工程地质分析
- 格式:doc
- 大小:58.50 KB
- 文档页数:6
工程地质分析原理工程地质分析原理的重要性工程地质分析是指在工程建设过程中,通过对地质条件进行综合分析和评价,为工程设计、施工和管理提供科学依据的一种方法。
工程地质分析的原理主要包括以下几个方面:1. 地质资料搜集与分析:包括对地质地貌、地质构造、岩性、地层、地下水、地下渗流等地质情况的搜集,以及对地质资料进行综合分析和解释。
通过对地质资料的搜集和分析,可以了解地质条件的分布特征,为后续的工程分析提供基础数据。
2. 工程地质勘查:通过野外地质调查、试验与检测,获取工程场地的详细地质信息。
工程地质勘查主要包括地质钻探、取样分析、地质测量等方式,通过对地质数据的采集和分析,可以确定工程地质的特征和参数,为工程设计提供可靠的基础数据。
3. 地质灾害评价:对工程区域可能出现的地质灾害进行评价和分析。
这包括地震、滑坡、地面沉降等地质灾害的风险评估,以及对可能发生的地质灾害影响范围和程度进行预测和预警。
通过对地质灾害的评价,可以采取相应的工程措施,减少地质灾害对工程安全的影响。
4. 工程地质参数确定:通过对地质条件的分析和试验研究,确定工程建设中所需的地质参数。
这些参数包括土壤的强度、固结性、渗透性等,对工程结构的设计和施工具有重要影响。
通过准确确定这些参数,可以提高工程的安全性和可靠性。
5. 工程地质风险评估:对工程建设中可能面临的地质风险进行评估和分析。
这包括对地基承载力、地下水位、地表沉降等地质因素对工程结构和安全的影响程度进行评估。
通过对地质风险的评估,可以合理确定工程设计和施工方案,降低工程风险。
总之,工程地质分析的原理是通过对地质条件的综合分析和评价,为工程设计、施工和管理提供科学依据。
通过详细的地质资料搜集与分析、工程地质勘查、地质灾害评价、地质参数确定和工程地质风险评估,可以有效提高工程的安全性和可靠性,减少地质灾害对工程的影响。
工程地质分析原理工程地质分析是指在工程建设过程中,对地质条件进行综合分析,以确定工程地质特征及其对工程建设的影响,从而为工程设计、施工和运营提供科学依据。
本文将介绍工程地质分析的基本原理,希望能够为工程地质领域的相关人员提供一些参考。
首先,工程地质分析的基本原理包括对地质条件的调查与评价、地质灾害风险评估、地质工程勘察与设计等内容。
在工程地质调查中,需要对地质构造、岩性、地层、断裂、岩溶、滑坡、泥石流等地质现象进行全面调查,并进行地质地貌、地貌演变、地下水、地震等方面的研究,以全面了解工程区域的地质情况。
其次,地质灾害风险评估是工程地质分析的重要内容之一。
工程地质分析人员需要通过对地质灾害的历史数据进行分析,结合地质条件的调查评价,对工程区域内可能发生的地质灾害进行定量评估,确定地质灾害的概率和危害程度,为工程建设提供防灾减灾的科学依据。
另外,地质工程勘察与设计也是工程地质分析的重要环节。
在进行地质勘察时,需要根据地质条件的调查评价,确定工程区域内的地质工程地质特征,包括地基条件、地下水条件、地质构造条件等,为工程设计提供可靠的地质资料。
在工程设计中,需要充分考虑地质条件对工程建设的影响,合理设计工程结构和施工方案,确保工程的安全性和稳定性。
最后,工程地质分析还需要结合工程建设的实际情况,进行综合分析和综合研判。
在实际工程建设中,地质条件常常会受到人为因素的影响,例如地下水开采、地表开挖、爆破等工程活动会对地质条件产生影响,因此需要进行综合分析和综合研判,及时调整工程设计和施工方案,确保工程的顺利进行。
总之,工程地质分析是工程建设过程中不可或缺的一部分,只有充分了解地质条件,合理分析地质特征,才能为工程建设提供科学依据,保障工程的安全性和稳定性。
希望本文所介绍的工程地质分析原理能够为相关人员提供一些帮助,使工程地质工作更加科学、规范和高效。
工程地质分析原理
工程地质分析是指识别和预测地质和地面环境对人类活动产生
的影响,提供针对不同地质条件相应的预测和解决方案,以确保正确的规划和设计过程。
它是地质工程项目的关键,可将非正常现象及其影响有效预测,并通过合理的方案及时处理。
首先,工程地质分析原理是识别和确定地质条件,包括地质构造、岩性、深度、水文等。
通过现场勘察、实验室分析、计算机分析、模拟和深入的调查,可以得出不同地质条件下工程建设可能遇到的风险。
其次,工程地质分析原理是预测地质变化,包括当前地质情况特征及其可能引起的地质事件,以及可能及时处理这些地质事件的方法。
通过掌握不同地质条件及其前因后果、测绘勘察、实验室分析和对水文进行预测,可以有效控制项目施工风险,预防可能出现的问题,并确保项目的稳定。
再次,工程地质分析原理是预测地质和地面环境对项目施工、运行和维护所产生的影响,采取有效措施,提出针对不同地质条件相应的解决方案。
针对基础失稳、地形失稳、滑坡、沉降、浸润及地质灾害等,要根据不同地质条件,采取适当的措施,防止可能出现的风险,确保项目的稳定性。
最后,工程地质分析原理是不断创新,结合技术和经验,不断改进分析方法,提高分析精度。
如分析软件包括对地质构造、岩性、深度、水文以及滑坡、地形失稳等的分析,有助于提高地质分析精度,预测工程项目安全可靠性。
综上所述,工程地质分析原理是探索地质背景和地质环境的关键,它可以有效识别和预测地质变化,提出针对不同地质条件相应的解决方案,以确保正确的规划和设计过程,有助于预防可能出现的风险,确保项目的稳定性。
随着科技的不断发展,工程地质分析原理将不断改进和完善,可望有更高的精度预测和防治项目施工所出现的非常规现象。
环境工程地质问题分析提纲:1.工程地质基础分析2.建筑环境地质问题3.环境异常情况与应对策略4.环境地震危险性分析5.建筑高层结构稳定性分析1.工程地质基础分析在环境工程中,工程地质基础分析至关重要。
它涉及到环境工程中各种不同建筑项目的地质要素,例如建筑物的基础、水资源、输送管道、土地变化等等。
工程地质基础分析的过程包括:对地质环境进行实地观察,收集已有资料,进行地质与地形图的分析等等。
此外,还要对环境影响手段的选择和管理进行评估和确定。
2.建筑环境地质问题在建筑环境中,地质问题是重要的因素之一。
这些问题包括:地面沉降与建筑物淤塞问题、地震引起的建筑物破坏、山地地坑引起的地质灾害等等。
要解决这些问题,就必须对环境的地质特征进行详细的分析,并充分利用现代科技手段。
此外,还需要强调预防措施,以避免这些问题的再次发生。
3.环境异常情况与应对策略在环境工程中,异常情况是不可避免的。
例如,水电站的运行中常常遇到洪水、滑坡等不正常的环境情况。
为应对这种情况,应采取不同的策略。
例如采用应急处理程序,制订紧急预案、应用现代通信技术等等。
同时,需要充分考虑环境工程的特殊性,并与相关部门合作,共同把握应对策略。
4.环境地震危险性分析地震是环境工程中的一个非常重要的问题。
为减少地震造成的危害,需要进行环境地震危险性分析。
这种分析涉及到地球物理特征、火山活动、海啸等因素。
在分析中,需要采用先进的地球物理手段,并充分考虑经验知识和科学数据。
5.建筑高层结构稳定性分析在对高层建筑物进行设计和建造的过程中,必须进行结构稳定性分析。
通过这些分析,可以确保建筑物具有足够的抗震能力和抗风能力,以保护公众安全。
此外,还需要充分利用现代科学技术,例如计算机模拟、三维技术等等,并充分考虑建筑物的使用寿命和维护成本。
案例:1. 洪水灾害2007年8月,重庆地区遭受旱灾袭击。
由于长时间的干旱,一场突如其来的洪灾随即来到并摧毁了整个城市。
洪水造成了重大的经济损失,对环境工程造成了巨大的挑战。
工程地质工程施工问题分析随着我国经济的快速发展,基础设施建设如房屋、道路、桥梁等工程在不断增多,工程地质问题也日益凸显。
工程地质工程施工问题涉及到地质条件复杂性、地下水资源保护、环境污染等方面,对工程质量和安全产生重大影响。
本文将对工程地质工程施工中常见的问题进行分析,并提出相应的解决措施。
一、地质条件复杂性地质条件复杂性是工程地质工程施工中常见的问题。
由于地质条件的差异性,不同地区的工程地质条件各异,给工程施工带来了很大的不确定性。
地质条件复杂性主要表现在以下几个方面:1. 地层岩性复杂:地层岩性的复杂性导致工程施工中钻探、基坑支护等环节面临很大挑战。
如遇软弱地层、破碎地层、岩溶地层等,需要采取特殊的施工工艺和措施。
2. 地质构造复杂:地质构造的复杂性表现在断层、褶皱等地质构造的发育,对工程地质稳定性和地下水资源产生影响。
在工程施工中,要充分考虑地质构造的影响,避免施工过程中出现地基不稳、地面沉降等现象。
3. 水文地质条件复杂:水文地质条件的复杂性导致地下水位变化、涌水等地质问题。
在工程施工中,要充分考虑水文地质条件,采取有效措施防止地下水对工程的不利影响。
针对地质条件复杂性问题,工程施工中应加强地质勘察工作,提高地质勘察精度,为设计单位和施工单位提供准确、全面的地质资料。
同时,根据地质条件特点,采用适宜的施工工艺和措施,确保工程施工的安全和质量。
二、地下水资源保护地下水资源保护是工程地质工程施工中的重要问题。
在工程施工中,地下水资源的过度开发和污染将对工程质量和生态环境产生严重影响。
地下水资源保护主要表现在以下几个方面:1. 地下水过度开发:在工程施工中,为满足建设需要,往往需要大量开采地下水。
过度开发将导致地下水位下降、地面沉降等地质问题。
2. 地下水污染:工程施工中,废水、废渣等污染物可能渗入地下水层,造成地下水污染。
针对地下水资源保护问题,工程施工中应加强地下水监测,合理控制地下水开发,采取防治措施防止地下水污染。
工程地质条件:与工程建筑有关的地质条件的总称。
包括岩土体工程性质、地质构造、地形地貌、水文地质特征、自然地质现象、工程动力地质作用和天然建筑材料等七方面。
工程地质问题:工程地质条件与工程建筑之间所存在的矛盾(稳定和安全)。
因工程建筑结构类型、受力特点和工作方式不同,存在各种工程地质问题。
工程地质分析的基本研究方法:1.自然历史分析法2.力学分析法3.模型模拟试验法4.工程地质类比法断层分类:走滑断层、逆断层、正断层,按断裂的主次关系划分为主断层、分支断层和次断层野外识别:走滑断层:1地表出露线平直,断层倾角较陡。
2断层面两侧相对的水平运动,相对的垂直升降很小。
3河流最易于沿这种断层发育,水工建筑物也就最易于受到这种活断层的威胁。
走滑断层:位移方向与断层走向相同或相近的大型平移断层活断层:一般理解为目前还在持续活动的断层,或在历史时期或近期地质时期活动过、极可能在不远的将来重新活动的断层。
活动断层的活动特性:蠕滑:持续不断缓慢蠕动的称为蠕滑或稳滑 ;粘滑:间断地、周期性突然错断的为粘滑,粘滑常伴有地震,是活断层的主要活动方式。
各类活断层在我国的分布1.分布于我国西部的多个NWW—NW向的长大弧形断裂,主要为逆走滑—走滑断层,其走滑速率由南而北有所减小。
2.活动逆冲断裂也主要分布于我国西部分、3.现代活动正断层主要分布于我国东部。
活断层区规划设计建筑物的原则(1)有低级别的活断层的场地优于有高级别的; 有活动时期老的断层的场地优于有活动时期新的; 有全新世(10000 a)内无活动的断层的场地优于有全新世内有活动的断层的场地等。
(2)尽可能避开主断层带;(3)如为逆断层或正断层类型,尽可能避开有强烈地表变形和分支、次生断裂发育的断层上盘(逆断层的上升盘、正断层下降盘)。
如有较大的正、逆断层,场地往往需要选在距主断面数千米之外。
地震:接近地球表面的岩层中弹性波传播所引起的震动称为地震。
震级:衡量地震本身大小的尺度烈度:衡量震动强烈程度的尺度基本烈度:一个地区今后一定时期内在一般场地条件下可能普遍遭受到的最大地震烈度。
勘察报告中的地质工程勘察分析地质工程勘察是工程建设前不可或缺的一项工作,其目的是通过勘察和分析来了解工程所涉及地质条件,为工程的规划、设计和施工提供科学依据。
本文将详细介绍勘察报告中的地质工程勘察分析的内容和要点。
一、背景介绍地质工程勘察分析是地质工程勘察报告的核心部分之一。
其在报告中的位置一般紧接着背景介绍,并以表格的形式出现。
在报告中,地质工程勘察分析包括地质探查和分析的方法、工作内容、结果等。
二、地质探查方法地质探查是地质工程勘察的关键环节,其主要目的是获取有关地质条件的数据和信息。
常用的地质探查方法包括钻探、采样、地下水位观测、地下水化学分析、地震勘测等。
在报告中需要详细说明采用了哪些地质探查方法,并给出探查点的布设示意图。
三、地质工作内容地质工程勘察的内容包括地质调查、地下水调查、地震状况调查等。
其中地质调查是最为重要的一项工作,其目的是了解工程区域的地质构造、地质过程、地质危害等。
地质调查一般包括野外考察、采样、室内分析等环节。
地下水调查主要是为工程设计提供地下水位、水质及流动条件等信息。
地震状况调查则是为工程地震安全评估提供依据。
四、地质工程勘察结果分析在地质工程勘察中,要将所获得的数据和信息进行分析,形成科学的结论。
地质工程勘察结果分析主要包括工程区域的地质特征、地下水水位和地下水位变化规律、地下水化学特性等。
在报告中,需要使用图表、数据等形式直观地展示勘察结果,并进行全面的解读和分析。
五、地质灾害风险评估地质灾害是工程建设过程中需要充分考虑的一项问题。
因此,在地质工程勘察分析中,需要对工程区域内可能发生的地质灾害及其对工程的影响进行风险评估。
常见的地质灾害包括滑坡、地下水涌水、地震等。
风险评估应结合工程的具体情况和要求,以确定相应的防治措施。
六、工程建议和建设成本预估地质工程勘察分析的最终目的是为工程的规划和设计提供建议,并估计工程建设所需的成本。
在报告中,需要根据勘察分析的结果,提出相应的建议,包括工程的可行性、建设方案、使用材料等。
工程地质分析知识点总结工程地质分析是指通过对地质情况进行研究和分析,以确定地质条件对工程建设和运营可能产生的影响,并提出相应的对策和措施,从而确保工程的安全和稳定性。
本文将对工程地质分析的基本概念、方法和应用进行总结,并分析其在工程建设中的重要性和局限性。
一、工程地质分析的基本概念1. 工程地质工程地质是指地质学在工程建设领域中的应用,主要研究地层的物理性质、工程地质条件和地质灾害等问题。
工程地质对确定地质条件、评估地质灾害风险、设计工程方案和采取相应的措施都有着重要的作用。
2. 工程地质分析工程地质分析是指对采集的地质资料进行系统研究和分析,以评估地质条件对工程可能产生的影响,并提出相应的建议和对策。
工程地质分析的目的是为了确保工程建设和运营的安全性和稳定性。
3. 地质条件地质条件是指工程所处地区的地质环境、地质构造和地质材料等因素。
地质条件的好坏对工程建设和运营都有着重要的影响,因此需要对地质条件进行充分的分析和评估。
4. 地质资料地质资料是指对地质条件进行研究和分析的基础资料,包括地质调查报告、地质勘探资料、地质图件和地质样品等。
地质资料的充分采集和综合利用对工程地质分析至关重要。
二、工程地质分析的方法1. 地质调查地质调查是一种对地质条件进行系统观测和测量的方法,包括地质构造、地质岩性、地质构造和地下水等方面。
地质调查的结果将为工程地质分析提供重要的依据。
2. 地质勘探地质勘探是一种通过开展地质钻探、地质探测和地质测量等活动,获取地下地质信息的方法。
地质勘探可以为工程地质分析提供详细的地质资料,有助于准确评估地质条件。
3. 地质试验地质试验是指对地质材料进行室内和现场的实验和分析,包括土壤力学试验、岩石力学试验和地下水力学试验等。
地质试验的结果将为工程地质分析提供科学依据。
地质模型是一种通过建立地质体系的数学模型,预测地质条件可能对工程产生的影响的方法。
地质模型能够为工程设计和施工提供可靠的参考。
绪论教学目的:本章主要讲述工程地质学的研究对象、任务与分科,介绍人类工程活动与地质环境的相互作用和相互制约关系,工程地质分析的基本方法以及工程地质分析原理的学习内容及学习方法。
教学重点和难点:本章重点:(1)类工程活动与地质环境的相互作用的特点和形式;(2)工程地质条件和工程地质问题基本概念;(3)工程地质分析的基本思想方法。
本章难点:(1)“工程地质条件以及人类工程活动与地质环境之间相互制约”特点和形式的认识与理解;(2)工程地质条件和工程地质问题的多样性和复杂性及其相互关系。
主要教学内容及要求:(1)掌握人类工程活动与地质环境的相互作用和相互制约关系,工程地质学的基本任务、研究对象及分科,(2)了解学习本课程的目的。
(3)掌握工程地质条件及其内容、工程地质问题等基本概念。
(4)理解地质分析或自然历史分析方法和地质过程机制分析—定量评价方法。
第一篇区域稳定及岩体稳定分析的几个基本问题第一章地壳岩体结构特征的工程地质分析教学目的:本章主要讲述岩体结构研究的工程地质意义、岩体的结构特征及主要类型、岩体原生结构特征的岩相分析、岩体结构构造改造的地质力学分析以及岩体结构面的特征描述与统计分析方法。
教学重点和难点:本章重点:(1)岩体结构面的主要类型及特征;(2)岩体结构面的特征描述与统计分析方法;(3)岩体结构构造改造的地质力学分析。
本章难点:(1)岩体原生结构特征的岩相分析理论与方法;(2)如何应用岩相分析方法和地质力学分析方法对岩体结构特征进行评价预测。
主要教学内容及要求:(1)掌握岩体、岩体结构、结构面、结构体的基本概念,建造和改造在岩体结构形成中的作用,研究岩体结构特征的意义;(2)掌握结构面的主要类型及特征,了解岩体结构面的等级分类;(3)掌握岩体的结构类型分类及构造与改造的消长关系对岩体结构分类的控制作用,理解岩体工程应用分类的实质,了解岩体工程应用分类的代表性方案;(4)了解岩体原生结构特征的成因类型与岩体结构的岩相分析方法;(5)了解岩体结构的构造改造特征及其地质力学分析方法;(6)掌握结构面的统计测量与特征描述方法以及结构面基本指标的量化分析方法及统计分析方法。
第二章地壳岩体的天然应力状态教学目的:本章主要讲述岩体天然地应力状态的形成及其类型、天然地应力分布的一般规律、我国地应力场的空间分布特征、地壳表层岩体应力状态的复杂性以及区域地应力场与岩体地应力的研究方法。
教学重点和难点:本章重点:(1)天然地应力的基本类型及一般分布规律;(2)地壳表层高地应力地区的地质地貌标志(3)我国地应力场空间分布的一般规律。
本章难点:(1)地表岩体应力状态的复杂性;(2)构造应力场的演变史及现今地应力场的基本特征。
主要教学内容及要求:(1)掌握岩体应力的概念,了解岩体天然应力状态的研究意义;(2)了解天然应力的形成原因,掌握天然地应力的基本类型与分布规律;(3)掌握我国地应力场空间分布的一般规律;(4)理解地壳表层地应力状态的复杂性,掌握区域性垂向剥蚀卸荷与河谷侵蚀侧向卸荷对地应力状态的影响以及地壳表层高地应力区的地质地貌标志;(5)理解构造应力场的演变史及现今地应力场的基本特征,了解地应力的测定方法与区域地应力场的模拟研究方法。
第三章岩体的变形与破坏教学目的:本章主要讲述岩体在加荷过程中的变形与破坏;岩体在卸荷过程中的变形与破坏; 岩体在动荷载条件下的变形破坏;岩体变形破坏过程中的时间效应;孔隙水压力变化对岩体变形破坏的影响;岩体变形破坏的地质力学模式。
教学重点和难点:本章重点:(1)岩体的应力-应变关系,岩体变形-破坏的基本过程和阶段划分;(2)岩体材料破坏与岩体结构破坏的概念,岩体变形-破坏的机制与过程;(3)结构面在岩体变形破坏中的控制作用及岩体结构力学效应;(4)岩体卸荷变形破坏的空间组合模式。
本章难点:充分理解岩体结构破坏与岩体材料破坏的本质不同,岩体结构破坏中结构面起着控制性作用。
岩体结构变形-破坏评价方法必须与岩体结构变形-破坏组合形式相适应。
主要教学内容及要求:(1)掌握岩体变形破坏的基本概念,基本过程和阶段划分,岩体破坏的基本形式,岩体的长期强度概念,岩体变形破坏的研究意义。
(2)掌握岩体在加荷过程中的变形与破坏及相关概念。
(3)掌握岩体在卸荷过程中的变形与破坏及相关概念。
(4)了解岩体在动荷载条件下的变形破坏及相关概念。
(5)了解岩体变形破坏过程中的时间效应及相关概念(6)掌握有效应力原理及其在岩体中的应用性,孔隙水压力变化对岩体变形破坏的影响,“膨胀强化”的概念。
(7)掌握岩体变形的四种基本单元和五种基本组合地质模式。
第二篇与区域稳定性有关的工程地质问题第四章活断层的工程地质研究教学目的:本章主要讲述活断层的类型与活动方式、活动断层的特征参数、活断层活动的时空不均匀性、活断层区内规划设计建筑物的原则以及活断层的调查、监测与研究方法。
教学重点和难点:本章重点:(1)活动断层的类型与活动方式;(2)活断层的时空不均匀性;(3)活断层区内规划设计建筑物的基本原则。
本章难点:(1)我国各类活断层的空间分布特征;(2)确定活断层错动速率的地质学方法。
主要教学内容及要求:(1)掌握活断层的基本概念,了解活动断层的工程地质研究意义;(2)掌握活断层的类型及活动方式,了解我国活动断层的分布情况;(3)掌握表征活动断层规模大小的主要参数;(4)掌握活动断层的错动速率和错动间隔的内涵,了解活动断层的错动速率分级和确定活断层错断速率的地质学方法;(5)掌握活断层活动的时空不均一性特征;(6)掌握活断层区内规划设计建筑物的基本原则;(7)了解活断层的调查、监测与研究方法。
第五章地震的工程地质研究教学目的:本章主要讲述地震与地震波的基础知识、我国地震地质的基本特征、地震区划和地震危险性分析、场地地震效应、地震小区划及地震区抗震设计原则。
教学重点和难点:本章重点:(1)场地地震效应与场地条件对震害和地震动的影响;(2)地基岩(土)体的自振周期(卓越周期、特征周期)及其对建筑物的影响;(3)地震危险性分析。
本章难点:(1)地基土特征周期,又叫卓越周期。
由于地基土对震源传来的地震波具有选择性放大的作用,由此使表层土中某些波多而长,当这类波与建筑物的自振周期相近时,建筑物与地基土发生共振,建筑物振幅达到最大;(2)地震区划和地震小区划分。
主要教学内容及要求:(1)掌握地震的基本概念与一般分类,了解地震的工程地质研究意义;(2)掌握地震及地震波的基础知识,特别是表征地震本身大小和震动强烈程度的震级与地震烈度要区别开来;(3)了解我国地震地质的基本特征;(4)理解地震区划及地震危险性分析的方法与内容;(5)掌握场地地震效应的主要类型及特征、场地条件对震害与地震动的影响,了解地震小区划的目的及类型;(6)掌握地震区抗震设计的基本原则。
第六章水库诱发地震活动的工程地质分析教学目的:本章通过世界上几个典型实例,主要讲述水库诱发地震的共同特点,水库诱发地震的诱发机制,产生水库诱发地震的地质条件以及水库诱发地震工程地质研究的基本原则。
教学重点和难点:本章重点:水库诱发地震产生的工程地质条件和水库诱发地震的诱发机制。
本章难点:水库诱发地震的诱发机制,充分理解“水库诱发地震不是水体荷载直接造成的”这句陈述的基本含义。
没有水库的其他作用因素的叠加,仅水体作用是难以造成地震的。
主要教学内容及要求:(1)掌握水库诱发地震的基本概念,了解水库诱发地震的研究意义;(2)了解水库诱发地震活动性变化的几种典型类型;(3)掌握水库诱发地震的共同特点;(4)理解水库诱发地震的诱发机制;(5)掌握产生水库诱发地震的地质条件;(6)了解水库诱发地震工程地质研究的基本原则。
第七章地震导致的区域性砂土液化教学目的:本章主要讲述砂土液化的概念;地震时砂土液化机制;区域性砂土地震液化的形成条件;砂土地震液化的判别及砂土地震液化的防护措施。
教学重点和难点:本章重点:(1)地震砂土液化的形成机制;(2)地震砂土液化可能性判别标准及防护措施,特别要强调地震砂土液化可能性综合判别方法。
本章难点:砂土震动液化与砂土渗流液化的区别;主要教学内容及要求:(1)掌握砂土液化的基本概念,了解砂土液化引起的破坏形式及研究意义;(2)理解地震时砂土液化的形成机制;(3)掌握砂土地震液化的形成条件;(4)掌握砂土地震液化的主要判别方法;(5)掌握砂土地震液化的防护措施;第八章地面沉降与地裂缝的工程地质分析(自学)教学目的:本章主要讲述地面沉降与地裂缝的基本类型及危害、我国区域性地面沉降与地裂缝的发育分布状况、地下水开采引起的地面沉降、地面沉降与岩土性能及地下水位动态变化特征的关系、地面沉降与地裂缝的成因机制及基本模式、地面沉降与地裂缝的防治原则和防治措施、地面沉降与地裂缝的地质调查及监测预测等内容。
教学重点和难点:本章重点:(1)地面沉降与地裂缝的成因机制类型及基本模式;(2)地面沉降与地裂缝的防治原则和措施。
本章难点:(1)地下水开采引起的地面沉降的形成机制;(2)地面沉降与岩土性能及地下水位动态变化特征的关系。
主要教学内容及要求:(1)掌握地面沉降与地裂缝的概念和基本类型,了解地面沉降与地裂缝的危害及研究意义;(2)了解我国区域性地面沉降与地裂缝的发育分布状况及区域性地面沉降的研究状况;(3)理解地下水开采引起的地面沉降的形成机制,掌握地面沉降与岩土性能及水位变化动态特征的关系;(4)掌握地面沉降与地裂缝的成因机制及基本模式;(5)掌握地面沉降与地裂缝的防治原则与措施,了解地面沉降与地裂缝的地质调查和监测预测。
第三篇与岩体稳定性有关的工程地质问题第九章斜坡岩体稳定性的工程地质问题教学目的:本章主要讲述斜坡岩体应力分布特征;斜坡变形破坏的基本类型及一般特征;斜坡变形破坏机制;斜坡变形破坏后运动学特征;斜坡变形破坏与内外应力的关系;斜坡稳定性评价与预测;防治斜坡变形破坏的基本原则及主要措施。
教学重点和难点:本章重点:(1)斜坡岩体应力分布特征,斜坡形成后引起岩体内应力的重分布,致使主应力大小和方向发生变化,坡脚应力集中,形成对斜坡稳定性不利的应力组合。
注重坡顶拉应力、坡面附近近似于单向应力分布、坡脚剪应力集中的应力分布特征;(2)斜坡变形破坏方式及形成机制,分变形和破坏两方面讲述。
斜坡变形的基本形式是卸荷和蠕变变形,而实际的斜坡变形往往是多种基本变形形式的组合。
斜坡的破坏常见基本形式是崩塌和滑坡。
要求掌握滑坡识别标志——滑坡要素。
(3)斜坡变形破坏的演变过程,要求掌握斜坡变形破坏的六种地质力学模式及建模的思想方法。
分析斜坡变形的组合方式。
(4)斜坡稳定性评价的演变历史分析方法,其核心是将斜坡的变形和破坏纳入地质历史长河,在地质历史发展演化背景条件下研究斜坡变形破坏发生、发展、演化全过程,并预测其发展趋势。