2014年浙江省杭州市城北中学中考数学模拟试卷(3月份)
- 格式:docx
- 大小:92.41 KB
- 文档页数:13
2014年浙江省杭州市中考数学模拟试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2C.D.2.(3分)(2000•江西)化简(﹣2a)2﹣2a2(a≠0)的结果是()A.0B.2a2C.﹣4a2D.﹣6a23.(3分)函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.4.(3分)(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)5.(3分)已知两圆的半径满足方程2x2﹣6x+3=0,圆心距为,则两圆的位置关系为()A.相交B.外切C.内切D.外离6.(3分)(2013•天水)如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°7.(3分)(2013•石景山区二模)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A . 左视图面积最大B . 俯视图面积最小 C . 左视图面积和主视图面积相等 D . 俯视图面积和主视图面积相等 8.(3分)(2013•海淀区一模)在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:场次(场) 12 3 4 5 6 7 8 9 10 得分(分) 134 13 16 6 19 4 4 7 38 则这10场比赛中他得分的中位数和众数分别是( ) A . 10,4 B . 10,7 C . 7,13 D . 13, 49.(3分)(2012•贵港一模)根据下列表格中的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的个数是( ) x 6.17 6.18 6.19 6.20y=ax 2+bx+c0.02 ﹣0.01 0.02 0.04A . 0B . 1C . 2D . 1或210.(3分)对于实数定义一种运算⊗为:a ⊗b=a 2+ab ﹣2,有下列命题: ①1⊗3=2;②方程x ⊗1=0的根为:x 1=﹣2,x 2=1; ③不等式组的解集为﹣1≤x ≤4;④在函数y=x ⊗k 的图象与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的是( )A . ①②③④B . ①②③C . ①②D . ①②④二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.(4分)与的积为正整数的数是 _________(写出一个即可).12.(4分)已知点P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,则(a+b )2009的值为 _________ . 13.(4分)在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形a 中点A 的坐标为(4,﹣2),则图形b 中与点A 对应的点A ′的坐标为 _________ .14.(4分)(2008•枣庄)已知二次函数y 1=ax 2+bx+c (a ≠0)与一次函数y 2=kx+b (k ≠0)的图象相交于点A (﹣2,4),B (8,2)(如图所示),则能使y 1>y 2成立的x 的取值范围是 _________ .15.(4分)(2013•黄浦区二模)如图,圆心O恰好为正方形ABCD的中心,已知AB=4,⊙O的直径为1,现将⊙O 沿某一方向平移,当它与正方形ABCD的某条边相切时停止平移,记平移的距离为d,则d的取值范围是_________.16.(4分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若S△BEC=8,则k=_________.三、全面答一答(本小题有8个小题,共66分)解答应写出文字说明、证明过程或推理步骤.如果觉得有些题有点困难,那么把自己能写出的解答写出一部分也可以.17.有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A,B,C,D表示);(2)分别求抽取的两张卡片上算式都正确的概率.18.如图(1)矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)(2)折叠后重合部分是什么图形?试说明理由.19.(2014•衢州一模)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)20.2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:(1)请将统计表中遗漏的数据补上;(2)扇形图中表示30﹣35岁的扇形的圆心角是多少度?(3)在参加调查的30﹣35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?(4)从上表中,你还能获得其它的信息吗?(写出一条即可)21.(2013•江东区模拟)【问题】如图1、2是底面为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是_________cm2,圆锥的侧面积是_________cm2.(2)1张长方形彩纸剪拼后最多能装饰_________个圆锥模型;5张长方形彩纸剪拼后最多能装饰_________个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.22.(2008•西湖区模拟)如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;(2)求EF的长;(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.23.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣4与直线y=x交于点A、B,M是抛物线上一个动点,连接OM.(1)当M为抛物线的顶点时,求△OMB的面积;(2)当点M在抛物线上,△OMB的面积为10时,求点M的坐标;(3)当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大.2014年浙江省杭州市中考数学模拟试卷(8)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2C.D.考点:倒数;数轴.专题:计算题.分析:由题意先读出数轴上A的数,然后再根据倒数的定义进行求解.解答:解:由题意得数轴上点A所表示的数为﹣2,∴﹣2的倒数是﹣,故选D.点评:此题主要考查倒数的定义,是一道基础题.2.(3分)(2000•江西)化简(﹣2a)2﹣2a2(a≠0)的结果是()A.0B.2a2C.﹣4a2D.﹣6a2考点:整式的混合运算.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,合并同类项的法则,只把系数相加减,字母与字母的次数不变计算即可.解答:解:(﹣2a)2﹣2a2=4a2﹣2a2=2a2.故选B.点评:本题主要考查积的乘方的性质,合并同类项的法则,熟练掌握运算法则是解题的关键.3.(3分)函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.考点:一次函数的定义.专题:数形结合.分析:根据函数、正比例函数及一次函数的定义解答.解答:解:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.根据函数的定义知,一次函数和正比例函数都属于函数的范畴;一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则成为正比例函数y=kx;所以,正比例函数是一次函数的特殊形式;故选A.点评:本题主要考查了一次函数、正比例函数的定义.解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.(3分)(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)考点:点的坐标.分析:根据点在第三象限点的坐标特点可直接解答.解答:解:∵小手的位置是在第三象限,∴小手盖住的点的横坐标小于0,纵坐标小于0,∴结合选项目这个点是(﹣4,﹣6).故选C.点评:本题主要考查了点在第三象限时点的坐标特征,比较简单.注意四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)已知两圆的半径满足方程2x2﹣6x+3=0,圆心距为,则两圆的位置关系为()A.相交B.外切C.内切D.外离考点:圆与圆的位置关系;估算无理数的大小;根与系数的关系.专题:常规题型.分析:解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.解答:解:解方程2x2﹣6x+3=0得:∴x1+x2=3,x1•x2=,∵O1O2=,x2﹣x1=,x2+x1=3,∴<O1O2<3.∴⊙O1与⊙O2相外交.故选A.点评:本题主要考查圆与圆的位置关系的知识点,综合考查一元二次方程的解法及两圆的位置关系的判断.此类题比较基础,需要同学熟练掌握.6.(3分)(2013•天水)如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°考点:平行线的性质;对顶角、邻补角;同位角、内错角、同旁内角.专题:计算题.分析:本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.解答:解:∵l1∥l2,∴130°所对应的同旁内角为∠1=180°﹣130°=50°,又∵α与(70°+50°)的角是对顶角,∴∠α=70°+50°=120°.故选D.点评:本题重点考查了平行线的性质及对顶角相等,是一道较为简单的题目.7.(3分)(2013•石景山区二模)如图是由五个相同的小正方体组成的几何体,则下列说法正确的是()A.左视图面积最B.俯视图面积最大小C.左视图面积和主视图面积相等D.俯视图面积和主视图面积相等考点:简单组合体的三视图.分析:观察图形,分别表示出三视图由几个正方形组成,再比较其面积的大小.解答:解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.点评:此题主要考查了三视图的知识,解题的关键是能正确区分几何体的三视图,本题是一个基础题,比较简单.8.(3分)(2013•海淀区一模)在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:场次(场) 1 2 3 4 5 6 7 8 9 10得分(分)13 4 13 16 6 19 4 4 7 38则这10场比赛中他得分的中位数和众数分别是()A.10,4 B.10,7 C.7,13 D.13,4考点:众数;中位数.分析:根据中位数和众数的定义进行解答,将这组数据从小到大重新排列,求出最中间两个数的平均数;找数据中出现次数最多的数据即可.解答:解:∵4出现了3次,出现的次数最多,∴众数是4;把这组数据从小到大排列为:4,4,4,6,7,13,13,16,19,38,第5个和第6个数的平均数是(7+13)÷2=10,则中位数是10;故选A.点评:此题考查了中位数与众数,众数是一组数据中出现次数最多的数据,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.9.(3分)(2012•贵港一模)根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c 0.02 ﹣0.01 0.02 0.04A.0B.1C.2D.1或2考点:图象法求一元二次方程的近似根.专题:计算题.分析:由表格中的对应值可得出,方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间.解答:解:∵当x=6.17时,y=0.02;当x=6.18时,y=﹣0.01;当x=6.19时,y=0.02;∴方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间,故选C.点评:本题考查了用图象法求一元二次方程的近似根,当函数值由正变为负或由负变为正时,方程的根在这两个自变量之间.10.(3分)对于实数定义一种运算⊗为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为﹣1≤x≤4;④在函数y=x⊗k的图象与坐标轴交点组成的三角形面积为3,则此函数的顶点坐标是其中正确的是()A.①②③④B.①②③C.①②D.①②④考点:命题与定理.专题:新定义.分析:根据新定义计算得1⊗3=1+1×3﹣2=2,可对①进行判断;根据新定义先得到方程x2+x﹣2=0,再利用因式分解法解得x1=﹣2,x2=1,则可对②进行判断;先根据新定义得到不等式组,然后解不等式组,则可对③进行判断;先根据新定义得到y=x2+kx﹣2,再利用三角形面积公式求出k,然后求抛物线的顶点坐标,再对④进行判断.解答:解:1⊗3=1+1×3﹣2=2,所以①正确;由x⊗1=0得x2+x﹣2=0,解得x1=﹣2,x2=1,所以②正确;化为,此不等组无解,所以③错误;在函数y=x⊗k=x2+kx﹣2的图象与y轴交点坐标为(0,﹣2),与x轴两交点之间的距离=,则×2×=3,解得k=±1,所以抛物线为y=x2+x﹣2或y=x2﹣x﹣2,则顶点坐标分别为、(,﹣),所以④错误.故选C.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)与的积为正整数的数是(答案不唯一)(写出一个即可).考点:分母有理化.专题:开放型.分析:只要与相乘,积为正整数即可.从简单的二次根式中寻找.解答:解:与的积为正整数的数是:(答案不唯一).点评:本题考查了实数的有理化因式的确定方法.可以从积或约分两方面考虑.12.(4分)已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2009的值为﹣1.考点:关于x轴、y轴对称的点的坐标.专题:计算题.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得﹣1=2,b﹣1=﹣5,再解出a、b的值,然后计算出(a+b)2009的值即可.解答:解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b)2009=(3﹣4)2009=﹣1,故答案为:﹣1.点评:此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.(4分)在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果图形a中点A的坐标为(4,﹣2),则图形b中与点A对应的点A′的坐标为(4,﹣5).考点:坐标与图形变化-平移.分析:根据向上平移横坐标不变,纵坐标加求解即可.解答:解:∵图形a是图形b向上平移3个单位长度得到的,图形a中点A的坐标为(4,﹣2),∴设图形b中与点A对应的点A′的坐标为(4,y),则y+3=﹣2,解得y=﹣5,∴点A′的坐标为(4,﹣5).故答案为:(4,﹣5).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.(4分)(2008•枣庄)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是x<﹣2或x>8.考点:二次函数的图象;一次函数的图象.分析:先观察图象确定抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点的横坐标,即可求出y1>y2时,x的取值范围.解答:解:由图形可以看出:抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点横坐标分别为﹣2,8,当y1>y2时,x的取值范围正好在两交点之外,即x<﹣2或x>8.点评:此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.15.(4分)(2013•黄浦区二模)如图,圆心O恰好为正方形ABCD的中心,已知AB=4,⊙O的直径为1,现将⊙O 沿某一方向平移,当它与正方形ABCD的某条边相切时停止平移,记平移的距离为d,则d的取值范围是≤d≤.考点:切线的性质.专题:计算题.分析:如图所示,当圆心运动到与点A重合时,d最大,运动到与点B重合时,d最小,求出OA与OB,即可确定出d的范围.解答:解:作出图形,当圆心O运动到A点时,d最大,当圆心O运动到B点时,d最小,∵正方形ABCD的边长为4,∴对角线为4,则AO=2﹣=;BO=2﹣=,则d的范围为≤d≤.故答案为:≤d≤点评:此题考查了切线的性质,勾股定理,以及正方形的性质,找出d的最大值与最小值是解本题的关键.16.(4分)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若S△BEC=8,则k=16.考点:反比例函数系数k的几何意义.专题:压轴题.分析:方法1:因为S△BEC=8,根据k的几何意义求出k值即可;方法2:先证明△ABC与△OBE 相似,再根据相似三角形的对应边成比例列式整理即可得到k=2S△BEC=16.解答:解:方法1:设OB=x,则AB=,过D作DH⊥x轴于H,∵D为AC中点,∴DH为△ABC 中位线,∴DH=AB=,∵∠EBO=∠D BC=∠DCB,∴△ABC∽△E OB,设BH为y,则EO=,BC=2y,∴S△EBC=BC •E=••2y= =8,∴k=16.方法2:∵BD是Rt△ABC斜边上的中线,∴BD=CD=AD,∴∠DBC=∠A CB,又∠DBC=∠OBE ,∠BOE=∠ABC =90°,∴△ABC∽△E OB,∴=,∴AB•OB=BC•OE,∵S△BEC=×BC•OE=8,∴AB•OB=16,∴k=xy=AB•OB=16.故答案为:16.点评:主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积.本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.三、全面答一答(本小题有8个小题,共66分)解答应写出文字说明、证明过程或推理步骤.如果觉得有些题有点困难,那么把自己能写出的解答写出一部分也可以.17.有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A,B,C,D表示);(2)分别求抽取的两张卡片上算式都正确的概率.考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出抽取卡片上算式都正确的情况数,即可求出所求的概率.解答:解:(1)列表如下:第二次第一次A A AB B BC C CD D D由表中可以看出,抽取的两张卡片可能出现的结果共有16种且它们出现的可能性相等;(2)从列表(或树状图)可以看出抽取的两张卡片上的算式都正确的共有四种情况,即,(A,A),(A,D),(D,A),(D,D),∴P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.如图(1)矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)(2)折叠后重合部分是什么图形?试说明理由.考点:翻折变换(折叠问题);全等三角形的判定与性质;等腰三角形的判定;作图—复杂作图.分析:(1)以点D为圆心,DC长为半径画弧,以点B为圆心BC长为半径画弧,与前弧交于点E,连接BE,连接DE交于AB于点F,则△FDB是重叠部分;(2)利用折叠的性质和矩形的性质,求得∠FDB=∠ABD即可.解答:解:(1)折叠后得到的图形如图所示:(2)等腰三角形证明:∵△BDE是△BDC沿BD折叠而成∴△BDE≌△BDC,∴∠FDB=∠CDB,∵四边形ABCD矩形,∴AB∥DC,∴∠CDB=∠ABD,∴∠FDB=∠ABD,∴重叠部分,即△BDF是等腰三角形.点评:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质.19.(2014•衢州一模)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:(1)请将统计表中遗漏的数据补上;(2)扇形图中表示30﹣35岁的扇形的圆心角是多少度?(3)在参加调查的30﹣35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?(4)从上表中,你还能获得其它的信息吗?(写出一条即可)考点:频数(率)分布表;扇形统计图;概率公式.专题:图表型.分析:(1)根据统计表中,关心收入分配的人数是90人,占0.25;根据频数与频率的关系,可知共有90÷0.25=360(人),则关心住房,养老保险的频数,关心医疗改革和其他的频率可知;(2)根据统计表中的数据:易知30﹣35岁的人数为360人,圆心角的度数差应该为百分比乘以360°.(3)根据概率求法,找准两点:①30﹣35岁段全部情况的总数;②符合条件的关心物价调控或医疗改革的数目和;二者的比值就是其发生的概率.(4)从中找到符合题意的正确的信息即可,答案不唯一.解答:解:(1)抽取的30﹣35岁人群的关注情况关心问题收入分配住房问题物价调控医疗改革养老保险其他108 0.3合计360 1(2)360÷2880×360°=45°.故扇形图中表示30﹣35岁的扇形的圆心角是45度;(3)(36+18)÷360=0.15.故关心物价调控或医疗改革的概率是0.15;(4)参加调查的30﹣35岁段的人数最多,答案不唯一.点评:本题考查读频数分布表和扇形统计图的能力和利用统计图表获取信息的能力.同时考查了频数、频率、概率等相关知识,解决此题的关键是根据题目提供的信息进行加工,从中整理出解决下一题的信息,考查了学生们的理解、加工信息的能力.21.(2013•江东区模拟)【问题】如图1、2是底面为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是4πcm2,圆锥的侧面积是2πcm2.(2)1张长方形彩纸剪拼后最多能装饰2个圆锥模型;5张长方形彩纸剪拼后最多能装饰6个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.考点:圆锥的计算;一元一次不等式的应用;圆柱的计算.分析:(1)利用圆柱的侧面积公式以及扇形的面积公式即可求解;(2)求得圆锥和圆柱的表面积,以及一张纸的面积,据此即可求得;(3)设做x套模型,根据做圆柱和圆锥所用的纸的数不超过122张,即可列出不等式求解.解答:解:(1)圆柱的地面底面周长是2π,则圆柱的侧面积是2π×2=4πcm2,圆锥的侧面积是×2π×2=2πcm2;(2)圆柱的底面积是:πcm2,则圆柱的表面积是:6πcm2,圆锥的表面积是:3πcm2.一张纸的面积是:4×2π=8π,则1张长方形彩纸剪拼后最多能装饰2个圆锥模型;5张长方形彩纸剪拼后最多能装饰6个圆柱体模型,(3)设做x套模型,则每套模型中做圆锥的需要张纸,作圆柱需要张纸,∴+≤122,解得:x≤,∵x是6的倍数,取x=90,做90套模型后剩余长方形纸片的张数是122﹣(45+75)=2张,2张纸不够坐一套模型.∴最多能做90套模型.故答案是:4π,2π;2,6.点评:考查了圆锥、圆柱的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.22.(2008•西湖区模拟)如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;(2)求EF的长;(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.考点:翻折变换(折叠问题);勾股定理;平移的性质.专题:证明题.分析:(1)根据全等三角形对应边相等,AC=AE,再根据翻折的对称性,AD=AD′,所以CD′=AB,然后证明△CD′F与△EBF全等,根据全等三角形的对应边相等即可证明;(2)先根据30°角所对的直角边等于斜边的一半,BF=EF,然后在Rt△BEF中利用勾股定理列式求解即可;(3)根据平移对应点的连线互相平行,D′D″∥AB,又点D′是AC的中点,所以D′D″是△ABC的中位线,然后再根据30°角所对的直角边等于斜边的一半以及三角形中位线定。
- 1 - 浙江省杭州市2014年中考数学模拟试卷(4)及答案一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1. 如果1-=ab ,那么a ,b 两个实数一定是( ) (原创)A. 互为倒数B.-1和+1C.互为相反数D.互为负倒数(本题考查有理数的简单运算,属容易题,预计难度系数0.9)2. 根据国际货币基金组织IMF 的预测数据,2013年世界各国GDP 排名最高的仍为头号经济强国美国,其经济总量将达16万1979亿美元;中国位居第二,GDP 总量为9万零386亿美元, 则中国的GDP 总量用科学记数法可表示为( )亿美元(原创)A.4100386.9⨯B.310386.90⨯C.51061979.1⨯D.41061979.1⨯(本题考查科学记数法的表示,属容易题,预计难度系数0.9)3.下列运算正确的是( )A .()b a ab 33= B. +--ba b a 222)(b a b a +=+ 0.85)4.在6不见图形的情况下随机摸出1( )(原创)A .16B .13D .23 (本题考查图形的对称性、概率的计算,属容易题,预计难度系数0.85)5.把多项式x 4一8x 2+16分解因式,所得结果是() (原创)A .(x -2)2 (x +2)2B. (x -4)2 (x +4)2 C.(x 一4)2 D .(x -4)4(本题考查运用乘法公式进行因式分解,属容易题,预计难度系数0.8)6.如图,已知⊙O 的半径为R ,C 、D 是直径AB 的同侧圆周上的两点,弧AC 的度数为100°弧BC =2弧BD ,动点P 在线段AB 上,则PC +PD 的最小值为 ( )(原创)A .RBCD (本题考查两点间线段最短、圆的轴对称性,属稍难题,预计难度系数0.78)7.抛物线y =x 2一3x +2与y 轴交点、与x 轴交点、及顶点的坐标连接而成的四边形的面积是( ) (原创)A .1B .89C .2D .49。
(第6(℃(第36(第22014杭州中考数学模拟试卷4一、选择题(本题有10个小题, 每小题3分, 共30分)1.3-的相反数是A .3B .3-C .13-D .132.太阳光线与地面成60º的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103cm ,则皮球的直径是A .3B .15C .10D .833.如图为我市5月某一周每天的最高气温统计,则这组数据(最高气温)的众数与中位数分别是A .29,29B .29,30C .30,30D .30,29.54.若55x x -=-,下列不等式成立的是 A .50x -> B .50x -<C.5x -≥0D .5x -≤05.连续掷两次骰子,出现点数之和等于4的概率为 A .136B .118C .112D .196.如图,BD 是⊙O 的直径,∠CBD =30,则∠A 的度数为A .30B .45C .60D .75DD D7.小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为A .3cmB .4cmC .5cmD .15cm8.如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是9.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x… 0 1 2 3 …y… 5 2 1 2 …点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y10.如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则(第11题O PBAD G EAHOA .n S =14nABC S △ B .n S =13n +ABC S △ C .n S =()121n +ABC S △D .n S =()211n +ABC S △二、填空题 (本题有6个小题, 每小题4分, 共24分)11.如图,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点, 则点P 到圆心O 的最短距离为 cm .12.在创建国家生态园林城市活动中,某市园林部门为扩大城市的绿化面积,进行了大量的树木移载.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:请依此估计这种幼树成活的概率是 .(结果用小数表示,精确到0.1)13.有八个球编号是①到⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,这两个轻球的编号移栽棵数100100010000成活棵数 89919008AECBDO(第16题F(第15题是 .14.如图,任意一个凸四边形ABCD ,E 、F 、G 、H 分别是各边的中点,图中阴影部分的两块面积之和是四边形ABCD 的面积的 .15.如图是瑞典人科赫(Koch )在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是,从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边.分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为a ,则可算出下图每步变换后科赫雪花的周长:1C =3a ,2C = ,3C = ,…,则n C = .16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC =5BCE 沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,则(1)AB = ,BC = ;(2)若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积= .三、解答题(本题有8个小题,共66分)17. (本小题满分6分)(1)计算:01(π4)2---;(2)解不等式2335x --≤12x+.18.(本小题满分8分)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.俯 4(第18题19.(本小题满分8分)在数学学习中,及时对知识进行归纳和整理是完善知识结构的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C 的坐标为(1,3),那么不等式kx b +≤11k x b +的解集是 .20.(本小题满分10分)已知A ,B 两点在直线l 的同侧,试用直尺(没有刻度)和圆规,在l 上找两点C 和D (CD 的长度为定值a ),使得AC +CD +DBx+x(第19题图)一次函数与方程的关系一次函数与不等式的关系21.(本小题满分10分) 某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.(1)请把三个图表中的空缺部分都补充完整;(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).3学生自行阅读教材,独立思考304 分组讨论,解决问题 0.2522.(本小题满分12分)如图,以△AOD 的三边为边,在AD 的同侧作三个等边三角形△AED 、△BOD 、21E△AOF,请回答下列问题并说明理由:(1)四边形OBEF是什么四边形?(2)当△AOD满足什么条件时,四边形OBEF是菱形?是矩形?(3)当△AOD满足什么条件时,以O、B、E、F为顶点的四边形不存在?(第23题图)24.(本小题满分12分) 如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.(1)求线段OA 所在直线的函数解析式;(2)设抛物线顶点M 的横坐标为m ,①用m 的代数式表示点P 的坐标;②当m 为何值时,线段PB 最短;(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.数学参考解答和评分标准一、选择题(每题3分,共30分)二、填空题(每题4分,共24分)11. 6,12. 0.9,13.④⑤,14. 12,15.2C=433a;3C=24()33a;nC=14()33n a-,(1+1+2分)16. AB=24,BC=30,⊙O的面积=100π.(1+1+2分)三.解答题(共66分)17.(6分)解:(1)原式=1212-+……………………1+1+1分=12- …………………………1分(2)3046x -+≤55x + …………………………1分x ≤21- …………………………1分18.(6分)解:该几何体的形状是直四棱柱(答直棱柱,四棱柱,棱柱也给2分).………………………2分由三视图知,棱柱底面菱形的对角线长分别为4cm ,3cm .∴ 菱形的边长为52cm , ………………………1分棱柱的侧面积=52×8×4=80(cm 2). ………………………2分棱柱的体积=12×3×4×8=48(cm 3). ………………………1分19.(6分)解:(1)①0kx b +=;②11y k x b y kx b =+⎧⎨=+⎩;③kx b +>0;④kx b +<0;(1+1+1+1分)(2)如果点C 的坐标为(1,3),那么不等式kx b +≤11k x b +的解集是x ≥1.(2分)20.(8分)解:(1)过点A 作l 的垂线(尺规作图);在垂线上截取,找到对称点 A ′,(2分) (2)过点B 作l 的垂线(尺规作图),垂足为M ,在l 上截取线段MN =a ; (2分) (3)分别以B 点为圆心,以a 长为半径画弧,l以N 点为圆心,以BM 长为半径画弧,交于点B ′;(2分)(4)连接A ′B ′交l 于点C ,在l 上截取线段CD =a .(2分)21.(8分)解:(1)100,0.5,0.15,50(每空0.5分);(图略)(每图2分)(2)2分,无建议与理由得1分22.(10分)解:(1)平行四边形;(3分)(2)当OA =OD 时,四边形OBEF 为菱形;(2分)当∠AOD =1500时,四边形OBEF 为矩形;(2分)(3)当∠AOD =600时,以O 、B 、E 、F 为顶点的四边形不存在.(3分)(每小题无理由只得1分)23.(10分)解:(1)设年平均增长率为x ,根据题意得: (1分)210(1)14.4x +=(2分) 解得:2.0=x (1分)答:年平均增长率为20%(1分)(2)设每年新增汽车数量最多不超过x 万辆,根据题意得: (1分)2010年底汽车数量为14.490%x ⨯+2011年底汽车数量为(14.490%)90%x x ⨯+⨯+∴ (14.490%)90%x x ⨯+⨯+15.464≤(2分)∴ 2x ≤(1分)答:每年新增汽车数量最多不超过2万辆(1分)24.(12分 )解:(1)设OA 所在直线的函数解析式为kx y =,∵A (2,4),∴42=k , 2=∴k , ∴OA 所在直线的函数解析式为2y x =.………………………………………………2分(2)①∵顶点M 的横坐标为m ,且在线段OA 上移动,∴2y m =(0≤m ≤2).∴顶点M 的坐标为(m ,2m ).∴抛物线函数解析式为2()2y x m m =-+.∴当2=x 时,2(2)2y m m =-+224m m =-+(0≤m ≤2). ∴点P 的坐标是(2,224m m -+) ……………………………………4分 ② ∵PB =224m m -+=2(1)3m -+, 又∵0≤m ≤2, ∴当1m =时,PB 最短. ……………………………………6分(3)当线段PB 最短时,此时抛物线的解析式为()212+-=x y . 假设在抛物线上存在点Q ,使Q M A P M AS S =. 设点Q 的坐标为(x ,223x x -+). ①当点Q 落在直线OA 的下方时,过P 作直线PC //AO ,交y 轴于点C , ∵3PB =,4A B =, ∴1AP =,∴1O C =,∴C 点的坐标是(0,1-). ∵点P 的坐标是(2,3),∴直线PC 的函数解析式为12-=x y .∵Q M A P M AS S =,∴点Q 落在直线12-=x y 上. ∴223x x -+=21x -.解得122,2x x ==,即点Q (2,3). ∴点Q 与点P 重合.∴此时抛物线上不存在点Q ,使△QMA 与△AP M 的面积相等. ②当点Q 落在直线OA 的上方时,作点P 关于点A 的对称称点D ,过D 作直线DE //AO ,交y 轴于点E ,∵1A P =,∴1E OD A ==,∴E 、D 的坐标分别是(0,1),(2,5),∴直线DE 函数解析式为12+=x y . ∵Q M A P M AS S =,∴点Q 落在直线12+=x y 上. ∴223x x -+=21x +.解得:12x =22x =代入12+=x y ,得15y =+25y =-∴此时抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△PM A 的面积相等.综上所述,抛物线上存在点(12Q ,()225,222--Q 使△QMA 与△PM A 的面积相等.……………………………………………12分。
第6题图杭州市城北初中2013-2014学年下学期考3月模拟九年级数学试卷请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟;2、所有答案都必须写在答题卷标定的位置上,务必题号对应。
祝同学们取得成功!一. 仔细选一选(本题有10个小题,每小题3分,共30分) 1.方程012=-yx ,03=+y x ,12=+xy x ,023=-+x y x ,012=+-x x 中,二元一次方程的个数是( )A.1个B. 2个C. 3个D. 4个 2.如图1,A 、B 、C 、D 中的哪幅图案可以通过图1平移得到( )图1 A. B. C. D.3.如果0<ab ,那么下列判断正确的是( ) A .0,0<<b a B .0,0>>b aC .0,0≤≥b aD .0,0><b a 或0,0<>b a4.有几个大小相同的小正方形组成的立体图形的俯视图如图所示,则这个立体图形可能是下图中的( )第4题图 A B C D5.将量角器按如图所示的方式放置在三角形纸板上,,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( ) A .15°B .28°C .29°D .34°第5题图6.如图,点A 是反比例函数()06<-=x xy 的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )第8题图A .1B .3C .6D .127.抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y 的对应值如下表:A .抛物线与x 轴的一个交点为(3,0)B .函数y =ax 2+bx +c 的最大值为6C .抛物线的对称轴是直线x =21D .在对称轴左侧,y 随x 增大而增大 8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则途中阴影部分的面积是( ) A .6π B .3πC .61π+ D .1第10题图9.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A .4元B .5元C .8元D .10元10.如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示y 关于x 的函数关系的图象大致是( )A B C D 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 一组数据5,5,6,x ,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是 ..12.已知m +n =2,mn =-2,则(1-m )(1-n )= .13.如图,△ABC 内接于⊙O ,若直径AD =3,AC =2,则sinB 的值为 .14.如图,一顶圆锥形的圣诞帽,底面半径是8㎝,母线AB 长是24㎝,若一根绸带从点B(第16题图)…① ② ③④出发,过AC 上任一点G ,绕一圈回到点B ,则绸带的最短长度是㎝.第13题图 第14题图第15题图15.如图,点A 的坐标为(-1,0),点B 的坐标为(4,0),以AB 为直径⊙O ,交y 轴的负半轴于点C 。
浙江省杭州市2014年中考数学模拟试卷2考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分, 考试时间100分钟.2. 答题时, 应该在答题纸指定位置填写学校,班级,姓名,不能使用计算器.3. 所有答案都必须做在答题纸标定的位置上,请务必注意试题序号和答题序号相对应.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.下列手机软件图标中,属于中心对称的是( )A .B .C .D .【原创】2.下列计算正确的是( )A .X 2 +X 4=X 6B . X ·X 3= X 3C .X 6÷X 3=X 2D .(﹣X 2Y )3=X 6Y 3 【原创】 3.已知两圆半径分别是方程X 2-4X+3=0的两根,两圆圆心距为2,则两圆位置关系是( ) A .外切 B . 相交 C .内切 D .外离 【2013年西湖区中考模拟卷改编】4.如图,是某交通地图路线,其中AB ∥DE ,测得∠B =130°,∠DCF =105°,则∠C 的度数为( )【原创】A . 155°B . 125°C .140°D .135°5.下列命题中是假命题的是( )【原创】 A . 若,则。
B . 垂直于弦的直径平分弦。
C .对角线互相平分且垂直的四边形是菱形D . 反比例函数y=,当k >0时,y 随x 的增大而减少。
6.在一个不透明的盒子里装有6个分别写有数字3-,2-,1-,0,1,2,的小球,它们除数字不同外其余全部相同。
现从盒子里随机取出一个小球,记下数字a 后不放回...,再取出一个记下数字b ,那么第4题点),(b a 在抛物线12+-=x y 上的概率是( )【原创】 A .101 B .61 C .152 D .51 7.如图所示,△ABC 的各个顶点都在正方形的格点上,则SinA 的值为( )【2012年内江中考卷改编】A .55 B .552 C .522 D .5108. 如图是一个直三棱柱,则它的平面展开图中,错误的是( )【原创】9.如图所示,在△ABC 中,E,F,D 分别是边AB 、AC 、BC 上的点,且满足=EB AE =FC AF 31,则四边形AEDF 占△ABC 面积的( )【原创】A .21B .31C .41D .5210.已知Y 1,Y 2,Y 3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A (-1,-2)、B (2,1)和C (32,3),规定M={Y 1,Y 2,Y 3中最小的函数值} 则下列结论错误的是( ) 【原创】 A .当1-<x 时,M=Y 1B .当01<<-x 时,Y 2< Y 3< Y 1C .当0≤x ≤2时,M 的最大值是1,无最小值FABCED第9题第8题BCA第7题D .当x ≥2时,M 最大值是1,无最小值二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 若5b =+-b a a ,则=ab__________。
浙江省杭州2014年中考数学模拟命题比赛试题3考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、考试结束后,上交试题卷和答题卷.试题卷一、仔细选一选(本题10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确的选项前的字母填在答卷中的相应的格子内,注意可以用多种不同的方法来选取正确的答案。
1.若x x 2112-=-,则下列不等式成立的是(教材改编)A.2x-1>0B. 2x-1≤0C. 2x-1≥0D. 2x-1<0 【考点】绝对值的概念及法则【设计思路】设计此题主要考查学生对绝对值概念及法则的理解。
2.下列计算中,正确的是(教材改编)A .3a-2a=1B .(x+3y)2=x 2+9y 2C .(x 5 )2=x 7D .(-3)-2=91【考点】合并同类项,完全平方公式,幂的乖方以及负整数指数幂的意义。
【设计思路】为多方面考查整式的有关运算。
3.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是(根据九年级习题改编)A. ①②B. ②③C. ②④D. ③④ 【考点】三视图的相关知识【设计思路】考查学生对三视图的理解。
4.某中学为了让学生的跳远在中考体育测试中取得满意的成绩,在锻炼一个月后,学校对九年级一班的45名学生进行测试,成绩如下表:这些运动员跳远成绩的中位数和众数分别是A . 190,200B .9,9C .15,9D .185,200 【考点】中位数和众数①正方体②圆柱 ③圆锥 ④球【设计思路】考查学生对几个主要统计量的掌握情况。
5.如图,小华发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8m,BC=20m,CD 与地面成30°角,且此时测得1米木杆的影长为2m,则电线杆的高度为(根据学业考试零距离改编)A .14mB .28mC .(14+3)mD .(14+32)m【考点】三角函数的应用以及相似三角形的性质的应用【设计思路】此题需要学生有一定的分析问题和解决问题的能力,需要学生通过添辅助线,利用锐角三角函数解直角三角形,最后运用同一时刻太阳光下实物与影长成比例这一相似性质的应用来完成。
浙江省杭州市2014年中考数学模拟试卷3考生须知:1、 本试卷分试题卷和答题卷两部分,满分120分, 考试时间100分钟。
2、 答题时, 应该在答题卷密封区内写明校名, 姓名和考号。
3、 所有答案都必须做在答题卷标定位置上, 请务必注意试题序号和答题序号相对应。
4、 考试结束后, 上交试题卷和答题卷。
试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1、计算:)(32=⋅a a (原创)A 、5aB 、6aC 、8aD 、9a 2、以下运算正确的是( )(原创)A .0.4 B .333532x x x =+ C6=± D . 1)1(2009-=-3、若正比例函数的图象经过点(2,-3),则这个图象必经过点( ).(原创) A. (-3,-2) B. (2,3) C. (3,-2) D.(-2,3)4、某校决定从两名男生和三名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )(原创) A .45 B .35 C .25 D .155、两圆半径分别为2和3,圆心距为4,则这两个圆的位置关系是( ) (原创) A .内切 B .相交 C .相离 D .外切6、在△ABC 中,∠C=90°,AC=12,BC=5,现在AC 为轴旋转一周得到一个圆锥。
则该圆锥的侧面积为 ( ) (原创)(A )130π (B )90π (C )25π (D )65π7、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C ′处,BC ′交AD 于点E ,则下到结论不一定成立的是 ( )(习题改编)A 、AD=BC ′B 、∠EBD=∠EDBC 、△ABE ∽△CBD D 、Cos ∠AEB =AEED8、若一次函数y=ax+b (a ≠0)的图象与x 轴的交点坐标为(﹣2,0),则抛物线y=ax 2+bx+c 的对称轴为( )(2013•嘉兴改编)C1AB CDE 第7题9、如图,二次函数y=ax +bx+c 的图象开口向上,对称轴为直线x=1,图象经过(3,0),下10、如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中(第9题)(第10题) 二、认真填一填(本题有6个小题,每小题4分,共24分) 11、因式分解:m 2﹣2m= (原创)12、若x 3142x --与是同一个数的平方根,则x 的值为 (原创) 13、三角形的三条边长分别是6,32,2-x ,则x 的取值范围是 . (原创)14、如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,已知AE=6,,则EC 的长是 (习题改编) 15、已知直线1y x =,2113y x =+,6343+-=x y 的图象如图所示,若无论x 取何值,y 总取1y 、2y 、3y 中的最小值,则y 的最大值为 (原创)16、在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB=4,AC=2,S 1﹣S 2=,则S 3﹣S 4的值是(改编)(第14题) (第16题)三、解答题(共7小题,第17题每题6分,第18、19题每题8分,第20、21题每题10分,第22、23题12分,共66分)17、(1)计算:20091)1(313160sin 2-+⎪⎭⎫⎝⎛+--(2)化简:a (b+1)﹣ab ﹣1.18、(1)已知∠α和线段x,y (如图)。
2014年中考模拟试卷数学卷考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试题卷一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1.(原创)下列各数中,与13-的和为0的是( )A .3B .-3C .31D .31-2.(原创)已知两圆半径1r 、2r 分别是方程2540x x -+=的两根,两圆的圆心距为5,则两圆的位置关系是( )A . 相交B . 内切C . 外切D . 外离3.(原创)一个不透明的袋子里有分别标着数字1、2、3、4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为( ) A .16 B .13 C .12 D .234.(原创)如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD =53°,则∠BCE 的度数为( ) A .53° B .37° C .47° D .127°5.(原创)下面的计算正确的是( )2335.(2)8A ab a b -=- 22.(8)(4)2B a b c ab ab ÷=2223.3(41)34C a a a ÷+=+ 21.(2)2D a a a a --=- 6.(原创)某校某校初一新生来自甲、乙、丙三个小学,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲小学的学生为180人,则下列说法不正确的是( )A .扇形甲的圆心角是72°B .学生的总人数是900人C .丙小学的人数比乙小学的人数多180人D .甲小学的人数比丙小学的人数少180人7.(原创)实数24的负平方根介于哪两个连续整数之间( )A . -6与-5之间 B.-5与- 4之间 C. - 4与-3之间 D. -3与-2之间 8.(改编)通过折纸可以计算某些三角函数值,如图,将所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°的角的正切值是( ) A+1B.C . 2.5 D9.(改编)已知:抛物线y 1=-2x 2+2,直线y 2=2x +2, 当x 任取一值时, x 对应的函数值分别为y 1、y 2.表示. 当y 1≠y 2,时,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在;④使得M =1的x 值是 或 . 其中正确的是 ( )A . ①②B .①④C .②③D .③④10.(原创)设b a ,是两个任意独立的一位正整数, 则点(b a ,)在抛物线bx ax y -=2上 方的概率是 ( )A.8111B.8113C.8117D.8119二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(原创)数据-3,0,,-1的平均数是_______;中位数是_______. 12.(原创)化简x 2x -1 + x 1-x 的结果是_______;当X=2时,原式的值为__________.13.(原创)小聪去年把零花钱1000元存入了银行,一年后取出共1032.5多元,则银行的年利率高于_______%.14.(原创)无论x 取任何实数,代数式 都有意义,则M 的取值范围为__________.15.(原创)如图,在矩形ABCD 中,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B`处,又将△CEF 沿EF 折叠,使点C 落在直线EB`与AD 的交点21-22C`处.则BC ∶AB 的值为__________.16. (原创)如图,抛物线y= a (x ﹣1)2+c 与x 轴交于点A(1,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P /(1,3)处.过点P /作x 轴的平行线交抛物线于C 、D 两点,则翻折后的图案的高与宽的比为__________(结果可保留根号). 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
2014年浙江省杭州市中考数学模拟试卷(16)一、仔细选一选(本小题有10个小题,每小题3分,共30分)2.(3分)下列等式中:(1)(a+b )2=a 2+b 2;(2)(x ﹣a )(x+b )=x 2﹣(a+b )x ﹣ab ;(3)2a 2•2a ﹣1=a ;(4)2a 3÷(2a 3﹣a 2)=1﹣2a .3.(3分)(2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( ).CD .4.(3分)(2008•扬州)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()5.(3分)(2005•常德)相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距6.(3分)世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()7.(3分)如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()22.10.(3分)(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB 交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)分解因式:a4b﹣6a3b+9a2b=_________.12.(4分)(2008•达州)据查阅有关资料,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数据用科学记数法表示为_________元.13.(4分)(2014•道里区三模)如图,如果从半径为6cm的圆形纸片中剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_________.14.(4分)已知等腰△ABC中,BC=3cm,另两条边AB、AC的长是方程x2﹣4x+m﹣2=0的解,则m的值是_________.15.(4分)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点D作DP⊥AB于点P.若CD=6,AB=8,则在运动过程中,圆心O到弦CD的距离为_________,MP的最长距离是_________.16.(4分)(2013•丽水)如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=.(1)k的值是_________;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是_________.三、解答题(本题有7个小题,共66分)17.(6分)化简:÷﹣并求值,x是方程2x2﹣x﹣15=0的解.18.(8分)萧山某校把一块形状相似于直角三角形废地改造成为生物园,如图∠ACB=90°,BC=60m,∠A=30°.(1)若入口D在边AB上,且与A、B等距离,请你用尺规在图①中作出入口D以及D到C点的最短路线.(2)若线段CE是一条水渠,并且E点在边AB上,已知水渠造价为50元/米,那么水渠路线应如何设计才能使造价最低,请你用尺规在图②中作出水渠路线并求出最低造价,(保留根号).同时请思考在AB上还能找到除D、E外的其它哪些特殊点?19.(8分)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.20.(10分)(2013•日照)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)21.(10分)如图,梯形ABCD中,AD∥BC,AB=DC,AC交BD于G,且cos∠BGC=,E、F分别为AG、DC的中点.EF=6cm.(1)求证:△BGC为正三角形;(2)求等腰梯形的腰长.22.(12分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问在反比例函数图象上是否存点P,使得△PGB′是以GB′为直角边的直角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.23.(12分)(2012•湖州)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)2014年浙江省杭州市中考数学模拟试卷(16)参考答案与试题解析一、仔细选一选(本小题有10个小题,每小题3分,共30分)2.(3分)下列等式中:(1)(a+b )2=a 2+b 2;(2)(x ﹣a )(x+b )=x 2﹣(a+b )x ﹣ab ;(3)2a 2•2a ﹣1=a ;(4)2a 3÷(2a 3﹣a 2)=1﹣2a .,3.(3分)(2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( ).CD .4.(3分)(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()5.(3分)(2005•常德)相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm和17cm,则这两圆的圆心距AC=BC=C==156.(3分)世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()7.(3分)如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()2;②=2是两条直角边,则此直角三角形的第三条边长是2.∴﹣﹣﹣10.(3分)(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB 交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()∠二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)分解因式:a4b﹣6a3b+9a2b=a2b(a﹣3)2.12.(4分)(2008•达州)据查阅有关资料,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,这个数据用科学记数法表示为 6.8×108元.13.(4分)(2014•道里区三模)如图,如果从半径为6cm的圆形纸片中剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为2.的圆形纸片剪去×=240==3cm==214.(4分)已知等腰△ABC中,BC=3cm,另两条边AB、AC的长是方程x2﹣4x+m﹣2=0的解,则m的值是5或6.15.(4分)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点D作DP⊥AB于点P.若CD=6,AB=8,则在运动过程中,圆心O到弦CD的距离为,MP的最长距离是4.OM=DM=AB=4OM==故答案为16.(4分)(2013•丽水)如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=.(1)k的值是﹣4;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是0<a<2或<a<.,OB==2∴∴.或(不合题意,舍去)x+bb=,x+,,则纵坐标为:﹣x+,(﹣x+,(﹣)y=∴=则根据图示知,当<三、解答题(本题有7个小题,共66分)17.(6分)化简:÷﹣并求值,x是方程2x2﹣x﹣15=0的解.﹣=﹣=,,=18.(8分)萧山某校把一块形状相似于直角三角形废地改造成为生物园,如图∠ACB=90°,BC=60m,∠A=30°.(1)若入口D在边AB上,且与A、B等距离,请你用尺规在图①中作出入口D以及D到C点的最短路线.(2)若线段CE是一条水渠,并且E点在边AB上,已知水渠造价为50元/米,那么水渠路线应如何设计才能使造价最低,请你用尺规在图②中作出水渠路线并求出最低造价,(保留根号).同时请思考在AB上还能找到除D、E外的其它哪些特殊点?AC=60CE=30=30(元)19.(8分)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.=4=,解得:;20.(10分)(2013•日照)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算),经检验符合题意,=.21.(10分)如图,梯形ABCD中,AD∥BC,AB=DC,AC交BD于G,且cos∠BGC=,E、F分别为AG、DC的中点.EF=6cm.(1)求证:△BGC为正三角形;(2)求等腰梯形的腰长.BGC=22.(12分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问在反比例函数图象上是否存点P,使得△PGB′是以GB′为直角边的直角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.,点y=.x+3x+3y=,(﹣y=,﹣﹣,时,,﹣,﹣23.(12分)(2012•湖州)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)的中点坐标为(﹣,sinC==EC=,=2∴,则∴=CE=,≥﹣的取值范围为:。
2014年浙江省杭州市城北中学中考数学模拟试卷(3月份)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.方程2x-=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】解:2x-=0是分式方程,不是二元一次方程;3x+y=0是二元一次方程;2x+xy=1不是二元一次方程,因为其未知数的项的最高次数为2;3x+y-2x=0是二元一次方程;x2-x+1=0不是二元一次方程,因为其未知数的项的最高次数为2,且只含一个未知数.故选:B.根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A. B. C. D.【答案】D【解析】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故选:D.根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.如果ab<0,那么下列判断正确的是()A.a<0,b<0B.a>0,b>0C.a≥0,b≤0D.a<0,b>0或a>0,b<0【答案】D【解析】解:∵ab<0,∴a与b异号,∴a<0,b>0或a>0,b<0.故选D.根据有理数的乘法符号法则作答.本题主要考查了有理数的乘法符号法则:两数相乘,同号得正,异号得负.4.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形应是下图中的()A. B. C. D.【答案】C【解析】解:根据给出的俯视图,这个立体图形的左边有2列正方体,右边1列正方体.故选C.由俯视图判断出组合的正方体的几何体的列数即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°【答案】B【解析】解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°-30°)÷2=28°.故选:B.根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,从而可求得∠ACB 的度数.此题考查了圆周角的度数和它所对的弧的度数之间的关系:圆周角等于它所对的弧的度数的一半.6.如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.12【答案】C【解析】解:作AH⊥OB于H,如图,∵四边形ABCD是平行四边形ABCD,∴AD∥OB,∴S平行四边形ABCD=S矩形AHOD,∵点A是反比例函数(x<0)的图象上的一点,∴S矩形AHOD=|-6|=6,∴S平行四边形ABCD=6.故选:C.作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=6,所以有S平行四边形ABCD=6.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.2从上表可知,下列说法中错误的是()A.抛物线与x轴的一个交点为(3,0)B.函数y=ax2+bx+c的最大值为6C.抛物线的对称轴是直线D.在对称轴左侧,y随x增大而增大【答案】B【解析】解:根据表格数据知道:抛物线的开口方向向下,∵x=0,x=1的函数值相等,∴对称轴为x=,∴抛物线与x轴的另一个交点坐标为:(3,0),在对称轴左侧,y随x增大而增大,最大值大于6.故错误的说法为B.故选B.根据表格的数据首先确定抛物线的对称轴,然后利用抛物线的对称性可以确定抛物线与x轴的另一个交点坐标,也可以确定抛物线的最大值的取值范围,也可以确定开口方向.此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,会根据图象得到信息.8.如图,在R t△ABC中,∠ACB=90°,AC=BC=,将R t△ABC绕A点按逆时针方向旋转30°后得到R t△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.1+ D.1【答案】B【解析】解:在直角△ABC中,AB==2.阴影部分的面积=S扇形DAB==,故选B.阴影部分的面积等于扇形DAB的面积,首先利用勾股定理即可求得AB的长,然后利用扇形的面积公式即可求得扇形的面积.本题考查了扇形的面积公式,正确理解:阴影部分的面积等于扇形DAB的面积是关键.9.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元【答案】A【解析】解:设应降价x元,则(20+x)(100-x-70)=-x2+10x+600=-(x-5)2+625,∵-1<0∴当x=5元时,二次函数有最大值.∴为了获得最大利润,则应降价5元.故选A.设应降价x元,表示出利润的关系式为(20+x)(100-x-70)=-x2+10x+600,根据二次函数的最值问题求得最大利润时x的值即可.应识记有关利润的公式:利润=销售价-成本价.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.如图,R t△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A. B. C. D.【答案】C【解析】解:当点Q在AC上时,y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示,∵AP=x,AB=5,∴BP=5-x,又cos B=,∵△ABC∽QBP,∴PQ=BP=∴S△APQ=AP•PQ=x•=-x2+x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选C.分点Q在AC上和BC上两种情况进行讨论即可.本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.二、填空题(本大题共6小题,共24.0分)11.一组数据5,5,6,x,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是______ .【答案】6【解析】解:∵5,5,6,x,7,7,8,已知这组数据的平均数是6,∴(5+5+6+x+7+7+8)÷7=6解得:x=4,将数据从小到大重新排列:4,5,5,6,7,7,8,已最中间的那个数数是:6,∴中位数是:6.故答案为:6.首先根据平均数的求法求出x,再根据中位数定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,首先把数据从小到大排列起来,再找出中间的数即可.此题主要考查了中位数定义以及平均数的求法,关键是首先求出x的值.12.已知m+n=2,mn=-2,则(1-m)(1-n)= ______ .【答案】-3【解析】解:∵m+n=2,mn=-2,∴(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3.故答案为:-3.原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值.此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.如图,△ABC内接于⊙O,若直径AD=3,AC=2,则sin B的值为______ .【答案】【解析】解:连接CD,∵AD是直径,∴∠ACD=90°,∵直径AD=3,AC=2,∴sin D==,∵∠B=∠D,∴sin B=.故答案为:.首先连接CD,由直径AD=3,AC=2,易求得sin D的值,又由圆周角定理,即可得∠B=∠D,继而求得答案.此题考查了圆周角定理以及三角函数的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.如图,一顶圆锥形的圣诞帽,底面半径是8cm,母线AB长是24cm,若一根绸带从点B出发,过AC上任一点G,绕一圈回到点B,则绸带的最短长度是______cm.【答案】24【解析】解:∵一顶圆锥形的圣诞帽,底面半径是8cm,母线AB长是24cm,∴底面圆的周长为:2π×8=16π(cm),扇形弧长为:l==n(cm),∴16π=n,解得:n=120°,如图所示:连接AC,BD,两线段交于点E,则AC⊥BD,∴∠BAC=∠CAD=60°,∴BE=24×sin60°=12(cm),∴绸带的最短长度是:cm.故答案为:24.圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦长,转化为求弦的长的问题.本题主要考查圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.15.如图,点A的坐标为(-1,0),点B的坐标为(4,0),以AB为直径⊙O,交y轴的负半轴于点C.若二次函数y=ax2+bx+c的图象经过A,C,B.已知点P是该抛物线上的动点,当∠APB是直角时,则满足要求的点P坐标为______ .【答案】(0,-2),(3,-2)【解析】解:如图,连接O′C,∵点A的坐标为(-1,0),点B的坐标为(4,0),以AB为直径⊙O,交y轴的负半轴于点C,∴AB=5,∴O′A=2.5,OO′=1.5,∴OC=′′=2,∴点C的坐标为:(0,-2),∵二次函数y=ax2+bx+c的图象经过A,C,B,∴二次函数y=ax2+bx+c的对称轴为:x=1.5,∴点C的对称点为:(3,-2),∵∠APB是直角,AB是直径,∴点P位于⊙O′与二次函数y=ax2+bx+c的交点处,即C(0,-2),(3,-2).故答案为:(0,-2),(3,-2).首先连接O′C,由垂径定理可求得OC的长,即可求得点C的坐标,然后由∠APB是直角,可知点P位于⊙O′与二次函数y=ax2+bx+c的交点处,由对称性即可求得答案.此题考查了圆周角定理、垂径定理以及二次函数的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.16.如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P4-P3= ______ ;P n-P n-1= ______ .【答案】;【解析】解:P1=1+1+1=3,P2=1+1+=,P3=1+1+×3=,P4=1+1+×2+×3=,…∴p3-p2=-==;P4-P3=-==,则P n-P n-1=,故答案为:,根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三、解答题(本大题共2小题,共14.0分)17.计算:°.【答案】解:原式==4.【解析】先算乘方,绝对值,化简二次根式,特殊角的三角函数值,再算加减即可.此题考查实数的综合运算能力;解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.求打上“a”的方格内的数.【答案】解:由题意建立方程组为:,解得:,∴每一行或每一列的数的和为:4+5+3×3=18,∴a-3×(-2)+5=18,∴a=7.【解析】先由条件建立二元一次方程组求出x、y的值,就可以求出每一行或每一列的数的和,就可以求出中间这列的最后一个数,再建立关于a的方程就可以求出结论.本题考查了学生是图标的能力的运用,列二元一次方程组解实际问题的运用,解答时建立方程组求出各行或各列的和是关键.四、计算题(本大题共1小题,共8.0分)19.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:(1)求样本数据中为级的频率.(2)试估计1500个18~35岁的青年人中“日均发微博条数”为c级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.【答案】解:(1)∵抽取30个符合年龄条件的青年人中C级的有4人,∴样本数据中为C级的频率为=;(2)1500个18~35岁的青年人中“日均发微博条数”为c级的人数为:1500×=200;(3)C级法微博的条数分别为:0;2;3;3,所有等可能的情况有12种,其中抽得2个人的“日均发微博条数”都是3的情况有2种,则P==.【解析】(1)找出m的值在0≤m<5时的个数,除以30即可得到结果;(2)由1500乘以C级的频率即可得到结果;(3)列表得出所有等可能的情况数,找出抽得2个人的“日均发微博条数”都是3的情况数,即可得到所求的概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共4小题,共44.0分)20.某市举行钓鱼比赛,如图,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A为最高点的一条抛物线,鱼线AB长6m,鱼隐约在水面了,估计鱼离鱼竿支点有8m,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,求鱼竿所在抛物线的解析式.【答案】解:过点A作AC⊥OB,交OB于点C,∵AB=6米,OB=8米,α=60°,∴AC=AB sin∠α=3米,BC=AC cos∠α=3米,∴OC=OB-BC=5米,故可得点A的坐标为(5,3),设函数解析式为y=a(x-5)2+3,又∵函数经过原点,∴a(0-5)2+3=0,解得:a=-.故函数解析式为:y=-(x-5)2+3.【解析】过点A作AC⊥OB,交OB于点C,在R t△ABC中,可求出AC、BC,然后根据OB=8米,可得出点A的坐标,根据二次函数过原点及二次函数的顶点坐标即可确定二次函数解析式.此题考查了二次函数的应用,关键是利用几何知识求出点A的坐标,另外要掌握二次函数的一般式及顶点式的特点,有一定难度.21.如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设R t△CBD的面积为S1,R t△BFC的面积为S2,R t△DCE的面积为S3,则S1 ______ S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.【答案】=【解析】(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.22.如图,已知⊙O1和⊙O2相交于A、B,AC、AD分别是两圆的直径,(1)C、B、D三点在同一直线吗?为什么?(2)当⊙O1和⊙O2满足什么条件时,所得图中的△ACD是等腰三角形.【答案】解:(1)连接AB、BC、BD∵AC、AD是⊙O1和⊙O2的直径∴∠ABC=90°,∠ABD=90°(2分)∴∠CBD=∠ABC+∠ABD=180°(3分)∴C、B、D三点在同一条直线上;(4分)(2)①当⊙O1与⊙O2的直径相等,即AC=AD时所得图中的△ACD是等腰三角形;②当O2在⊙O1上时,连接CO2∵AC是⊙O1的直径,∴∠AO2C=90°∴CO2⊥AD(5分)又O2A=O2D∴CA=CD(6分)于是当O2在⊙O1上时,△ACD是等腰三角形;③同②当O1在⊙O2上时,可得DA=DC,所得图中的△ACD是等腰三角形.(8分)【解析】(1)连接AB、BC、BD,由于AC、AD都是直径,由圆周角定理易知∠ABC=∠ABD=90°,则∠ABC与∠ABD互补,由此可证得B、C、D三点共线;(2)若△ACD是等腰三角形,则有三种情况:①AC=AD,此时两圆的直径相等;②AC=CD,若连接CO2,根据等腰三角形三线合一的性质得CO2⊥AD,那么此时点O2应在⊙O1上;③AD=CD,同②.此题主要考查了圆周角定理及等腰三角形的判定和性质,需注意的是(2)在判定△ACD 是等腰三角形的过程中,存在多种情况,需要分类讨论,不要漏解.23.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= ______ 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.【答案】【解析】解:(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE=,∴tan∠DFE==,∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE-∠ABC=60°-45°=15°;(2)如题图3所示,当EF经过点C时,===;FC=∠(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△BDG-S△BFM=BD•DG-BF•MN=(x+4)2-x•x=x2+4x+8;(II)当2<x≤6-时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF==MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=x.y=S△ABC-S△BFM=AB•AC-BF•MN=×62-x•x=x2+18;(III)当6-<x≤6时,如答图3所示:由BF=x,则AF=AB-BF=6-x,设AC与EF交于点M,则AM=AF•tan60°=(6-x).y=S△AFM=AF•AM=(6-x)•(6-x)=x2-x+.综上所述,y与x的函数解析式为:y=<.<(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在R t△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6-时,如答图2所示;(III)当6-<x≤6时,如答图3所示.本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.。