三角形的外角练习题与标准答案
- 格式:docx
- 大小:97.12 KB
- 文档页数:6
7.2.2 三角形的外角基础过关作业1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.综合创新作业7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.10.(易错题)三角形的三个外角中最多有_______个锐角.培优作业11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1.钝角2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,∴∠BAE=∠CAE=12∠BAC=25°.∴∠AEB=∠CAE+∠C=25°+78°=103°.6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,所以∠BHC=∠HDC+∠ACE=90°+30°=120°.7.30°点拨:设∠CAD=2a,由AB=AC知∠B=12(180°-60°-2a)=60°-•a,•∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,所以∠EDC=180°-∠ADE-∠ADB=30°.8.解法1:如答图1,延长BC交AD于点E,则∠DEB=∠A+∠B=90°+30°=•120°,从而∠DCB=∠DEB+∠D=120°+20°=140°.若零件合格,∠DCB应等于140°.李叔叔量得∠BCD=142°,因此可以断定该零件不合格.(1) (2) (3)点拨:也可以延长DC与AB交于一点,方法与此相同.解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.解法3:如答图3,过点C作EF∥AB,交AD于E,则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.说明:也可以过点C作AD的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.∴∠OQA+∠QPC+∠EOP=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.(2)360°点拨:方法同(1).10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.11.解:(1)∠BDC=90°-12∠A.理由:∠ABC+∠ACB=180°-∠A.∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,∴∠CBD=12∠EBC,∠BCD=12∠FCB.∴∠CBD+∠BCD=12(∠EBC+∠FCB)=12×(180°+∠A)=90°+12∠A.在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+12∠A)=90°-12∠A.(2)∠BDC=12∠A.理由:∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵CD是∠ACE的平分线,BD是∠ABC的平分线,∴∠DCE=12∠ACE=12∠A+12∠ABC,∠DBC=12∠ABC.∵∠DCE是△BCD的外角,∴∠BDC=∠DCE-∠DBC=12∠A+12∠ABC-12∠ABC=12∠A.12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。
三角形的外角(习题)➢ 例题示范例1:已知:如图,点E 是直线AB ,CD 外一点,连接DE 交AB 于点F ,∠D =∠B +∠E . 求证:AB ∥CD .D CEA B F①读题标注 ②梳理思路要证AB ∥CD ,需要考虑同位角、内错角、同旁内角. 因为已知∠D =∠B +∠E ,而由外角定理得∠AFE =∠B +∠E ,故∠D =∠AFE ,所以AB ∥CD . ③过程书写 证明:如图,∵∠AFE 是△BEF 的一个外角(外角的定义)∴∠AFE =∠B+∠E (三角形的外角等于与它不相邻的两个内角的和)∵∠D =∠B +∠E (已知) ∴∠AFE =∠D (等量代换)∴AB ∥CD (同位角相等,两直线平行)➢ 巩固练习1. 如图,在△ABC 中,∠1是它的一个外角,∠1=115°,∠A =40°,∠D =35°,则∠2=________.21E F DCBADC EA BF2. 已知:如图,在△ABC 中,∠BAC =50°,∠C =60°,AD ⊥BC ,BE 是∠ABC 的平分线,AD ,BE 交于点F ,则∠AFB 的度数为____________.F BAEC Dα第2题图 第3题图3. 将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数为( ) A .45°B .60°C .75°D .904. 如图,已知∠A =25°,∠EFB =95°,∠B =40°,则∠D 的度数为_____________.FEDCB AD CEAB第4题图 第5题图5. 如图,已知AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =50°,则∠D =_______,∠ACB =_______.6. 如图,在△ABC 中,∠A =40°,∠ABC 的平分线BD 交AC 于点D ,∠BDC =70°,求∠C 的度数. 解:如图,∵∠BDC 是△ABD 的一个外角 (_____________________) ∴∠BDC =∠A +∠ABD(_____________________) ∵∠A =40°,∠BDC =70° (_____________________)∴∠ABD =_______-________=________-________ =________(_____________________)第4题图DCAB∵BD 平分∠ABC (_____________________)∴∠ABC =2∠ABD=_____×______ =__________ (_____________________)∴∠C =180°-∠A -∠ABC=180°-________-_______ =________(_____________________)7. 已知:如图,CE 是△ABC 的一个外角平分线,且EF ∥BC 交AB 于点F ,∠A =60°,∠E =55°,求∠B 的度数.8. 已知:如图,在△ABC 中,BD 平分∠ABC ,交AC 于点D ,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,求∠AED 的度数.EDCBAFEDC B A➢思考小结1.在证明过程中:(1)要证平行,找_______角、_______角、_______角.(2)要求一个角的度数:①由平行,想_______相等、________相等、__________互补;②由直角考虑互余,由平角考虑_______,由对顶角考虑____________;③若把一个角看作三角形的内角,考虑_______________________________;④若把一个角看作三角形的外角,考虑__________________________________________.2.阅读材料欧几里得公理体系几何学创建的初期,内容是繁杂和混乱的.人们进行几何推理时,总是拿自己掌握的一些“基本事实”作为大前提去进行推理,而每个人心中的“基本事实”不尽相同.这就导致很多内容无法沟通,也没有统一的标准.这时,有必要将几何的内容,用逻辑的“锁链”整理、穿连起来.第一个完成这件工作的是古希腊数学家欧几里得(Euclid).欧几里得知识渊博,数学造诣精湛,尤其擅长几何证明.当他意识到几何学有必要做出系统整理的时候,就开始着手编写自己的著作《原本》了.他的思路是这样的:首先给出一些最基本的定义,如“点是没有部分的”,“线是没有宽度的”等;接着他列出了5条公设和5条公理作为推理的基本事实,而之后所有的推理都必须建立在这5条公设和5条公理基础上来进行.5条公设是:(1)从任意点到任意点作直线是可能的.(2)把有限直线不断沿直线延长是可能的.(3)以任意点为中心和任意距离为半径作一圆是可能的.(4)所有直角彼此相等.(5)若一直线与两条直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的另一点.5条公理是:(1)跟同一件东西相等的一些东西,它们彼此也是相等的.(2)等量加等量,总量仍相等.(3)等量减等量,余量仍相等.(4)彼此重合的东西是相等的.(5)整体大于部分.其中5条公设主要对作图进行了相应的规范,而5条公理则主要从代数推理上进行规定.欧几里得基于上述这些公设和公理,推导出了平面几何中几乎所有的结论,从而构成了一个完整的几何体系,我们称之为欧氏几何.而他的著作《原本》中关于平面几何的部分,被翻译成中文叫做《几何原本》,正是我们平面几何的原型.而欧几里得这种对几何知识进行系统化、理论化的总结方法就被称之为公理法,而《原本》正是公理化体系的最好阐释.【参考答案】➢巩固练习1.40°2.125°3.C4.20°5.20°,70°6.∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠A+∠ABD(三角形的外角等于与它不相邻的两个内角的和)∵∠A=40°,∠BDC=70°(已知)∴∠ABD=∠BDC-∠A=70°-40°=30°(等式的性质)∵BD平分∠ABC(已知)-40°-60°=80°(三角形的内角和等于180°)7.解:如图,∵EF∥BC(已知)∴∠ECD=∠E(两直线平行,内错角相等)∵∠E=55°(已知)∴∠ECD=55°(等量代换)∵CE是△ABC的一个外角平分线(已知)∴∠ACD=2∠ECD=2×55°=110°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∴∠ACD=∠A+∠B(三角形的外角等于与它不相邻的两个内角的和)∵∠A=60°(已知)∴∠B=∠ACD-∠A=110°-60°=50°(等式的性质)8.解:如图,∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠ABD+∠A(三角形的外角等于与它不相邻的两个内角的和)∵∠A=45°,∠BDC=60°(已知)∴∠ABD=∠BDC-∠A=60°-45°=15°(等式的性质)∵BD平分∠ABC(已知)∴∠ABC=2∠ABD=2×15°=30°(角平分线的定义)∵DE∥BC(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=30°(等量代换)➢思考小结1.(1)同位、内错、同旁内.(2)①同位角、内错角、同旁内角;②互补,对顶角相等;③三角形的内角和等于180°.④三角形的外角等于与它不相邻的两个内角的和.。
学生做题前请先回答以下问题问题1:三角形外角定理:三角形的一个外角等于__________________.问题2:已知,如图,BD∥EF,∠E=60°,∠A=70°,求∠ACD的度数.(要求:请你首先读题标注,然后走通思路,最后再设计方案,书写过程)以下是问题及答案,请对比参考:问题1:三角形外角定理:三角形的一个外角等于.答:和它不相邻的两个内角的和.问题2:已知,如图,BD∥EF,∠E=60°,∠A=70°,求∠ACD的度数.(要求:请你首先读题标注,然后走通思路,最后再设计方案,书写过程)答:解:如图∵BD∥EF(已知)∴∠ABC=∠E(两直线平行,同位角相等)∵∠E=60°(已知)∴∠ABC=60°(等量代换)∵∠ACD是△ABC的一个外角(已知)∴∠ACD=∠ABC+∠A(三角形的一个外角等于和它不相邻的两个内角的和)∵∠A=70°(已知)∴∠ACD=∠ABC+∠A=60°+70°=130°(等量代换)三角形的外角(计算)(人教版)一、单选题(共8道,每道12分)1.如图,AD是△ABC的外角∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD的度数为( )A.25°B.85°C.60°D.95°答案:D解题思路:试题难度:三颗星知识点:三角形的外角2.如图,在△ABC中,AE平分∠BAC交BC于点E,BF平分∠ABC交AC于点F,AE,BF相交于点O.若∠BAC=50°,∠C=70°,则∠BOE的度数为( )A.60°B.50°C.70°D.55°答案:D解题思路:试题难度:三颗星知识点:三角形的外角3.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,若∠A=45°,∠B=30°,∠C=40°,则∠BFC的度数为( )A.110°B.115°C.120°D.145°答案:B解题思路:试题难度:三颗星知识点:三角形的外角4.如图,在△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别为D,E,AD,BE相交于点H,则∠AHB的度数为( )A.110°B.100°C.95°D.120°答案:A解题思路:试题难度:三颗星知识点:三角形的外角5.如图,在△ABC中,E是CA延长线上一点,点D在BC上,DE交AB于点F,若∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数为( )A.25°B.10°C.20°D.15°答案:D解题思路:试题难度:三颗星知识点:三角形的外角6.如图,EG∥AD,EG交AB于点F,交CA的延长线于点G,若∠B=20°,∠GFA=30°,则∠ADC的度数为( )A.50°B.40°C.45°D.60°答案:A解题思路:试题难度:三颗星知识点:三角形的外角7.已知:如图,AB∥CD,∠B=65°,∠E=20°,则∠D的度数为( )A.45°B.55°C.65°D.85°答案:A解题思路:试题难度:三颗星知识点:三角形的外角8.如图,已知∠B=∠ADB,∠3=55°,∠2=20°,则∠1的度数为( )A.35°B.10°C.30°D.15°答案:D解题思路:试题难度:三颗星知识点:三角形的外角。
《11.2.2三角形的外角》课时练一、选择题1.三角形中有一内角是60°,则与它相邻的外角是()A.120°B.100°C.90°D.80°2.如图,平面上直线a、b分别过线段OK两端点(数据如图),则a、b相交所成的锐角是()A.20°B.30°C.70°D.80°3.如图所示,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A等于()A.35°B.95°C.85°D.75°4.如图所示,下列结论正确的是()A.∠1>∠2>∠A B.∠1>∠A>∠2C.∠A>∠2>∠1D.∠2>∠1>∠A5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为()A.10°B.15°C.20°D.25°6.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为() A.30°B.60°C.90°D.120°二、填空题7.三角形的一边与另一边的组成的角叫做三角形的外角.8.三角形的外角等于与它的两个内角的和.三角形的外角和等于.9.如图所示,在△ABC中,D是BC上任意一点,E是AD上任意一点,∠ADB是的外角,∠AEB是的外角,∠CDA是的外角.10.如图∠A+∠B+∠C+∠D+∠E=()11.如图,∠3=140°,则∠2-∠1=.12.如图,直线AB、CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=.13.如图,∠A=60°,∠B=47°,∠C=33°,则∠D=.14.用“>、<、=”填空.(1)∠B+∠A∠ACD;(2)∠ACD∠A,∠ACD∠B.三、解答题15.如图,直线DE交△ABC的边AB、AC于D、E,交BC的延长线于点F.若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.16.如图,△ABC中,D是BC边上一点,且∠1=∠2,∠3=∠4,∠BAC=78°.求∠DAC的度数.17.如图,∠1=20°,∠2=25°,∠A=35°.求∠BDC的度数.18.如图,在△ABC中,∠B=40°,∠BCD=100°,EC平分∠ACB,求∠A与∠ACE的度数.19.一个零件的形状如图所示,按规定,∠BAC=90°,∠B=21°,∠C=20°,检验工人量得∠BDC=130°,就断定这个零件不合格.运用所学知识说明不合格的理由.20.如图,在△ABC中,三个内角的平分线相交于点O,过点O作OD⊥OB,交边BC于点D,△ABC的外角∠ABE的平分线交CO的延长线于点F.(1)求证:BF∥OD;(2)若∠F=35°,求∠BAC的度数.参考答案1-6ABCAA C7.延长线8.不相邻360°9.△ACD△DBE △DBE 或△ABD 10.180°11.40°12.80°13.140°14.(1)=(2)>>15.解:∵∠B =67°,∠ACB =74°,∴∠A =180°-67°-74°=39°.∵∠AED =48°,∴∠BDF =39°+48°=87°.16.解:∵∠3=∠1+∠2,∠1=∠2,∴∠3=2∠2.又∵∠4=∠3,∴∠4=2∠2.设∠2=x°,则∠4=2x°.在△ABC 中,x°+2x°+78°=180°,解得x°=34°.∴∠3=∠4=68°.∴∠DAC =180°-(∠3+∠4)=180°-136°=44°.17.解:如图,延长CD 交AB 于E ,因为∠BDC 是△BDE 的外角,所以∠BDC =∠1+∠BED.又∠BED 是△ACE 的外角,所以∠BED =∠A +∠2,因此∠BDC =∠1+∠2+∠A =20°+25°+35°=80°.18.解:∵∠BCD =100°,∠BCD =∠B +∠A ,∠B =40°,∴∠A =60°.∵∠BCD +∠BCA =180°,∴∠BCA=80°.∵CE 平分∠ACB ,∴∠ACE =40°.19.解:如图,连接AD 并延长至E.由外角定理有∠CDE =∠C +∠1,∠BDE =∠B +∠2,∴∠CDE +∠BDE =∠C +∠1+∠B +∠2,即∠CDB =∠C +∠B +∠CAB ,若零件合格,则有∠BDC =90°+20°+21=131°,而量得∠CDB =130°,∴零件不合格.20.(1)证明:∵BF 平分∠ABE ,BO 为∠ABC 的平分线,∴∠FBE =12∠ABE =12(180°-∠ABC)=90°-∠DBO.∵OD ⊥OB ,∴∠BOD =90°,∴∠ODB =90°-∠OBD ,∴∠FBE =∠ODB ,∴BF ∥OD ;(2)解:∵BF 平分∠ABE ,∴∠FBE =12∠ABE =12(∠BAC +∠ACB).∵在△ABC 中,三个内角的平分线相交于点O ,∴∠FCB =12∠ACB.∵∠F =∠FBE -∠FCB =12(∠BAC +∠ACB)-12ACB =12∠BAC.∵∠F =35°,∴∠BAC =2∠F =70°.。
《11.2.2三角形的外角》课时练命题点1三角形外角的概念及性质1.如图下列角中是△ACD的外角的是()A.∠EAD B.∠BAC C.∠ACB D.∠CAE2.如图∠ACD是△ABC的外角若∠ACD=110°∠B=50°则∠A等于()A.40°B.50°C.55°D.60°3.将一副三角尺按如图所示的方式摆放则∠α的大小为()A.85°B.75°C.65°D.60°4.如图点E在BC上点D在AE上∠A=20°∠B=30°∠C=50°则∠ADB的度数是() A.50°B.100°C.70°D.80°5.如图∠BCD=150°则∠A+∠B+∠D的度数为()A.110°B.120°C.130°D.150°6.如图将一张三角形纸片ABC的一角折叠使点A落在△ABC外的A'处折痕为DE.如果∠A=α∠CEA'=β∠BDA'=γ那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°-α-β7.如图已知D为BC上一点∠B=∠1∠BAC=64°则∠2的度数为()A.37°B.64°C.74°D.84°8.如图BE平分∠ABCCE平分△ABC的外角∠ACD若∠A=70°则∠E=°.9.如图所示在△ABC中D是BC边上一点∠1=∠2∠3=∠4∠BAC=63°求∠DAC的度数.10.我们知道三角形的外角等于与它不相邻的两个内角的和.那么三角形的一个内角同与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图∠DBC∠BCE为△ABC的两个外角则∠A与∠DBC+∠BCE的数量关系为请证明你的结论.命题点2三角形内角和定理及其推论的综合应用11.一副三角板如图所示摆放则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β12.如图在△ABC中∠C=36°将△ABC沿着直线l折叠点C落在点D的位置则∠1-∠2的度数是.13.如图已知∠BOF=120°则∠A+∠B+∠C+∠D+∠E+∠F=.14.如图CE是△ABC的外角∠ACD的平分线且CE交BA的延长线于点E.(1)若∠B=35°∠E=25°求∠BAC的度数;(2)请你写出∠BAC∠B∠E三个角之间存在的等量关系并说明理由.15.如图在Rt△ABC中∠C=90°AD平分∠BACBD平分∠CBEAF平分∠DABBF平分∠ABD 求∠F的度数.16.(1)如图①是一个五角星则∠A+∠B+∠C+∠D+∠E=°.(2)将图①中的点A向下移到BE上时如图②所示五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有没有变化?说明你的结论的正确性.(3)将图②中的点C向上移到BD上时如图③所示五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有没有变化?说明你的结论的正确性.参考答案1.C2.D3.B4.B5.D6.A7.B8.359.解:∵∠3=∠1+∠2∠3=∠4∠1=∠2∴∠4=∠1+∠2=2∠2.∵∠BAC+∠2+∠4=180°即3∠2+63°=180°∴∠2=39°.∴∠1=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.10.解:∠A=∠DBC+∠BCE-180°证明:∵∠DBC=∠A+∠ACB∠BCE=∠A+∠ABC∴∠DBC+∠BCE=∠A+∠ACB+∠A+∠ABC.∵∠ACB+∠A+∠ABC=180°∴∠DBC+∠BCE=∠A+180°即∠A=∠DBC+∠BCE-180°.11.B12.72°13.240°14.解:(1)∵∠ECD=∠B+∠E∠B=35°∠E=25°∴∠ECD=60°.∵CE平分∠ACD∴∠ACE=∠ECD=60°.∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵CE平分∠ACD∴∠ACE=∠ECD.∵∠BAC=∠ACE+∠E∠ACE=∠ECD=∠B+∠E∴∠BAC=∠B+∠E+∠E=∠B+2∠E.15.解:如图∵AD平分∠BACBD平分∠CBE∴∠DAB=12∠BAC∠DBE=12∠CBE.∵∠C+∠BAC=∠CBE∴12∠C+12∠BAC=12∠CBE.∴12∠C+∠DAB=∠DBE.∴12∠C=∠DBE-∠DAB=∠D.∵∠C=90°∴∠D=45°.∵AF平分∠DABBF平分∠ABD∴∠1=12∠DAB∠2=12∠ABD.∴∠F=180°-∠1-∠2=180°-12∠DAB-12∠ABD=180°-12(∠DAB+∠ABD)=180°-12(180°-∠D)=90°+12∠D=112.5°.16.解:(1)180(2)没有变化.根据平角的定义得∠BAC+∠CAD+∠DAE=180°.∵∠BAC=∠C+∠E∠DAE=∠B+∠D∴∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°.(3)没有变化.根据平角的定义得∠ACB+∠ACE+∠ECD=180°.∵∠ACB=∠CAD+∠D∠ECD=∠B+∠E∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.。
三角形的外角(理由挖空)(一)(通用版)试卷简介:利用三角形外角定理进行角的计算,并借助三角形外角定理训练学生有理有据的推理和证明,重点考查学生对每一步推理依据的掌握情况.一、单选题(共10道,每道10分)1.如图,直线∥,若∠1=150°,∠2=70°,则∠3的度数为( )A.70°B.80°C.65°D.60°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理2.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理3.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为()A.70°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:平行线的判定、性质4.一副三角板按如图所示叠放在一起,则图中α的度数为( )A.90°B.105°C.120°D.135°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理5.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形外角定理6.已知△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别分D,E,AD,BE相交于点H,则∠AHB的度数为( )A.90°B.100°C.110°D.120°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理7.已知:如图,点D在CA的延长线上,点E在AB的延长线上,点F在BC的延长线上.求证:∠ACF+∠BAD+∠CBE=360°.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠1+∠2(_______________________)∵∠BAD是△ABC的一个外角(外角的定义)∴∠BAD=∠2+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CBE是△ABC的一个外角(外角的定义)∴∠CBE=∠1+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠1+∠2+∠3=180°(_______________________)∴∠ACF+∠BAD+∠CBE=∠1+∠2+∠2+∠3+∠1+∠3=2(∠1+∠2+∠3)=360°(等式的性质)①同角或等角的余角相等;②同角或等角的补角相等;③三角形的内角和是180°;④三角形的一个外角等于和它不相邻的两个内角的和;⑤平角的定义.以上空缺处依次所填正确的是( )A.④⑤B.②③C.④③D.①⑤答案:C解题思路:试题难度:三颗星知识点:三角形外角定理8.已知:如图,AB∥CD,∠EBA=60°,∠D=50°,求∠E的度数.解:如图,∵AB∥CD(已知)∴∠EBA=∠EFC(两直线平行,同位角相等)∵∠EBA=60°(已知)∴∠EFC=60°(等量代换)∵∠EFC是△EDF的一个外角(外角的定义)∴∠EFC=∠D+∠E(_______________________)∵∠D=50°(已知)∴∠E=∠EFC-∠D=60°-50°=10°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.③④B.③⑤C.②④D.①⑤答案:A解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,在△ABC中,AD是∠BAC的角平分线,∠B=∠1,∠ADC=80°.求∠C的角度.解:如图,∵∠ADC是△ABD的一个外角(外角的定义)∴∠ADC=∠1+∠B(_______________________)∵∠B=∠1(已知)∴∠ADC=2∠1(等式的性质)∵∠ADC=80°(已知)∴∠1=∠ADC=40°(_______________________)∵AD是∠BAC的角平分线(已知)∴∠2=∠1=40°(角平分线的定义)∴∠C=180°-∠2-∠ADC=180°-40°-80°=60°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.②④①B.③④①C.③②①D.②⑤④答案:B解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,AB∥EF,∠E=∠CAE,∠DAB=65°.求∠ACF的度数.解:如图,∵AB∥EF(已知)∴∠DAB=∠E(_______________________)∵∠DAB=65°,(已知)∴∠E=65°(等量代换)∵∠E=∠CAE(已知)∴∠CAE=65°(_______________________)∵∠ACF是△ACE的一个外角(外角的定义)∴∠ACF=∠E+∠CAE=65°+65°=130°(_______________________)①两直线平行,同位角相等;②同位角相等,两直线平行;③等量代换;④等式的性质;⑤三角形的一个外角等于和它不相邻的两个内角的和;⑥三角形的内角和是180°.以上空缺处依次所填正确的是( )A.①③⑤B.①③⑥C.②③⑤D.②④⑥答案:A解题思路:试题难度:三颗星知识点:三角形外角定理第11页共11页。
初中数学:三角形的外角检测题(含答案)总分100分时间40分钟一、选择题(每题5分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定【答案】C【解析】试题分析:三角形的一个外角和与它相邻的内角互补,当外角小于与它相邻的内角时,所以这个内角是钝角.解:如下图所示,∠ACD<∠ACB,∵∠ACB+∠ACD=180°,∴∠ACB>90°.∴△ACB是钝角三角形.故应选C.考点:三角形的外角2、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°【答案】C【解析】试题分析:根据三角形的三个外角的度数比为2:3:4,设三角形的三个外角是2x、3x、4x,根据三角形外角和是360°列方程求出x的值,求出每个外角的度数,根据外角的度数求出三角形的内角度数.解:设三角形的三个外角是2x、3x、4x,根据题意可得:x+3x+4x=360°,解得:x=40°,∴三角形最小的外角的度数是2x=80°,∴三角形最大的内角的度数是180°-80°=100°.考点:三角形外角的性质3、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形【答案】C【解析】试题分析:根据三角形的一个外角是120°,求出三角形的一个内角是60°,根据有一个角是60°的等腰三角形是等边三角形判定结果.解:如下图所示,∵∠ACD=120°,∴∠ACB=60°,又∵△ABC是等腰三角形,∴△ABC是等边三角形.故应选C.考点:1.三角形外角的性质;2.等腰三角形的判定.二、填空题(每题8分)4、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA 到E,连EF,则∠1,∠2,∠3的大小关系是______【答案】∠1>∠2>∠3【解析】试题分析:根据三角形外角大于与它不相邻的任何一个内角.解:∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△AEF的外角,∴∠2>∠3,∴∠1>∠2>∠3.考点:三角形外角的性质5、△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”)。
学生做题前请先回答以下问题问题1:三角形的______________________组成的角,叫做三角形的外角.问题2:三角形外角定理:三角形的一个外角等于__________________.三角形的外角(外角定义、定理)(人教版)一、单选题(共10道,每道10分)1.下列各项中,∠1是△ABC的外角的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:三角形的外角2.如图,在△ABC中,点D,F在线段AB上,点E在线段AC上,H是BC延长线上一点,FE 的延长线交BH于点G,则下列说法错误的是( )A.∠ACG是△ABC的外角B.∠FGH是△ECG的外角C.∠AFE是△BFG的外角D.∠DEA是△ECG的外角答案:D解题思路:试题难度:三颗星知识点:三角形的外角3.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,连接DE,则下列说法正确的是( )A.∠BFE是△CDF的外角B.∠ADF是△CDF的外角C.∠CFD是△BFE的外角D.∠CFB是△DFE的外角答案:B解题思路:试题难度:三颗星知识点:三角形的外角4.如图,∠B=30°,∠A=40°,则∠BCD的度数为( )A.80°B.70°C.60°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形的外角5.如图,直线m,n分别过点A,B,若∠1=100°,∠2=70°,则m,n相交所成的锐角为( )A.20°B.30°C.70°D.80°答案:B解题思路:试题难度:三颗星知识点:三角形的外角6.如图是某零件的平面示意图,点E在BD的延长线上,其中∠A=40°,∠ABC=35°,∠C=30°,则∠ADC的度数为( )A.75°B.95°C.105°D.140°答案:C解题思路:试题难度:三颗星知识点:三角形的外角7.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,若∠A=45°,∠B=30°,∠C=40°,则∠BFC的度数为( )A.110°B.115°C.120°D.145°答案:B解题思路:试题难度:三颗星知识点:三角形的外角8.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则的度数为( )A.75°B.105°C.135°D.165°答案:D解题思路:试题难度:三颗星知识点:三角形的外角9.如图,五角星的顶点分别为A,B,C,D,E,∠A+∠B+∠C+∠D+∠E的度数为( )A.90°B.180°C.270°D.360°答案:B解题思路:试题难度:三颗星知识点:三角形的外角10.如图,P为△ABC内任意一点,延长CP交AB于点D,连接BP,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形的外角。
三角形的外角定理练习题下面是三角形的外角,三角形外角定理的相应练习题。
有兴趣的同学可以做一做。
熟悉关于三角形外角的各种等量关系。
①如图,两个直角三角板的直角的顶点重合在一起,∠B=90°,∠A=45°,∠D=30°,求∠AEF的度数。
②如图一个五角星,已知∠B=∠E=27°,∠C=∠D=31°,求∠A的度数。
③如图,∠A=33°,∠C=44°,∠E=55°,求∠DFE的度数。
④如图,凹四边形ABCD,∠BCD=75°,∠B=21°,∠D=23°,求∠A的度数。
⑤如图等边三角形ABC,已知∠BAD=∠CDE,求∠ADE的度数。
⑥如图,计算∠A+∠B+∠C+∠D+∠E+∠F的度数。
①答案:15°解析:根据三角形外角定理,∠BFE=∠A+∠AEF∠BFE=90°-∠D=90°-30°=60°所以∠AEF=∠BFE-∠A=60°-45°=15°②答案:64°解析:根据三角形外角定理∠AFG=∠C+∠E;∠AGF=∠B+∠D;∠AFG+∠AGF+∠A=180°所以∠A+∠B+∠C+∠D+∠E=180°∠A=180°-∠B-∠C-∠D-∠E=180°-27°-31°-31°-27°=64°③答案:48°解析:∠A,∠C,∠E比较分散,利用外角把它们集中到一个三角形∠ABE=∠C+∠E,根据三角形ABF内角和,∠A+∠ABE+∠AFB=180°∠DFE=∠AFB=180°-∠A-∠ABE=180°-33°-44°-55°=48°④答案:31°解析:延长DC交AB与点E根据三角形外角定理,∠BED=∠A+∠D;∠BCD=∠BED+∠B=∠A+∠D+∠B;所以∠A=∠BCD-∠D-∠B=75°-21°-23°=31°⑤答案:60°解析:因为ΔAB C是等边三角形,所以∠A=∠B=∠C=60°根据三角形外角定理,∠ADC=∠B+∠BAD由于∠ADC=∠ADE+∠CDE,∠BAD=∠CDE所以∠ADE=∠B=60°⑥答案:360°解析:∠BGD=∠A+∠B;∠DHF=∠C+∠D;∠CNE=∠E+∠F;∠BGD=180°-∠HGN;∠DHF=180°-∠GHN;∠CNE=180°-∠HNG;根据ΔGHN内角和是180°,∠BGD+∠DHF+∠CNE=180°-∠HGN+180°-∠GHN+180°-∠HNG=360°∠A+∠B+∠C+∠D+∠E+∠F=360°。
11.2.2三角形的外角一、单选题1.三角形的一个外角等于与它相邻的内角,则这个三角形是().A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.如图,AB//CD,AE平分∠CAB交CD于点E.若∠C=50∘,则∠AED=.3.如图,在ΔABC中,EF//BC,∠ACG是ΔABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则α、β、γ三者间的数量关系是.4.将一副三角板如图所示放置,使两个直角重合,则∠AFE的度数是.5.如图,几条线段首尾顺次连接,∠D=28°,则∠A+∠B+∠C+∠E的度数为.6.下列命题中,属于假命题的是( )A.三角形中至少有一个角大于60∘B.如果三条线段长分别为4cm,6cm,9cm,那么这三条线段能组成三角形C.三角形的外角等于与它不相邻的两个内角的和D.如果一个三角形是轴对称图形,那么这个三角形一定是等腰三角形7.在△ABC中,∠A=60∘,∠C=2∠B,则∠C的度数为.8.如图,在ΔABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为.9.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形二、填空题10.如图,BE平分∠ABC,CE平分ΔABC外角∠ACD,若∠E=25°,则∠A度数为______.11.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30∘,则∠1+∠2的度数为__________. 12.如图所示的折线图形中,α+β的度数为__________. 13.如图,四边形纸片ABCD中,∠A=75∘,∠B=65∘,将纸片折叠,使点C,D分别落在AB边上的点C′,D′处,折痕为MN,则∠AMD'+∠BNC'的度数是__________. 三、解答题14.如图,在△ABC中,∠B=20°,∠ACB=110°,AE平分∠BAC,AD⊥BD于点D,求∠DAE的度数.15.如图,将ΔABC分别沿AB,AC翻折得到ΔABD和ΔAEC,线段BD与AE交于点F,连接BE. (1)如果∠ABC=16°,∠ACB=30°,求∠DAE的度数; (2)如果BD⊥CE,求∠CAB的度数.11.2.2三角形的外角1.【答案】A;【解析】略2.【答案】B;【解析】该题考查了平行线的性质、角平分线的定义、外角的性质,掌握好基本性质及定义的解答该题的关键. 根据平行线的性质得出∠CAB=180∘−∠C=130∘,根据角平分线的定义得出∠CAE=12∠CAB=65∘,根据∠AED是ΔACE的外角,得出∠AED=∠C+∠CAE=115∘,即可得出结果. 解:∵AB//CD,∴∠C+∠CAB=180∘, ∴∠CAB=180∘−∠C=130∘,∵AE平分∠CAB,∴∠CAE=12∠CAB=65∘,∵∠AED是ΔACE的外角,∴∠AED=∠C+∠CAE=115∘,故选B.3.【答案】B;【解析】解:∵EF//BC, ∴∠γ=∠B, 由三角形的外角性质得,∠α=∠B+∠BAD=∠γ+∠BAD, ∠β=∠α+∠CAD, ∵AD是∠BAC的平分线, ∴∠BAD=∠CAD, ∴∠α−∠β=∠γ−∠α, ∴∠β=2α−∠γ. 故选:B. 根据两直线平行,同位角相等可得∠γ=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠α、∠β,再根据角平分线的定义可得∠BAD=∠CAD,然后整理即可得解. 此题主要考查了平行线的性质,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解答该题的关键.4.【答案】B;【解析】解:∵∠EDC=45°, ∴∠ADF=135°, ∵∠AFE是ΔADF的一个外角, ∴∠AFE=∠A+∠ADF=30°+135°=165°, 故选:B. 根据邻补角的概念求出∠ADF,再根据三角形的外角性质计算即可. 此题主要考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答该题的关键.5.【答案】B;【解析】解:∵如图可知∠BGD=∠C+∠B,∠GFE=∠E+∠A, 又∵∠BGD=∠D+∠GFD, ∴∠B+∠C=∠D+∠GFD, 又∵∠GFE+∠GFD=180°, ∴∠E+∠A+∠B+∠C−∠D=180°, 又∵∠D=28°, ∴∠A+∠B+∠C+∠E=180°+28°=208°. 故选:B. 首先求出∠C+∠B=∠D+∠GFD,然后证明出∠A+∠B+∠C+∠E−∠D=180°,最后结合∠D=28°求出∠A+∠B+∠C+∠F的度数. 此题主要考查了三角形内角的外角,解答本题的关键是求出∠C+∠A+∠E+∠B−∠D=180°,此题难度不大.6.【答案】A;【解析】 该题考查命题与定理,解答该题的关键是熟练掌握三角形的三边关系、内角和定理、三角形外角的性质、等腰三角形的性质,属于中考常考题型. 根据三角形的三边关系、内角和定理、三角形外角的性质、等腰三角形的性质即可一一判断. 解:A、错误. B、正确.理由:4+6>9. C、正确.角形的外角等于与它不相邻的两个内角的和. D、正确.如果一个三角形是轴对称图形,那么这个三角形一定是等腰三角形.故选A.7.【答案】C;【解析】略8.【答案】A;【解析】解:∵∠ABC的平分线与∠ACE的平分线交于点D, ∴∠1=∠2,∠3=∠4, ∵∠ACE=∠A+∠ABC, 即∠1+∠2=∠3+∠4+∠A, ∴2∠1=2∠3+∠A, ∵∠1=∠3+∠D, ∴∠D=12∠A=12×30°=15°. 故选:A. 先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=12∠A,然后把∠A的度数代入计算即可. 该题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.9.【答案】D;【解析】略10.【答案】50°;【解析】解:∵∠E=25°, ∴∠ECD−∠EBD=∠E=25°, ∵BE平分∠ABC, ∴∠EBD=12∠ABC, ∵CE平分∠ACD, ∴∠ECD=12∠ACD, ∴∠A=∠ACD−∠ABC=2×(∠EBD−∠ECD)=2×25°=50°, 故答案为:50°. 根据三角形的外角性质得到∠ECD−∠EBD=∠E=25°,根据角平分线的定义、三角形的外角性质计算,得到答案. 此题主要考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答该题的关键.11.【答案】60∘;【解析】解:∠A′DA=180∘−∠1,∠A′EA=180∘−∠2,∠A′=∠A=30∘. ∵∠A′+∠A′DA+∠A+∠AEA′=360∘, ∵30∘+180∘−∠1+30∘+180∘−∠2=360∘,∴∠1+∠2=60°.12.【答案】85°;【解析】解:∠1=a+70∘,∠2=β+65∘,∵∠1+∠2+140∘=360∘. ∴a+70∘+β+65∘+140∘=360∘,∴α+β=85∘. 13.【答案】80∘;【解析】解:∵∠A+∠B+∠C+∠D=360°,∴∠C+∠D=220°,∠MD′B=∠D, ∠NC′A=∠C,∴∠MD′B+∠NC′A=220°,∵∠MD′B+∠NC′A+∠D′MN+∠C′NM=360°,∴∠D′MN+∠C′NM=140°,∵∠A+∠B+∠AMD′+∠D'MN+∠BNC'+∠C'NM=360°,∴140∘+140∘+∠AMD'+∠BNC'=360°, ∴∠AMD°+∠BNC'=80∘.14.【答案】解:在△ABC中,∠B=20°,∠ACB=110°, ∴∠BAC=180°-20°-110°=50°, ∵AE平分∠BAC, ∴∠BAE=12∠BAC=25°, ∴∠AEC=∠B+∠BAC=20°+25°=45°, ∵AD⊥BD于点D, ∴∠D=90°, ∴∠DAE=90°-∠AED=90°-45°=45°.;【解析】 先根据三角形内角和定理求出∠BAC的度数,由角平分线定义得出∠BAE的度数,再由三角形外角的性质求出∠AEC的度数,进而得出答案. 此题主要考查的是三角形内角和定理.熟悉定理与性质并准确识图,理清图中各角度之间隐含的关系是解决本题的关键.15.【答案】解:(1)∵△ABC沿AC、AB翻折得到△AEC和△ABD, ∴△AEC≌△ABC,△ABD≌△ABC. ∴∠2=∠1=30°,∠4=∠3=16°, ∠EAC=∠BAD=∠BAC=180°-30°-16°=134°, ∵∠DAC=360°-∠BAD-∠BAC, ∴∠DAC=360°-134°-134°=92°, ∴∠DAE=∠EAC-∠DAC=134°-92°=42°; (2)∵BD⊥CE, ∴∠5=90°, ∴∠DBC+∠ECB=90°. ∵∠1=∠2,∠3=∠4, ∴∠DBC+∠ECB=2∠3+2∠1=90°. ∴∠3+∠1=45°, 在△ABC中,∠CAB=180°-(∠3+∠1)=180°-45°=135°.;【解析】 (1)由折叠的性质可得∠2=∠1=30°,∠4=∠3=16°,由周角的性质和外角性质可求解; (2)由三角形内角和定理可求解. 该题考查了翻折变换,三角形的内角和定理,外角性质,灵活运用折叠的性质是本题的关键.。
三角形外角定理基础训练题(有详解)问题描述在 $\triangle ABC$ 中,$\angle ADB = 130^{\circ}$,$\angle BDC = 40^{\circ}$,求 $\angle A$ 的度数。
解题思路三角形外角定理是指:三角形的一个外角等于其对应内角的两个非邻居内角之和。
因此,我们可以先求出 $\angle BDA$ 的度数,然后再利用外角定理求出 $\angle A$ 的度数即可。
根据题意,$\angle BDC = 40^{\circ}$,则 $\angle BDA =180^{\circ} - \angle BDC = 140^{\circ}$。
根据外角定理,$\angle ADB = \angle BDA + \angle BAD$,代入已知角度得:$130^{\circ} = 140^{\circ} + \angle BAD$则$\angle BAD = -10^{\circ}$,但是角度不可能为负数,因此,我们可以将三角形的另外两个内角相加后再用 $180^{\circ}$ 减去,即:$\angle A = 180^{\circ} - (\angle B + \angle C) = 180^{\circ} - (140^{\circ} + 40^{\circ}) = 180^{\circ} - 180^{\circ} = 0^{\circ}$因此,$\angle A$ 的度数为 $0$,即 $\triangle ABC$ 不是一个有效的三角形。
总结三角形外角定理是一个比较简单的几何定理,但是在应用时需要注意各个角度的定义以及单位,以免计算错误。
同时,我们还可以通过三角函数等方式来计算三角形的各个角度,提高计算效率。
7.2.2 三角形的外角基础过关作业1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、 CE的交点,求∠BHC的度数.综合创新作业7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F 的度数.10.(易错题)三角形的三个外角中最多有_______个锐角.培优作业11.(探究题)(1)如图,BD 、CD 分别是△ABC 的两个外角∠CBE、∠BCF 的平分线,试探索∠BDC 与∠A之间的数量关系.(2)如图,BD 为△ABC 的角平分线,CD 为△ABC 的外角∠ACE 的平分线,它们相交于点D ,试探索∠BDC 与∠A 之间的数量关系.12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB 冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题: 能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢? 这就是著名的哥尼斯堡七桥问题. 好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1.钝角2.直角 点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°, ∴△ABC 的外角中最小的角是直角.3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°. ∵AE 是∠BAC 的平分线, ∴∠BAE=∠CAE=∠BAC=25°.12∴∠AEB=∠CAE+∠C=25°+78°=103°.6.解:在△ACE 中,∠ACE=90°-∠A=90°-60°=30°. 而∠BHC 是△HDC 的外角,所以∠BHC=∠HDC+∠ACE=90°+30°=120°.7.30° 点拨:设∠CAD=2a,由AB=AC 知∠B=(180°-60°-2a )=60°- a, 12∠ADB=180°-∠B-60°=60°+a,由AD=AE 知,∠ADE=90°-a, 所以∠EDC=180°-∠ADE-∠ADB=30°.8.解法1:如答图1,延长BC 交AD 于点E ,则∠DEB=∠A+∠B=90°+30°= 120°,从而∠DCB=∠DEB+∠D=120°+20°=140°.若零件合格,∠DCB应等于140°.李叔叔量得∠BCD=142°,因此可以断定该零件不合格.(1) (2) (3) 点拨:也可以延长DC 与AB 交于一点,方法与此相同.解法2:如答图2,连接AC 并延长至E ,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.解法3:如答图3,过点C 作EF∥AB,交AD 于E ,则∠DEC=90°,∠FCB=∠B= 30°,所以∠DCF=∠D+∠DEC=110°,从而∠DCB=∠DCF+∠FCB=140°.以下同方法1. 说明:也可以过点C 作AD 的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、 ∠QPC、∠EOP 是△OPQ 的三个外角.∴∠OQA+∠QPC+∠EOP=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°. (2)360° 点拨:方法同(1).10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.11.解:(1)∠BDC=90°-∠A.12理由:∠ABC+∠ACB=180°-∠A.∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD 分别为∠EBC、∠FCB 的平分线,∴∠CBD=∠EBC,∠BCD=∠FCB.1212∴∠CBD+∠BCD=(∠EBC+∠FCB)=×(180°+∠A)1212=90°+∠A.12在△BDC 中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+∠A)=90°-∠A.1212(2)∠BDC=∠A.12理由:∵∠ACE 是△ABC 的外角,∴∠ACE=∠A+∠ABC,∵CD 是∠ACE 的平分线,BD 是∠ABC 的平分线,∴∠DCE=∠ACE=∠A+∠ABC,∠DBC=∠ABC.12121212∵∠DCE 是△BCD 的外角, ∴∠BDC=∠DCE-∠DBC=∠A+∠ABC-∠ABC=∠A.1212121212.解:如图,设球员接球时位于点C ,他尽力向球门冲近到D ,此时不仅距离球门近,射门更有力,而且对球门AB 的张角也扩大,球就更容易射中.理由说明如下:延长CD 到E ,则∠ADE>∠ACE,∠BDE>∠BCE,∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说, 要想一次无重复地走遍这七座桥是办不到的.。
三角形的外角习题及答案三角形是几何学中重要的一个概念,其性质和角度关系是我们学习的基础知识之一。
在这篇文章中,我将介绍一些与三角形外角相关的习题,并给出详细的答案解析。
一、基本概念回顾在开始解题之前,我们先来回顾一下有关三角形外角的基本概念。
对于任意一个三角形ABC来说,顶点A的外角定义为:外角A = 角BAC的补角外角A与角BAC的和为180度,即:外角A + 角BAC = 180度这个性质将会是我们解题的基础。
二、习题一题目:已知三角形ABC中,角A的外角为85度,求角BAC的度数。
解析:根据外角的定义,外角A与角BAC的和为180度。
所以我们可以列出等式:外角A + 角BAC = 180度带入已知条件,可得:85度 + 角BAC = 180度然后解方程,得到:角BAC = 180度 - 85度 = 95度所以角BAC的度数为95度。
三、习题二题目:在三角形ABC中,角BAC的度数为45度,外角A为120度,求角B的度数。
解析:同样地,我们可以利用外角的定义来解题。
根据外角的性质,我们可以得到等式:外角A + 角BAC = 180度带入已知条件得:120度 + 45度 = 180度化简可得:外角A = 180度 - 45度 = 135度由于外角A是角B的补角,所以我们有等式:外角A + 角B = 180度带入已知条件,得到:135度 + 角B = 180度解方程可得:所以角B的度数为45度。
四、习题三题目:在三角形ABC中,角B的度数为55度,外角A的度数为145度,求角C的度数。
解析:同样地,我们可以利用外角的性质来解题。
根据外角的定义,我们可以得到等式:外角A + 角BAC = 180度带入已知条件得:145度 + 角BAC = 180度解方程可得:角BAC = 180度 - 145度 = 35度所以角BAC的度数为35度。
由于角BAC是角C的补角,所以我们有等式:角BAC + 角C = 180度带入已知条件,得到:35度 + 角C = 180度解方程可得:所以角C的度数为145度。
2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题02 三角形内角外角问题一、选择题1. (2023湖北宜昌)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a ,b ,c .如果170=°∠,则2Ð的度数为( )A. 110°B. 70°C. 40°D. 30°【答案】C 【解析】可求34570Ð=Ð+Ð=°,由25Ð=Ð,即可求解.如图,由题意得:430Ð=°,a b ∥,3170\Ð=Ð=°,34570Ð=Ð+Ð=°Q ,540\Ð=°,2540\Ð=Ð=°,故选:C .【点睛】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题的关键.2. (2023大连)如图,直线,45,20AB CD ABE D Ð=Ð=°°∥,则E Ð的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】B 【解析】先根据平行线的性质可得45ABE BCD ÐÐ==°,再根据三角形的外角性质即可得.,45AB CD ABE Ð=°Q ∥,45ABE BCD \=Ð=а,20D Ð=°Q ,25BCD D E Ð-Ð==\а,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.3. (2023内蒙古包头)如图,直线a b P ,直线l 与直线,a b 分别相交于点,A B ,点C 在直线b 上,且CA CB =.若132Ð=°,则2Ð的度数为( )A. 32°B. 58°C. 74°D. 75°【答案】C 【解析】由CA CB =,132Ð=°,可得1801742CBA CAB °-ÐÐ=Ð==°,由a b P ,可得2CBA Ð=Ð,进而可得2Ð的度数.∵CA CB =,132Ð=°,∴1801742CBA CAB °-ÐÐ=Ð==°,∵a b P ,∴274CBA Ð=Ð=°,故选:C .【点睛】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.4. (2023山东东营)如图,AB CD ∥,点E 在线段BC 上(不与点B ,C 重合),连接DE ,若40D Ð=°,60BED Ð=°,则B Ð=( )A. 10°B. 20°C. 40°D. 60°【答案】B 【解析】根据三角形的外角的性质求得20C Ð=°,根据平行线的性质即可求解.∵40D Ð=°,60BED Ð=°,∴20C BED D Ð=Ð-Ð=°,∵AB CD ∥,∴B Ð=20C Ð=°,故选:B .【点睛】本题考查了三角形的外角的性质,平行线的性质,熟练掌握以上知识是解题的关键.5. (2023山东聊城)如图,分别过ABC V 的顶点A ,B 作AD BE P .若25CAD Ð=°,80EBC Ð=°,则ACB Ð的度数为( )A. 65°B. 75°C. 85°D. 95°【答案】B 【解析】根据两直线平行,同位角相等,得到80E ADC BC =°Ð=Ð,利用三角形内角和定理计算即可.∵AD BE P ,80EBC Ð=°,∴80E ADC BC =°Ð=Ð,∵25CAD Ð=°,∴71805ACB ADC CAD =°Ð=°-Ð-Ð,故选B .【点睛】本题考查了平行线的性质,三角形内角和定理,熟练掌握平行线性质是解题的关键.6. (2023深圳)如图为商场某品牌椅子侧面图,120DEF Ð=°,DE 与地面平行,50ABD Ð=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A 【解析】根据平行得到50ABD EDC Ð=Ð=°,再利用外角的性质和对顶角相等,进行求解即可.由题意,得:DE AB ∥,∴50ABD EDC Ð=Ð=°,∵120DEF EDC DCE Ð=Ð+Ð=°,∴70DCE Ð=°,∴70ACB DCE Ðа==;故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.7. (2023湖北荆州)如图所示的“箭头”图形中,AB CD ∥,80B D Ð=Ð=o ,47E F Ð=Ð=o ,则图中G Ð的度数是( )的A. 80oB. 76oC. 66oD. 56o【答案】C 【解析】延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,根据平行线的性质即可解答.如图,延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,4780,E F EBA FDC Ð=Ð=Ð=Ð=o o Q ,33EMA EBA E \Ð=Ð-Ð=°,33FNC FDC F Ð=Ð-Ð=°,,AB CD AB HG ∥∥Q ,HG CD \∥,33MGH EMA \Ð=Ð=°,33NGH FND Ð=Ð=°,333366EGF \Ð=°+°=°,故选:C .【点睛】本题考查了平行线的判定及性质,三角形外角的定义和性质,作出正确的辅助线是解题的关键.8. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°【答案】C 【解析】根据三角形外角的性质、平行线的性质进行求解即可;∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∥,∵AB CD∴∠A=∠D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.9.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70°B.75°C.80°D.85°【答案】B【解析】利用三角形内角和定理和平行线的性质解题即可.如图,∵∠2=90°﹣30°=60°,∴∠3=180°﹣45°﹣60°=75°,∵a∥b,∴∠1=∠3=75°.10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°【答案】A.【解析】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键。
三角形的外角和练习姓名:__________ 班别:___________ 学号:__________ A 水平 一、判断题1 .三角形的外角在于任何一个内角.( ) 2.三角形的外角中,至少有两个钝角.( ) 二、填空题1.如图表(1), △ABC 中,点D 在AC 的延长线上(1)若,110,50 =∠=∠BCD B ,则______=∠A (2)若65,120=∠=∠A BCD ,则______=∠B 3.如图(2),D 是△ABC 内一点,延长CD 交AB 于E 点,∠1是△_____的外角, ∠2是△_____的外角,用“<”连接∠1、∠2、∠A 的大小关系为________________.B 水平 1. 如图(3),∠1.在△ABC 中, 120=∠+∠B A , 160=∠+∠C A ,则_______=∠-∠C A 2.如图(4), 30,40,50=∠=∠=∠C B A ,则_______=∠BDC . 3.在△ABC 中,CB A ∠=∠=∠3121,那么△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.5.如图(5),,,27.20DE AC B A ⊥=∠=∠那么_______._______1=∠=∠D C 水平1. 在△ABC 中, CB A ∠=∠=∠6121,则.____________,______,=∠=∠=∠C B A2. 在△ABC 中,有一个外角是与它相邻的内角的3倍,则这个外角的度数为__________.3. △ABC 的三个外角的比为4:3:2,则三个内角分别为_________________.4.如图(6),AD是△ABC的外角∠EAC的平分线,且AD//BC.试证明: ∠B=∠C.。
7. 2. 2三角形的外角基础过关作业1若三角形的外角中有一个是锐角,则这个三角形是______________ 三角形.2. \ ABC中,若/ C-Z B=Z人,则厶ABC的外角中最小的角是________ (填“锐角”、“直角” 或“钝角”).3. 如图1, x= ______ .4. 如图2,A ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF, 则Z 1,Z 2,Z 3的大小关系是___________________ .5. 如图3,在厶ABC中,AE是角平分线,且Z B=52°,Z C=78°,求Z AEB的度数.6. 如图,在△ ABC中,Z A=60°, BD CE分别是AC AB上的高,H是BD ?CE的交点,求ZBHC的度数.综合创新作业7. 如图所示,在厶ABC中, AB=ACAD=AE Z BAD=60 , 贝UZEDC= ________& 一个零件的形状如图7-2-2-6所示,按规定Z A 应等于90°,ZB Z D应分别是30°和20°, 李叔叔量得Z BCD=142,就断定这个零件不合格,你能说出道理吗?AB D(2)如图 7-2-2-7 (2),求出/ A+Z B+Z C+Z D+Z E+Z F 的度数.10. ________________________________________ (易错题)三角形的三个外角中最多有 个锐角. 培优作业11. (探究题)(1)如图,BD CD 分别是△ ABC 的两个外角Z CBE Z BCF?勺平分线,试探索 Z BDC 与Z A 之间的数量关系.(2)如图,BD %A ABC 的角平分线,ABC 的外角Z ACE 的平分线,它们相交于点 D, 试探索Z BDC 与Z A 之间的数量关系.ADB12. (趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接•如图所示•城中的居民经常沿河过桥散步,于是就提出一个问题:?能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现•该怎样走才好呢??这就是著名的哥尼斯堡七桥问题.??好奇的人把这个问题拿给当时的大数学家欧拉(1707〜1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1. 钝角2. 直角点拨:•••/ C- / B=Z A,「./ C=Z A+Z B.又•••(/ A+Z B) +Z C=180°,A Z C+Z C=180°,「・Z C=90°, •••△ABC的外角中最小的角是直角.3. 60 点拨:由题意知x+80=x+ (x+20).解得x=60 .4. Z 1>Z 2>Z 3点拨:T Z 1是Z 2的外角,Z 2是Z 3的外角,•••/ 1>Z 2>Z 3.5. 解:/ BAC=180 - (/ B+Z C) =180° - (52° +78 °) =50 ° .•/ AE是Z BAC的平分线,1•••Z BAE玄CAE=_ Z BAC=25 .2• Z AEB玄CAE+Z C=25° +78°=103°.6. 解:在厶ACE中,Z ACE=90 - Z A=90° -60 ° =30°.而Z HDC的外角,所以Z BHC Z HDC-Z ACE=90 +30° =120 ° .17. 30°点拨:设Z CAD=2a 由AB=AC知Z B=—(180° -60 ° -2a ) =60° -?a , ?2Z ADB=180 - Z B-60 ° =60° +a,由AD=AE知,Z ADE=90 -a,所以Z EDC=180 - Z ADE-Z ADB=30 .&解法1:如答图1,延长BC交AD于点E,则Z DEB Z A+Z B=90° +30° =?120°,从而Z DCB Z DEB+Z D=120° +20° =140°.若零件合格,Z DCB应等于140° .李叔叔量得Z BCD=142 ,因此可以断定该零件不合格.(1) (2) (3)点拨:也可以延长DC与AB交于一点,方法与此相同.解法2:如答图2,连接AC并延长至E,则Z 3=Z 1+Z D,Z 4=Z 2+Z B,因此Z DCB=/ 1+Z D+Z 2+Z B=140°.以下同方法1.解法3:如答图3,过点C作EF// AB,交AD于E,则Z DEC=90 , Z FCB=Z B=?30°,所以Z DCF=/ D+Z DEC=110 ,从而Z DCB=/ DCF+Z FCB=140 .以下同方法 1 .说明:也可以过点C作AD的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9. 解:(1)由图知Z A+Z F=Z OQA Z B+Z C=Z QPC Z D+Z E=Z EOP而Z OQA ?Z QPC Z EO^A OPQ勺三个外角.•Z OQA Z QPC Z EOP=360 .•Z A+Z B+Z C+Z D+Z E+Z F=Z OQA Z QPC Z EOP=360 .(2) 360° 点拨:方法同(1).10. 1点拨:本题易因混淆内角、外角的概念,而误填为3.111. 解:(1)z BDC=90 - _ / A.2理由:/ ABC+Z ACB=180 - / A./ EBC Z FCB=( 180°- Z ABC + ( 180°- Z ACB =360°- (Z ABC+Z ACB =180°+Z A. ••• BD CD 分别为Z EBC Z FCB的平分线,1 1•••Z CBD J Z EBC Z BCD J Z FCB.2 21 1•Z CBD-Z BCDd (Z EBC+Z FCB =_ x( 180°+Z A)2 21=90 °+ —Z A.21 1在^ BDC中, Z BDC=180 - (Z CBD-Z BCD =180°- (90°+—Z A) =90°- — Z A.2 21(2)Z BDC」Z A.2理由:T Z ACE是△ ABC的外角,•Z ACE Z A+Z ABC•/ CD是Z ACE的平分线,BD是Z ABC的平分线,1 1 1 1•Z DCEd Z ACE—Z A+—Z ABC Z DBA Z ABC2 2 2 2T Z DCE是△ BCD的外角,1 1 1 1•Z BDC Z DCE-Z DBA Z A+ —Z ABC-—Z ABC—Z A.2 2 2 212. 解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则Z ADE Z ACE Z BDE>Z BCE• Z ADE+Z BDEN ACE+Z BCE 即Z ADB>Z ACB点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题. 这个图形显然无法一笔画出,也就是说,?要想一次无重复地走遍这七座桥是办不到的.AD。
7.2.2 三角形的外角基础过关作业1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.综合创新作业7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.10.(易错题)三角形的三个外角中最多有_______个锐角.培优作业11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1.钝角2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,∴∠BAE=∠CAE=12∠BAC=25°.∴∠AEB=∠CAE+∠C=25°+78°=103°.6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,所以∠BHC=∠HDC+∠ACE=90°+30°=120°.7.30°点拨:设∠CAD=2a,由AB=AC知∠B=12(180°-60°-2a)=60°-•a,•∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,所以∠EDC=180°-∠ADE-∠ADB=30°.8.解法1:如答图1,延长BC交AD于点E,则∠DEB=∠A+∠B=90°+30°=•120°,从而∠DCB=∠DEB+∠D=120°+20°=140°.若零件合格,∠DCB应等于140°.李叔叔量得∠BCD=142°,因此可以断定该零件不合格.(1) (2) (3)点拨:也可以延长DC与AB交于一点,方法与此相同.解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.解法3:如答图3,过点C作EF∥AB,交AD于E,则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.说明:也可以过点C作AD的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.∴∠OQA+∠QPC+∠EOP=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.(2)360°点拨:方法同(1).10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.11.解:(1)∠BDC=90°-12∠A.理由:∠ABC+∠ACB=180°-∠A.∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,∴∠CBD=12∠EBC,∠BCD=12∠FCB.∴∠CBD+∠BCD=12(∠EBC+∠FCB)=12×(180°+∠A)=90°+12∠A.在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+12∠A)=90°-12∠A.(2)∠BDC=12∠A.理由:∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵CD是∠ACE的平分线,BD是∠ABC的平分线,∴∠DCE=12∠ACE=12∠A+12∠ABC,∠DBC=12∠ABC.∵∠DCE是△BCD的外角,∴∠BDC=∠DCE-∠DBC=12∠A+12∠ABC-12∠ABC=12∠A.12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。
11。
2。
2三角形的外角基础知识一、选择题1.(20**•襄阳)如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A .60°B .70°C .80°D .90°答案:C2.(20**•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°答案:A3。
设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A 。
有两个锐角、一个钝角B 。
有两个钝角、一个锐角C 。
至少有两个钝角 D.三个都可能是锐角答案:C4。
(20** 江苏省南通市) 如图,△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于 ( )A .360°B .250°C .180°D .140°答案:B5.已知△ABC,(1)如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°+21∠A; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°—∠A;A C B12(3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°—21∠A . 上述说法正确的个数是( )A .0个B .1个C .2个D .3个答案:C6.(20**•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A .45°B .60°C .75°D .90°答案:C7。
如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( )A .61°B .60°C .37°D .39°答案:C8。
7. 2. 2三角形的外角
基础过关作业
1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.
2.△ ABC中,若∠ C-∠ B=∠ A,则△ ABC的外角中最小的角是______(填“锐角” 、“直角”
或“钝角” ).
3.如图 1, x=______ .
(1)(2)(3)
4.如图 2,△ ABC中,点 D 在 BC的延长线上,点 F 是 AB边上一点,延长则∠ 1,∠ 2,∠ 3 的大小关系是 _________.
5.如图 3,在△ ABC中, AE是角平分线,且∠B=52°,∠ C=78°,求∠
CA到 E,
连
AEB的度数.
EF,
6.如图,在△ ABC中,∠ A=60°, BD、 CE分别是 AC、 AB上的高, H 是 BD、 ?CE的交点,求∠ BHC的度数.
综合创新作业
7.如图所示,在△ ABC中,AB=AC,AD=AE,∠ BAD=60°,
则∠ EDC=______.
8.一个零件的形状如图7-2-2-6所示,按规定∠A
应等于90°,∠ B、∠ D 应分别是30°和 20°,
李叔叔量得∠BCD=142°,就断定这个零件不合
格,你能说出道理吗?
9.( 1)如图 7-2-2-7 ( 1),求出∠ A+∠B+∠ C+∠D+∠ E+∠F 的度数;
(2)如图 7-2-2-7 ( 2),求出∠ A+∠B+∠ C+∠D+∠ E+∠F 的度数.
10.(易错题)三角形的三个外角中最多有_______个锐角.
培优作业
11.(探究题)( 1)如图, BD、CD分别是△ ABC的两个外角∠ CBE、∠ BCF?的平分线,试探索∠BDC与∠ A 之间的数量关系.
(2)如图, BD为△ ABC的角平分线, CD为△ ABC的外角∠ ACE的平分线,它们相交于点 D,试探索∠ BDC与∠ A 之间的数量关系.
12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?
数学世界
七桥问题
18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所
示.城中的居民经常沿河过桥散步,于是就提出一个问题:?能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢??这就是著名的哥尼斯堡七桥问题. ??好奇的人把这个问题拿给当时的大数学家欧拉(1707~ 1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.
你知道欧拉是根据什么道理证明的吗?
答案 :
1.钝角
2.直角点拨:∵∠ C-∠ B=∠ A,∴∠ C=∠ A+∠B.
又∵(∠ A+∠ B) +∠ C=180°,∴∠ C+∠ C=180°,∴∠ C=90°,
∴△ ABC的外角中最小的角是直角.
3. 60点拨:由题意知x+80=x+( x+20).解得 x=60 .
4.∠ 1>∠ 2>∠ 3
点拨:∵∠ 1 是∠ 2 的外角,∠ 2 是∠ 3 的外角,∴∠ 1>∠ 2>∠ 3.
5.解:∠ BAC=180°- (∠ B+∠ C) =180° - ( 52° +78°) =50°.∵ AE是∠ BAC的平分线,
∴∠ BAE=∠ CAE=1
∠ BAC=25°.
2
∴∠ AEB=∠ CAE+∠ C=25°+78° =103°.
6.解:在△ ACE中,∠ ACE=90° - ∠ A=90° -60 °=30°.而∠ BHC是△ HDC的外角,
所以∠ BHC=∠ HDC+∠ ACE=90° +30° =120°.
7. 30°点拨:设∠ CAD=2a,由AB=AC知∠ B=1
(180° -60° -2a)=60° -?a,? 2
∠ADB=180° - ∠B-60 ° =60° +a,由 AD=AE知,∠ ADE=90° -
a ,所以∠ EDC=180° - ∠ ADE-∠ ADB=30°.
8.解法 1:如答图1,延长 BC交 AD于点 E,
则∠ DEB=∠ A+∠B=90° +30° =?120°,
从而∠ DCB=∠ DEB+∠ D=120° +20°=140°.
若零件合格,∠DCB应等于 140°.
李叔叔量得∠BCD=142°,
因此可以断定该零件不合格.
(1)(2)(3)
点拨:也可以延长DC与 AB交于一点,方法与此相同.
解法 2:如答图2,连接 AC并延长至E,则∠ 3=∠ 1+∠ D,∠ 4=∠ 2+∠ B,因此∠ DCB=∠ 1+∠ D+∠ 2+∠ B=140°.以下同方法1.
解法 3:如答图3,过点 C 作 EF∥AB,交 AD于 E,
则∠ DEC=90°,∠ FCB=∠B=?30°,所以∠ DCF=∠ D+∠ DEC=110°,
从而∠ DCB=∠ DCF+∠ FCB=140°.以下同方法1.
说明:也可以过点 C 作 AD的平行线.
点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.
9.解:( 1)由图知∠ A+∠ F=∠ OQA,∠ B+∠ C=∠QPC,∠ D+∠ E=∠ EOP.而∠ OQA、 ?∠ QPC、∠ EOP是△ OPQ的三个外角.
∴∠ OQA+∠ QPC+∠ EOP=360°.
∴∠ A+∠ B+∠ C+∠ D+∠ E+∠ F=∠ OQA+∠ QPC+∠ EOP=360°.
( 2) 360°点拨:方法同(1).
10. 1点拨:本题易因混淆内角、外角的概念,而误填为3.
11.解:( 1)∠ BDC=90° - 1
∠A .
2
理由:∠ ABC+∠ACB=180° - ∠ A .
∠ EBC+∠ FCB=( 180° - ∠ ABC )+( 180°- ∠ ACB )=360° - (∠ ABC+∠ ACB )=180° +∠ A .
∵ BD 、CD 分别为∠ EBC 、∠ FCB 的平分线,
1 1
∠ FCB .
∴∠ CBD= ∠ EBC ,∠ BCD= 2
2
∴∠ CBD+∠ BCD=1
(∠ EBC+∠ FCB )= 1
×( 180° +∠ A )
2
2
1
=90 °+
∠A .
在△ BDC 中,∠ BDC=180°- (∠ CBD+∠ BCD )=180° - ( 90° + 1 ∠ A ) =90°- 1
∠ A .
2 2
( 2)∠ BDC=1
∠A .
2
理由:∵∠ ACE 是△ ABC 的外角, ∴∠ ACE=∠ A+∠ABC ,
∵ CD 是∠ ACE 的平分线, BD 是∠ ABC 的平分线,
∴∠ DCE=1
∠ ACE=1
∠A+ 1
∠ ABC ,∠ DBC=1
∠ ABC .
2
2
2
2
∵∠ DCE 是△ BCD 的外角,
∴∠ BDC=∠ DCE-∠ DBC=1
∠A+ 1
∠ ABC- 1
∠ ABC=1
∠A .
2
2 2
2
12.解:如图,设球员接球时位于点 C ,他尽力向球门冲近到
D ,
此时不仅距离球门近,射门更有力,而且对球门 AB 的张角也扩大,球就更容易射中.
理由说明如下:
延长 CD 到 E ,则∠ ADE>∠ ACE ,∠ BDE>∠ BCE , ∴∠ ADE+∠ BDE>∠ ACE+∠BCE ,即∠ ADB>∠ACB .
点拨:解此题关键是将生活中的问题抽象为数学问题.
数学世界答案 :
欧拉将七桥布局转化为图所示的简单图形,
于是七桥问题就变成一个一笔画的问题.
这
个图形显然无法一笔画出,也就是说,
?要想一次无重复地走遍这七座桥是办不到的.。