗砾(60mm > d > 20mm ) ,细粒(20mm > d > 2 mm) } ;砂粒(2mm > d > 0.075mm )③细粒:粉粒(0.075 mm > d > 0.05mm ) ,粘粒(d > 0.05 mm)4.土的工程分类的一般原则及分类和我国主要的土的性质分类情况(1)分类原则:综合考虑了粒度和塑性的影响,粗粒土考虑粒度为主,细粒土考虑塑性特性为主。
高等土力学期末考试试题汇总.总结高等土力学期末考试试题汇总.总结1、填空:主要影响土的因素应力水平,应力路径,应力历史2、填空:土的主要应力应变特性非线性,弹塑性,剪胀性3、概念:应力历史:包括自然土在过去地质年月中受到固结和地壳运动作用刘翰青一、论述题邓肯-张模型中参数a,b,B各代表什么含义?他们是怎样确定的?答:在邓肯-张模型中,a,b为试验常数。
在常规三轴压缩试验中,式子可写为由于δ2=δ3=0,所以有 =在起始点,有ε1=0, Et=Ei, 则Ei=1/a, 即a代表试验起始变形模量Ei的倒数。
当ε1趋向于﹢∞时,有s1-s3=(s1-s3)ult=1/b则b为极限应力偏差的倒数B为体变应量,在E-B模型中提出,用来代替切线泊松比γt。
其中,B与δ3有关。
a,b,B通常用阅历公式计算确定:二、名词解释次弹性模型:是一种在增量意义上的弹性模型,亦即只有应力增量张量和应变增量张量间存在一一对应的弹性关系,因此,也被称为最小弹性模型。
一般函数关系为dσij = Fij (σmn , dεkl),或dεij= Qij (εmn, dσkl)韩凯1:什么是加工硬化?什么是加工软化?答:加工硬化也称应变硬化,是指材料的应力随应变增加而增加,弹增加速率越来越慢,最终趋于稳定。
加工软化也称应变软化,指材料的应力在开头时随着应变增加而增加,达到一个峰值后,应力随应变增加而下降,最终也趋于稳定。
2说明塑性理论中的屈服准则、流淌规章、加工硬化理论、相适应和不相适应的流淌准则。
答:在多向应力作用下,变形体进入塑性状态并使塑性变形连续进行,各应力重量与材料性能之间必需符合肯定关系时,这种关系称为屈服准则。
屈服准则可以用来推断弹塑性材料被施加一应力增量后是加载还是卸载,或是中性变载,亦即是推断是否发生塑性变形的准则。
流淌规章指塑性应变增量的方向是由应力空间的塑性势面g打算,即在应力空间中,各应力状态点的塑性应变增量方向必需与通过改点的塑性势能面相垂直,亦即=(1)流淌规章用以确定塑性应变增量的方向或塑性应变增量张量的各个重量间的比例关系。