生活中常见的立体图形及其特征
- 格式:doc
- 大小:11.50 KB
- 文档页数:3
正方体长方体圆柱和球的特点1.引言1.1 概述概述部分的内容:几何体是我们日常生活中经常接触到的物体,它们具有不同的形状和特点。
在本文中,我们将主要探讨正方体、长方体、圆柱和球这四种常见几何体的特点。
正方体是一种具有六个面都是正方形的立体物体。
它的每个面都是平整的,并且所有的面都相等,每个角都是直角。
正方体具有优秀的稳定性,常被用于建筑、立体拼图等领域。
长方体是一种具有六个面都是矩形的几何体。
它的长度、宽度和高度都不相同,因此可以根据需求进行调整。
长方体在日常生活中随处可见,如书桌、电视机、冰箱等。
圆柱是一种具有两个平行且相等的圆底的几何体。
底面上的圆与侧面成直角,它的形状特点使得它可以用来储存液体或者承载重物。
圆柱广泛应用于工业、建筑和交通运输等领域。
球是一种具有无限多个点到某一点的距离都相等的立体几何体。
它是三维空间中唯一完全对称的几何体,具有非常特殊的性质。
球体常用于运动、游戏和天体物理研究等领域。
通过分析正方体、长方体、圆柱和球的定义、形状特征和基本性质,我们可以更好地理解它们在不同领域的应用。
本文将进一步探讨这四种几何体的基本性质和应用领域,并通过对比分析,总结它们各自的特点。
通过本文的阅读,读者将更深入地了解这四种几何体的性质与特点。
1.2文章结构文章结构部分的内容:本文将按照以下顺序介绍正方体、长方体、圆柱和球的特点。
首先,在引言部分概述了整篇文章的主要内容和目的。
然后,文章将分别在第二、三、四和五部分详细探讨正方体、长方体、圆柱和球的定义、形状特征、基本性质和应用领域。
每个部分将先介绍几何体的定义和形状特征,然后讨论其基本性质和应用领域,以便读者能够全面了解并比较它们的特点。
最后,在结论部分总结了正方体、长方体、圆柱和球的特点,并进行了对比分析不同几何体之间的差异和相似之处。
通过这样的文章结构,读者可以逐步了解不同几何体的概念和形状特征,进而了解它们的基本性质和实际应用。
同时,通过对比分析不同几何体之间的特点,读者可以深入理解它们各自的独特性和相互关系。
1.1 生活中的立体图形新知概览:知识要点课标要求中考考点生活中常见几何体的基本特征及其分类认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类识别柱体、锥体、球体棱柱的特征知道常见几何体的特征求棱柱的棱数,面数图形的构成要素认识点、线、面,理解“点动成线、线动成面、面动成体”探索平面图形旋转的旋转体知识全解知识点1生活中常见几何体的基本特征及其分类知识衔接:几何图形包括立体图形和平面图形.1.平面图形:数学上所说的平面没有边界,可以向四面八方无限延伸.如果一个图形的各个部分都在同一个平面内,那么这个图形是平面图形,常见的平面图形有三角形、正方形、长方形、平行四边形、梯形、圆等.2.如图1—1—1我们学过长方体,正方体等称为立体图形,这样的几何图形上的点不都在在同一平面内.长方体正方体知识详解:(1)几何体的分类:(2)几何体的基本特征:体是由面围成的;面有两种,平面和曲面.①柱体的相同点是上下两个面完全相同.不同点是圆柱的底面是圆,侧面是一个曲面,直棱柱底面是多边形,侧面都是长方形;②锥体相同点是都有一个顶点.不同点是圆锥的底面是一个圆,侧面是一个曲面,棱锥的底面是一个多边形,侧面都是三角形;③球体由一个曲面围成.知识警示:(1)立体图形是由一个或几个面围成的,如:球是有一个面围成的,而长方体是由六个面围成的,组成棱柱和棱锥的面都是平的,而组成圆锥、圆柱、球的面都是曲的.(2)我们直研究直棱柱,不作特殊说明,棱柱都指直棱柱;(3)长方体、正方体是棱柱;(4)几何体的分类可按“有无顶点”、“有无曲面”等不同的标准来区分.【试练例题1】如图1—1—2所示,请分别指出下列物体的形状分别类似于哪种几何体.思路导引:观察实物轮廓、分析轮廓特征、抽象几何体.直棱柱柱体棱柱圆柱锥体棱锥几何体圆锥球体斜棱柱1—1—2解:茶叶盒类似棱柱;地球仪类似球体;魔方类似棱柱;字典类似棱柱;金字塔类似棱锥;彩笔类似棱柱.方法:由实物的形状想象几何体是一个观察、体验、抽象的过程,解决此类问题应从实物的轮廓特征入手,抽象出几何体,进而确定是哪种几何体,即“有物悟形”、“由形命名”.【试练例题2】如图1—1—3将下列几何体进行分类,并说明理由.思路导引:把几何体进行分类,一定要注意根据不同的分类标准,分类情况不尽相同,切记不要混淆分类标准,分类要做到不重不漏.解:如一类是(1)(2)(4)(5)是柱体,另一类(3)(7)是椎体,第三类(6)是球体;或一类是(1)(4)(5)(7),有平面围成,另一类(2)(3)(6),有曲面参与围成.方法:几何体分类,先确定分类标准,按有无曲面来分较常用,在此标准下几何体可分为多面体(围成几何体的面都是平面)和旋转体(由平面图形旋转形成,围成几何体的面有曲面).【试练例题3】如图1—1—4所示,陀螺是由下面哪两个几何体组合而成的()A. 长方体和圆锥 B. 长方形和三角形C. 圆和三角形 D. 圆柱和圆锥1—1—41—1—3思路导引:根据立体图形的特征对图进行分析知:该图上部分是圆柱,下部分是圆锥.解:D.方法:先判断原几何体是曲面还是平面围成,再判断是否能分割为柱体、锥体还是球体.知识点2棱柱的相关概念及特征知识衔接:1.在小学里我们认识了六种常见的几何体,它们分别是长方体、正方体、圆柱、圆锥和球体.2.我们通过学习,已知道圆柱的侧面展开图是长方形.知识详解:(1)在棱柱里,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线交做侧棱,棱柱的所有侧棱都相等.棱柱的上、下底面是相同的图形,都是多边形,侧面都是长方形.(2)棱柱的特征是:①有两个面互相平行;②其余各面都是平行四边形;③每相邻两个四边形的公共边互相平行.知识警示:一般地,n棱柱有2n个顶点,3n条棱(其中有n条是侧棱),(n+2)个面(2个底面,n个侧面).【试练例题4】如图1—1—5所示棱柱(1)这个棱柱的底面是____________边形.(2)这个棱柱有____________个侧面,侧面的形状是____________边形.1—1—5 (3)侧面的个数与底面的边数____________.(填“相等”或“不相等”)(4)这个棱柱有____________条侧棱,一共有____________条棱.(5)如果CC′=3 cm,那么BB′=____________cm.思路导引(1)观察图形,易知此棱柱为三棱柱;所以底面是3边形,这个棱柱有3个侧面,侧面形状是四边形;利用棱柱侧棱都相等,可求得BB′.答案:1.(1)三(2)3 四(3)相等(4)3 9 (5)3.方法:结合图形解决棱柱的问题,知识就显得较为容易.知识点3棱柱的分类知识详解:人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……知识警示:(1)底面是n边形的棱柱称为n棱柱,长方体和正方体都是四棱柱.(2)正方体的六个面形状、大小都相同,都是正方形,正方体的12条棱都相等.【试练例题5】如图1—1—6请说出下面物体是哪种棱柱.思路导引根据棱柱的分类,观察这几个棱柱的底面,分别是三角形、四边形、六边形,所以这几个物体分别是:三棱柱、四棱柱、六棱柱.答案:三棱柱、四棱柱、六棱柱.方法:判断棱柱的种类,我们可以看棱柱底面是几边形,即可判断其是几棱柱.知识点4图形的构成要素知识详解:1.几何图形都是由点、线、面、体组成的.(1)点是构成图形的基本元素,是线与线相交的地方,即线与线相交成点.点无大小之分,只有位置之别;(2)线无粗细,可以有长度,它可分为直线、曲线,面与面相交成线;(3)面无厚薄,可分为平面、曲面.平面是向四周无限延伸的.2.用运动观点看几何基本图形之间的关系:点动成线,线动成面,面动成体.如:流星可以看作一个点,它划破夜空,就形成了线;直升飞机的螺旋桨快速旋转形成了一个圆面,这可以说线动成面;三角板绕它的一条直角边旋转一周,形成一个圆锥体.点动成线,线动成面,面动成体,这样就组合成了各种各样的几何图形,形成了1—1—6丰富多彩的图形世界.知识警示:(1)线、面、体都是由点组成的,即点是构成图形的基本元素;(2)面与面的交线可能是直线,也可能是曲线;(3)点是最简单的几何图形.【试练例题6】用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.如图1—1—7绕虚线旋转得到的几何体是()思路导引:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱,结合实际生活经验此题易解.解:D.方法:长方形绕其一边所在直线旋转一周形成了一个圆柱; 半圆绕其直径所在直线旋转一周形成球;三角形形绕其一边所在直线旋转一周形成圆锥.1—1—7A B C D。
生活中的立体图形典例解析例1请你分别举出在学校中常见的类似于下列几何体的两个实例。
长方体:圆柱体:圆锥体:棱柱体:球体:分析要举出实例,我们必须掌握这几种几何体的特征.如长方体是由六个面组成,至少有四个面是长方形,另两个面可能是长方形,也可能是正方形,并且长方体相对的两个面是完全相同的两个长方形式正方形.所以,我们在学校常见的装墨水瓶的纸盒,桌子上平放的教科书等.解长方体:装墨水瓶的纸盒,桌子上平放的教科书.圆柱体:没有使用过的圆柱形铅笔,圆柱形水桶.圆锥体:学校实验室里用的圆锥形漏斗的圆锥形部分,圆口形防火用桶的底部.棱柱体:师生骑的自行车上的六角螺母,楼房中的混凝土房梁.球体:学校的体育用品足球、乒乓球.点评:(1)我们在把学校实验室里用的圆锥形漏斗的圆锥形部分看成圆锥时,我们是把圆锥形部分和管的接口看成了一点.(2)圆柱体和棱柱体自身的上下两个底面是完全相同的两个图形,否则就不是圆柱体或棱柱体.如上底大、下底小的圆口形水桶,就不是圆柱体.例2在下面四个物体中,最接近圆柱的是()分析:课本中给出了圆柱的图形如图,应和它们对照.可以看出,圆柱是“直”的,与弯管有明显区别.“D”中的饮料瓶的盖确实可以看做是圆柱,但它在该物中只占很小的一部分,该物体从整体上讲更接近于棱柱.烟囱上下粗细不同,不像课本中的图形那样.解选C点评也许学生认为“C”是最不像圆柱的,这恐怕是因为它太“扁”了.不过,作为柱体的本质特征之一是“粗细”处处相同,而与高、矮(长与短)无关.引导学生观察图形时应注意本质特征.一些烟囱很高,上、下粗细差别又不大,是可以近似地看做是圆柱的.不过在本题所提供的四个物体中,它不如硬币更接近圆柱,所以不能选A.题目中的硬币不是水平放置的,这也给我们做出正确判断增加了障碍.在空间想象能力尚不强的情况下,以观察实物代替观察绘制的图形,是克服这一障碍最好的办法.学习本节和后面两节,一定要注意多多观察身边的实物与模型.例3请你分别举出在我们生活中常见的,类似于下面几何图形的两个实例.三角形:四边形:六边形:扇形:分析根据多边形的概念,可以知道我们用的三角板的面是三角形,书桌的面是四边形,六角螺母的面是六边形.根据扇形的概念我们用的量角器的面是扇形.解三角形:三角板、瓦房的人字架.四边形:教室中的黑板面、学生用的书桌面.六边形:六角螺母的两个底面,人行路上六边形地砖的面.扇形:学生用的量角器,展开的扇子面.点评:我们在说三角板是三角形,人字架是三角形,量角器是扇形时,是把它们都看成了面,没有考虑其厚度.例4把下面几何体的标号写在相对应的括号里.长方体:()棱柱体:()圆柱体:()球体:()圆锥体:()分析该题就是按括号前给出的几何体的名称进行分类,属于哪类的图形就把这个图形的标号写在对应的括号中.解长方体:((2)(5)(8))棱柱体:((2)(4)(5)(8))圆柱体:((1)(3)(6))球体:((7)(9))圆锥体:((10))点评(1)在判断几何体的类别时应注意抓住几何体的本质特征,不要受几何体的摆放角度所影响,如(1)(3)(6)虽然大小不一样,摆放的角度也不一样,但都是圆柱体.(2)长方体、正方体都符合棱柱体的特征,所以都是棱柱体.例5用51根火柴摆成7个正方体,如图.试问,至少取走几根火柴,才能使图中只出现1个正方体?与同伴交流你的思路与体会.分析1个正方体有6个面,8个顶点,每个顶点都有3条棱,只有这些条件都具备,才是一个完整的正方体.本题要求通过取走3根火柴,而把7个正方体变成1个,则取走的火柴必须是“关键部位”——即与几个正方体有联系处的火柴.答案如图,这是一种取法,至少取走3根火柴,同学们不妨几个人一组,一起动手制作这个模型,看是否有其他的取法.这样多动手,多思考,多交流,不仅可帮助我们很好地认识立体图形,而且能使我们养成勤动手、善动脑的习惯,达到取人之长,补已不足的目的.点评:观察图形结构,分析图形特征,找出图形的“共性”与“个性”,是解决图形问题的一大窍门.认识立体图形我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的.有些物体呈现出极不规则的奇形怪状,如石头,植物等;同时也有许多物体具有较为规则的形状,如:西瓜、苹果等;另外,还有人类创造的:中国传统建筑、钟楼、埃及金字塔、易拉罐、蛋筒冰淇淋等等.我们将大千世界中这些物体的形状进行概括,可以按照其形状不同进行分类,主要分为以下几类:1.圆柱体:如图1所示的立体图形.基本特征:圆柱有两个底面和一个侧面,其中两个底面是形状、大小相等的两个圆,是平面;侧面是一个曲面.图1 图2-1 图2-2 图2-32.棱柱体: 如图2-1,图2-2,图2-3所示的立体图形都是棱柱体.棱柱的基本特征:棱柱主要包括直棱柱和斜棱柱.在棱柱体中,任何相邻的两个面的交线叫做棱;相邻两个侧面的交线叫做侧棱;棱柱的所有的侧棱长等相等,棱柱的上、下底面的形状相同,侧面的形状都是长方形3.圆锥:如图3所表示的立体图形.基本特征:圆锥是一个侧面与一个底面组成,其中侧面是一个曲面,底面是一个圆,侧面与底面相交成一条曲线.图3 图44.球体:如图4所表示的立体图形.基本特征:球体有一个曲面组成.2. 写出下列立体图形的名称_________ _____________ __________ __________.用平面截常见几何体在生活中,随时随地都可以看到或接触到被加工过的物体,这种加工一般要对物体进行切割,通过切割得到不同的截面,从而使得几何体在面与体之间转换,为了方便同学们能体会数学中的这种转换过程,现就常见的用平面截几何体出现的截面形状点拨如下:1、用一个平面去截正方体,可能出现的几种情况可以参看本期第一版教材解读.2、用平面截圆柱体,可能出圆、长方形、正方形,等等.如图1.图1即用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,故相交得到是曲线,无法截出三角形.只能用平面平行和垂直于圆柱的底面截出这几种图形.3、用平面去截一个圆锥,能截出圆和三角形截面,等等.如图2.图24、用平面去截球体,只能出现一种形状的截面是圆.如图3.图3让我们一起切正方体用一个平面去截一个正方体,可以得到多种不同的平面图形,在操作过程中,我们不仅增加了对生活中立体图形的认识,而且能体会出立体图形与平面图形之间的转换关系。
立体图形知识点立体图形是我们日常生活和数学学习中经常接触到的重要概念。
从简单的积木玩具到复杂的建筑结构,从日常用品的形状到科学研究中的模型,立体图形无处不在。
首先,让我们来认识一下常见的立体图形。
正方体是一种非常规整的立体图形,它的六个面都是完全相同的正方形,十二条棱长度相等。
正方体具有很高的对称性,无论是从哪个角度观察,它看起来都一样。
在实际生活中,魔方就是一个典型的正方体例子。
长方体则是另一种常见的立体图形,它相对正方体来说,面的大小和棱的长度可以不同,但相对的面面积相等,相对的棱长度相等。
像我们常见的书本、盒子等物品,很多都是长方体的形状。
圆柱体也是常见的立体图形之一,它有两个底面是完全相同的圆,侧面展开是一个长方形。
生活中的水杯、柱子等很多都是圆柱体。
圆锥体有一个圆形的底面和一个顶点,侧面展开是一个扇形。
常见的如漏斗、圣诞帽等就有圆锥体的形状。
球体是一个完全由曲面围成的立体图形,表面上的任意一点到球心的距离都相等。
像足球、篮球等球类就是球体。
接下来,我们了解一下立体图形的表面积和体积的计算。
正方体的表面积等于一个面的面积乘以 6,因为它有 6 个面,且每个面的面积都相等。
一个面的面积等于边长的平方,所以正方体的表面积= 6×边长×边长。
正方体的体积=边长×边长×边长。
长方体的表面积=(长×宽+长×高+宽×高)×2,体积=长×宽×高。
圆柱体的表面积包括侧面积和两个底面积。
侧面积=底面圆的周长×高,底面积=π×半径×半径,所以圆柱体的表面积=2×π×半径×半径+2×π×半径×高。
圆柱体的体积=π×半径×半径×高。
圆锥体的表面积计算相对复杂一些,包括底面积和侧面积。
底面积=π×半径×半径,侧面积=π×半径×母线长。
第3章图形的初步认识3.1生活中的立体图形1.能从现实背景中抽象出立体图形;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3.认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.重点1.感受图形世界的丰富多彩;2.认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球.难点认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.一、导入新课一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活,展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?二、探究新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:生活物体苹果、球天坛顶端塔顶粉笔盒笔筒类似图形球体圆锥棱锥棱柱圆柱2.常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).3.多面体的概念:观察上图2,5与图1,3,4,它们有什么区别?小结:如上图2,5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.4.归纳总结:你能将这些立体图形进行分类吗?简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥5.另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱……棱锥有三棱锥、四棱锥、五棱锥、六棱锥……三、课堂练习1.在下面四个物体中,最接近圆柱的是()2.下列图形中上面是一些具体的物体,下面是一些立体图形,试找出与上面立体图形对应的实物.四、课堂小结1.简单立体图形分类:立体图形{柱体{圆柱棱柱球体锥体{圆锥棱锥2.多面体的概念:围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.五、课后作业教材习题4.1第1~3题.本节课的教学应从具体的图像入手,引导学生从中抽象出立体图形,使学生经历从具体到抽象的思维过程.初步培养学生的抽象思维能力,通过对简单立体图形的分类,渗透分类思想,提高学生的识图能力,通过比较掌握图形的特征.3.2立体图形的视图3.2.1 由立体图形到视图1. 经历“从不同方向观察物体”的活动过程,发展空间观念与空间想象能力;2. 在观察的过程中,初步体会从不同方向观察同一个物体可能看到不一样的结果.重点1. 仔细观察物体,确定好物体的主视,左视,俯视方向;2. 如何确定物体的三视图.难点1. 根据立体图形和视图方向,画出立体图形的视图;2. 根据具体的立体图形分析图形的组成等.一、导入新课课件展示《题西林壁》:横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中. 苏东坡给我们描绘了一段庐山瑰丽的风景图.问题:1.从诗中可以看出,苏东坡从不同角度对庐山进行了观察,那他都从哪些角度对庐山进行了观察呢?2.诗中蕴含着什么道理,对我们有什么启发?【设计意图】通过诗词描述的形式展示一段风景,通过跨学科的方式,以苏东坡的一首《题西林壁》把同学们带入到一段如诗如画的境界中来,再从诗句中提炼出数学知识.这样,不但增强了学生的人文意识,还让学生感受到了数学中的“美”.二、探究新知(一)从不同方向观察立体图形有一个长方体如图:长方体有6个面,如果我们从上,下,左,右,前,后六个方向去观察,肯定可以确定它的形状和大小,而实际上从正面看与从后面看得到的是同一种图形.请同学们说说,你看到到的是什么图形,边长各是多少?(二)判断由立体图形得到的视图13. ( 2024·江汉区模拟)已知一个几何体如图所示,那么它的左视图是()A B C D9. ( 2024·二道区校级四模)下列几何体中,其主视图和俯视图完全相同的是()A B C D三、课堂练习1.2024年2月17日,全球首架大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是大型客机的实物图,其俯视图是( A )A BC D2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( B )A B C D3.( 2019秋·镇平县期末)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A B C D四、课堂小结从不同方向观察同一个物体,所看到的结果是不同的,从正面看到的图形成为主视图,从左面看到的图形成为左视图,从上面看到的图形成为俯视图五、课后作业教材第129页习题4.2本节课对学生的抽象思维能力发展比较重要,是学生由形象思维到抽象思维的过度.通过由立体图形到试图的学习过程,是学生明确从不同方向看物体,可能会得到不同的图形,通过观察与归纳能画出不同方向看到的图形,发展观察思维能力3.2.2 由视图到立体图形1. 能画出简单立体图形的三视图;2. 使学生能利用三视图来描述出实际的立体图形.重点1. 仔细观察物体的主视,左视,俯视图,根据三视图描述出立体图形;2. 如何确定物体的三视图.难点1. 如何根据三视图,画出正确的立体图形;2. 根据三视图对立体图形做相关计算(面积,体积,个数等).一、导入新课健康饮水从“凉白开”开始,同学们用来烧开水的水壶是啥样子的呢,请同学们描述一下.下面看看老是找到几种常见的电热水壶的样子,看看跟同学们加的是否一样呢?二、探求新知(一)通过从不同方向观察物体,抽象出具体的物体形象.是不是各种形状的都有呀,请同学们观察下面的电水壶的三种视图,试着想象一下这个电水壶是什么样子的?请同学们分别描述一下你看到的样子:________.(二)通过观察三视图,确定物体具体形象.三、课堂练习1. 如图是一个立体图形的三视图,那么这个立体图形是()A B C D2.如图为某几何体的三种视图,这个几何体可以是()A B C D3.下面两幅图是由5个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的左视图为()A B C D4.用若干个相同的小正方体组成的几何体的俯视圈和左视图如困所示,则组成该几何体所用的正方体最少是()A.5个B.6个C.7个D.8个四、课堂小结通过观察物体的三视图(包括三视图所标注的数据等),抽象出具体的立体图形并描述出来..能通过分析三视图,对立体图形进行相关计算.五、课后作业教材第129页习题4.2本节课让然关注学生的抽象思维能力发展,是学生由形象思维到抽象思维的过度.通过由观察三个方向的视图,来确定立体图形是本节课的重点,开始可以由简单的,学生熟悉的图形入手,让学生通过观察和想象,描述具体的立体图形,亦可以让学生通过实物演示得出结论,然后总结规律和方法,逐步过渡到能直接抽象出立体图形.3.3立体图形的表面展开图1.让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系;2.会判断所给定的平面图形能否折成立体图形;3.给出一些立体图形的展开图,能说出相应立体图形的名称;4.会判断给定的平面图形是否为某立体图形的展开图,并会把一个简单的立体图形展开成平面图形.重点根据立体图形研究其展开图和根据展开图判别立体图形.难点研究一个简单立体图形展开图.一、导入新课1.观察生活的周围,就会发现物体的形状千姿百态……,这其中蕴含着许多图形的知识.2.当我们进行包装时,它们的展开图是怎样的呢?下面让我们一起来探究.二、探究新知1.圆柱体是我们所熟悉的图形,那么圆柱体的侧面展开图是什么图形呢?请你画出来.2.“折一折”:如下图是多面体的展开图,你能说出这些多面体的名称吗?3.正方体有哪几种展开图,你能画出来吗?学生以小组为单位展开探究,将结果画在黑板上,教师及时予以总结.正方体展开图如下图:根据图形做出归纳小结:第一行是1-4-1组合;第二行第1~3个是2-3-1组合;第二行最后两个分别是2-2-2和3-3组合.三、课堂练习1.如图,()不是正方体的展开图.2.如图,下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.3.在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有()A.7种B.4种C.3种D.2种四、课堂小结通过本节课的学习,你有哪些收获?还有哪些疑惑?五、课后作业教材第131~132页练习第1,2,3题.本节课主要内容是立体图形的平面展开图,学习本节课内容需要学生有一定的空间想象能力,所以在实际教学中,应多从具体的实物入手,让学生通过动手操作来发现规律并及时进行总结,然后再通过抽象的想象来解决问题,给学生一个适应的过程.3.4平面图形1.知识目标:让学生经历观察——画图——认知——设计的过程,了解生活中的圆和多边形;通过画图——分析——归纳,了解多边形与三角形之间的关系,将一个多边形分割成三角形.2.能力目标:从具体图形中,通过抽象、概括,画出它的表面形状,把一个多边形进行分割转化成三角形,从中渗透数学转化思想,并锻炼学生的动手操作能力.重点让学生发现生活中的圆、多边形及其给生活带来的美和享受,进而认识多边形,会将一个多边形分割成三角形.难点多边形分割成三角形的方法.一、导入新课1.观察下面所示的各物体,你能画出它们表面轮廓线的形状吗?2.虽然我们所处的世界是一个立体的世界,是一个三维的世界,但通过前面的学习,我们也知道,立体图形是由平面图形所组成的,我们也知道,其实有时我们观察物体,都是从其表面开始的:生活物体硬币镜框塔的横截面三角旗扇子表面图形圆长方形六边形三角形扇形二、探究新知1.其实,生活中的物体,它们的表面都是有一定形状的平面图形,如:2.观察这些图形,你能发现它们是怎样构成的吗?概括:(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.按照组成多边形的边数,多边形可分为三角形、四边形、五边形、六边形……另外,多边形也可分为凹多边形与凸多边形.3.我们都知道,每个多边形都可以看成是由三角形组成的,即三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.如:从上图中,可以发现三角形的个数刚好与边数有一定的规律:三角形的个数=边数-2三、课堂练习1.下列图形中,是四边形的是()A.①③B.②③④C.③④D.①②④⑤2.如图,每一个多边形都可以按如图的方法分割成若干个三角形.按如图所示的方法,十五边形可以分成________个三角形.四、课堂小结1.(1)圆是由曲线围成的封闭图形;(2)多边形是由线段围成的封闭图形.2.在多边形中,三角形是最基本的图形,每一个多边形都可以分割成若干个三角形.五、课后作业教材第136页练习第1,2题.1.在本节课的教学中,从数学的具体图形入手,让学生通过观察与思考,得出结论.将多边形分割成若干个三角形是本节课教学的难点,教师要引导学生动手操作,总结出规律,应该鼓励学生采用不同的分割方法.2.本节课能抓住学生的爱好和心理需求,在轻松、愉快的气氛中让学生学到数学知识,并能把数学知识同生活实际联系起来.3.本节课是在学生认识多边形和圆,并认识到它们可以组成各种优美的图案的基础上发散学生的思维能力,培养学生大胆想象的能力、创新能力和动手能力.让学生真正参与了教学,同时学生也得到了展示自己的机会和舞台.3.5最基本的图形——点和线3.5.1点和线1.使学生理解任何图形都是由点和线组成的,体会线段、射线、直线的形象,正确区分这三个图形,掌握它们的表示方法.2.感受、体会、理解“两点之间,线段最短”以及“两点确定一条直线”,掌握两点间距离的概念.重点线段、射线、直线的定义以及表示方法,熟悉简单的几何语言.难点线段、射线、直线的区别与联系.一、导入新课1.如果你站在一座足够高的楼上,望着楼底下的某一个人,那么你将能见到什么?2.黑夜中用聚光灯照射远处的墙壁,我们会看到什么?3.如果你把一条两头都打结的绳子拉直了,你将能发现什么?二、探究新知1.从情景中,我们可以知道,你能看到的将是一个点,而这个点就表示着这个人或聚光灯照射处的位置,因此,可以概括:点通常表示一个物体的位置.点图形:·A表示:点A(A点).2.日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.线段图形:表示:线段AB线段d3.利用线段的形象,我们顺利地引出了射线与直线.概括:把线段向一方无限延伸所形成的图形叫做射线;把线段向两方无限延伸所形成的图形叫做直线.射线图形:表示:射线AB射线d直线图形:表示:直线AB直线d4.小结:对于线段、射线、直线,应该进行综合的比较:线段射线直线图形表示线段AB 射线AB 直线AB几个端点2个1个0个能否延伸不能向一边无限延伸向两边无限延伸能否度量能不能不能5.试一试.(1)线段公理观察下图,从A地到B地有三条路径,你会选择哪一条?从上边的图中,我们很容易发现:如果从A地到B地,走直路的路程是最短的,即在这些把A,B连结起来的线中,线段AB是最短的.概括:两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.(2)直线的公理我们要把一根木条钉紧,只用一个钉子,行吗?那么至少需要钉几个钉子才能将木条钉紧?由生活中的经验,我们都知道,一个是不够的,至少需要两个钉子才能将木条钉紧.概括:经过两点有一条直线,并且只有一条直线,即两点确定一条直线.三、课堂练习1.四条直线两两相交,其交点个数最多有()A.3个B.4个C.5个D.6个2.如图所示,共有线段________条;共有射线________条;共有直线________条.3.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明______________________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________________.四、课堂小结1.线段、射线、直线之间的区别.2.两点之间,线段最短.连结两点间的线段的长度叫做两点间的距离.3.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.五、课后作业教材习题4.5第1,2题.本节课是学生学习几何的入门课,培养学生的几何意识对于本节课来讲就很重要,教师可以从具体形象的实际例子入手,使学生经历从具体到抽象的思维过程,从而培养学生的几何意识.抽象是数学的一种基本思想和基本方法,让学生从实际生活的物体、图形中抽象得到点、线、面、体等数学概念.概括事物的数学属性,引导学生从数学的角度去看待实际物体,提高学生的抽象思维能力,引导学生的思维习惯.3.5.2线段的长短比较1.使学生分别掌握测量与重叠来比较线段大小的方法;2.使学生充分理解两条线段大小比较所隐含的意义,能从“量”与“形”上进行转化;3.线段中点的性质及其简单运算.重点线段大小比较的方法及其原理.难点如何引导学生从“数量”的角度引入到从“形”的角度来分析两条线段的大小比较.一、导入新课1.如果有两个同学在比较高矮,你们一般是怎么做的?解决方法:让两个人站在一起来比较;分别量出这两个同学的身高.2.如何比较数学书长和宽的长度大小?你能够想到什么方法? 解决办法:可以拿两本相同的数学书,将长和宽重叠进行比较;分别测量长和宽的长度;用圆规截取书本的宽度,再和长相比较.二、探究新知1.从上面的探究总结,怎样比较下图中两条线段的长短?小结:从上面的引例,我们很容易知道,比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.如图有线段AB 与线段CD ,且进行了以上的有关比较方法.如果通过比较可知:线段AB 比线段CD 短,则表示为: AB<CD(或CD>AB)2.如图,MN 是已知线段,你能用直尺和圆规准确地画一条与MN 相等的线段吗? 小结:我们可以先画射线AB ,然后用圆规量出线段MN 的长,再在射线AB 上截取AC =MN ,那么,AC 就是所要画的线段.3.在一张半透明纸上画一条线段AB ,将线段AB 折叠,使点A 和点B 重合,折痕与线段AB 的交点为C ,测量AC 、BC 和AB 的长度,你有什么发现?小结:AC =CB =12AB ,AC +CB =AB归纳:把一条线段分成两条相等线段的点,叫做这条线段的中点. 如上图,点C 是线段AB 的中点. 三、课堂练习1.如图①,AD =AB -________=AC +________.2.如图②,下列说法不能判断点C 是线段的中点的是( )A .AC =CB B .AB =2AC C .AC +CB =ABD .CB =12AB3.在直线m 上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长.四、课堂小结1.比较两条线段的长短有两种方法: (1)用刻度尺度量;(2)利用圆规进行移动.2.把一条线段分成两条相等线段的点,叫做这条线段的中点. 如下图,点C 是线段AB 的中点.则AC =CB =12AB ,AC +CB =AB.五、课后作业教材习题4.5第4,5题.在本节课的安排上应逐渐在几何中渗透几何语言的描述,并应注意到其语言的规范性.在知识上应对本节课内容上有所拓展,而不能局限于教材,要引导学生来发现问题,并学会找到解决问题的方法.3.6角3.6.1角1.使学生通过实际生活中对角的认识,建立起几何中角的概念,并能掌握角的两个定义;2.使学生掌握角的各种表示方法;3.使学生掌握平角、周角和直角的概念;4.掌握角的单位换算,会进行计算;5.会用角准确地表示方向.重点角的概念及两个定义和角的表示方法.难点角的单位换算和用角准确地表示方向.一、导入新课观察下面的图形,你发现有什么共同的特点吗?这些图形都给了我们角的形象.二、探究新知1.根据你对上面角的观察,你能说说什么样的图形叫做角?小结:角的定义:(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是有一条射线绕着它的端点旋转而成的图形.2.如何表示一个角呢?小结:角的表示方法:有以下几种表示方法(如图所示):3.平角和周角在上面的旋转过程中,有两种特殊的情况:第一种是绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角;第二种是绕着端点旋转到终边和始边重合,这时所成的角叫做周角.4.角的度量如何使用量角器测量角的大小?从量角器中我们已经知道如果把周角分成360等份,每一份就是一度,记作1°,但是一个角并不正好是整数度数,与长度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1′;而把一分再分成60等份,每一份就是1秒,记作1″.这样,角的度量单位度、分、秒有如下关系:1周角=360°1平角=180°1°=60′1′=60″5.方位角还记得下图的八个方向吗?但在日常生活中,八个方向是不够用的,这只是一种大致的方向.如果要准确地表示方向,那就要借用角度的表示方式.三、课堂练习1.计算:(1)180°-(35°18′5″+62°56′15″);(2)180°-79°36′20″;(3)73°45′55″+61°41′37″.2.写出图中所有小于平角的角.四、课堂小结1.角的定义(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是由一条射线绕着它的端点旋转而成的图形.2.一条射线绕着端点旋转到角的终边和始边成一条直线,这时所成的角叫做平角;绕着端点旋转到终边和始边重合,这时所成的角叫做周角.3.角的单位换算1周角=360°1平角=180°1°=60′1′=60″4.我们可以借用角来表示方向.五、课后作业教材第148页练习第1,2题.本节课的教学应该从学生所熟悉的图形入手,结合学生小学已经掌握的关于角的知识来逐步引入本节课内容,然后从静态和动态两个角度给角下定义.在讲解时,可利用相关的教具进行直观的演示,以利于学生理解.角的表示方法是本节课的重点,教师一定要讲清楚每种方法怎样表示以及应该注意的问题,使学生能够熟练掌握.角的度量单位的换算是本节课的难点,教师可提醒学生仿照时间的换算来进行记忆.在进行换算时,教师要先进行示范讲解,将每一步的过程演示清楚,然后可适当补充练习,使学生掌握.3.6.2角的比较和运算1.了解角的大小比较的方法;2.掌握角的度数的运算和角的运算;3.掌握角的平分线及其应用;4.会用圆规和直尺画一个角等于已知角.重点1.角的度数的运算和角的运算;2.角的平分线及其应用.难点1.角的度数的运算;2.角的平分线的应用.一、导入新课1.比较两条线段的长短有哪些方法?小结:测量法;叠合法.2.我们如何比较两个角的大小呢?二、探究新知1.角的大小比较(1)出示教具,探索讨论:观察以下三个角,你能说出它们的大小吗?(2)学生提出方法,教师小结: ①叠合法(课件)把一个角放到另一个角上,使它们的顶点重合,其中一边也重合,并使两个角的另一边都在这一条边的同侧.②度量法用量角器分别量出角的度数,再加以比较. 2.角的和差关系(1)观察下图中有哪几个角,把它写下来:________________________________________.(2)根据上图中角之间的关系填空: ∠AOB =________=________; ∠BOC =________=________; ∠AOC ==________=________. 3.作一个角等于已知角在前面的学习中,我们已经知道如何作一条线段等于已知线段,同样,我们也可以利用圆规来作一个角等于已知角.4.角平分线(1)请同学们把一个角的两边对折,让两边互相重合.这时,我们将看到这个角的中间有一条射线,请你测量所分成的两个角的大小,你有什么发现?(2)小结:这条射线将这个角分成两个相等的角,这时,我们把这条射线称为这个角的角平分线.归纳:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,已知OC 平分∠AOB ,则有:∠AOC =∠BOC =12 ∠AOB ,∠AOB =2∠AOC=2∠BOC.三、课堂练习。
生活中的立体图形引言立体图形是指在三维空间中具有长度、宽度和高度的图形。
在我们的日常生活中,我们经常会遇到各种各样的立体图形,例如盒子、球体和圆柱体等等。
这些立体图形不仅仅是一种几何形状,它们在我们的生活中扮演着重要的角色,就像我们周围的建筑物、容器和各种物体一样。
本文将介绍生活中常见的几种立体图形以及它们的应用。
一、盒子盒子是一种常见的立体图形,它具有六个面,包括四个侧面、一个底面和一个顶面。
盒子通常用来储存物品或包装物品。
在我们的日常生活中,我们经常会使用盒子来存放食物、书籍、衣物等等。
此外,盒子还经常用于运输物品,在物流行业中扮演着重要的角色。
二、球体球体是另一个常见的立体图形,它是由一个平面围绕着一个点旋转形成的图形。
球体在体育运动、音乐乐器和家居装饰中都有重要的应用。
在体育运动中,例如足球、篮球和网球,都是使用球体形状的球进行比赛。
此外,许多乐器,如打击乐器中的铜钹和木琴,也具有球体形状。
在家居装饰中,人们经常使用球体形状的装饰物来增添居家的美感。
三、圆柱体圆柱体是一个由圆形底面和一个平行于底面的圆形顶面连接而成的立体图形。
它不仅仅在我们的日常生活中发挥着储存和运输物品的作用,还在建筑、工程和设计领域中被广泛应用。
在建筑中,圆柱体形状常用于柱子和柱头的设计,为建筑物增添了美观和稳定性。
在工程领域中,圆柱体常用于管道和容器的设计和制造。
在设计领域中,圆柱体形状的物体常用于产品设计,例如圆柱形的笔筒和香薰瓶等。
四、棱柱体棱柱体是一个由多个相等的侧面连接而成的立体图形,它有两个平行且相等的底面。
棱柱体在建筑、工程和数学等领域有广泛的应用。
在建筑中,棱柱体常用于建筑物的设计,例如建筑立面的设计。
在工程领域中,棱柱体形状的物体常用于制造容器和管道。
在数学中,棱柱体经常被用作教学工具,帮助学生理解几何概念。
结论生活中的立体图形在我们的日常生活中无处不在。
从盒子到球体,再到圆柱体和棱柱体等等,这些立体图形不仅仅是一种几何形状,它们还扮演着各种重要的角色。
生活中常见的立体图形及其特征
立体图形是我们日常生活中的常见事物,它们不仅令我们生活更美好,还有很多有趣的特征和用途。
本文将从常见的立体图形入手,探讨它们的特征和应用,让我们了解到立体图形的奥秘。
一、正方体
正方体是一种常见的正交多面体,它有六个平面、八个顶点和12条边。
正方体是最稳定的立方体,因为它的6个面都是相等的,也就是说,正方体所承受的压力和重力是相等的。
正方体在我们的日常生活中广泛应用,例如玩具、箱子和建筑等领域。
二、圆柱体
圆柱体是一种由一个圆和与其垂直的柱面组成的几何体。
它有两个平面、一个侧面、两个底面和一个轴线,圆柱体也是我们日常生活中的一种常见事物,比如可乐瓶、水管、笔筒等。
三、圆锥体
圆锥体是一种由一个圆锥和一个底面组成的几何体,它有一个平面、一个侧面、一个底面和一个轴线。
圆锥体与圆柱体类似,但它的形状更加特殊,因此它有着更广泛的应用,例如圆锥机、储物柜、喇叭等。
四、棱柱
棱柱是一个由两个平行的底面和由这些底面到每个底面所垂直的平面面组成的多面体。
棱柱的特征是它的“棱”,也就是说它是由多个长方形组成的,正方形是最常见的。
棱柱在我们的日常生活中也有着广泛的应用,例如铅笔盒、棉花糖、灯罩等。
五、棱锥
棱锥是一个由一个多边形和所有连接多边形到一个点的线段组成的几何体。
棱锥的特征是它的“锥”,也就是说它的形状呈尖锐的角度。
棱锥也有广泛的应用,例如灯泡、安全帽等。
六、球体
球体是一个由一条半径为r的球面和半径为r的半球组成的三维形体。
球体的特征是它的完美圆形,这种形状在我们的日常生活中也随处可见,例如足球、篮球、地球仪等。
七、金字塔
金字塔是一个由一个多边形底面和一个顶点连接底面每个角的三角形组成的几何体。
金字塔的特征是它的形状,它的形状特殊,所以它也有很多特殊的用途,如建筑、博物馆等。
总结
立体图形在我们的日常生活中随处可见,它们的特征各不相同,在不同的应用领域也有不同的用途,例如在建筑领域中,我们会用金字塔和棱锥来烘托建筑的氛围;在玩具制作领域中,我们常见到的正方体和球体;在工程制造领域中,我们可以看到的是圆柱体和圆锥体。
我们在日常生活中对于立体图形的认识和应用必不可少,只有了解到它们的特征和用途,才能更好的运用它们,让我们的生活更加的丰富多彩。