第5章 旋转机械常见故障诊断分析案例1
- 格式:doc
- 大小:11.80 MB
- 文档页数:78
国内外旋转机械故障案例一、国内旋转机械故障案例。
1. 电厂汽轮机振动故障。
我有个朋友在电厂工作,他们那儿的汽轮机有次出了大问题。
这汽轮机就像个巨大的、爱闹脾气的大家伙。
正常的时候,它稳稳地转着发电,可那次突然开始剧烈振动。
就像一个平时很沉稳的人突然开始疯狂跳舞一样。
工程师们赶紧检查,发现是叶片断了一片。
你想啊,汽轮机的叶片就像风扇的扇叶一样,少了一片那肯定转得不平稳了。
原来是那片叶片有制造缺陷,长期运行后就扛不住压力断了。
这一断可不得了,整个汽轮机就像瘸了腿的马,不但振动得厉害,还影响发电效率。
后来费了好大劲儿才把断叶片取出来,换上新的叶片,又重新做了动平衡调试,这汽轮机才又正常工作了。
2. 工厂里的离心风机故障。
在一个生产化肥的工厂,有一台离心风机。
这风机每天呼呼地转,把生产过程中的废气排出去。
有一天,工人发现风机的声音不对劲儿,就像人感冒了喉咙里有痰一样,呼呼噜噜的。
维修师傅一检查,发现是风机的轴承磨损严重。
这轴承啊,就像风机的关节一样,关节磨损了,转起来就不顺溜了。
原来是风机长时间运行,而且工厂环境比较恶劣,有很多灰尘和小颗粒进到轴承里,就把轴承给磨坏了。
维修师傅只好把旧轴承拆下来,换上新的轴承,还对风机的密封系统进行了改进,防止灰尘再进去捣乱。
3. 水轮机的转轮故障。
有个水电站的水轮机出了故障。
这水轮机就像一个巨大的水车,靠水流的力量转动来发电。
水轮机的转轮是关键部件,就像水车的轮子一样。
这次转轮出现了裂纹。
为啥呢?因为这个水电站的水流有时候不太稳定,一会儿大一会儿小,就像人的情绪忽高忽低一样。
转轮长期受到这种不稳定水流的冲击,金属材料就疲劳了,慢慢就出现了裂纹。
要是不及时处理,这裂纹越来越大,转轮可能就会坏掉。
工程师们用了一种特殊的焊接技术,把裂纹修复了,还对水轮机的运行参数进行了调整,让它能更好地适应不稳定的水流。
二、国外旋转机械故障案例。
1. 美国某飞机发动机故障。
听说美国有架飞机的发动机出过事。
旋转机械故障相关诊断技术摘要:旋转机械故障诊断技术在现代工业中扮演着重要的角色,能够帮助工程师及时发现故障,减少生产停机时间,提高设备的可靠性和性能。
本文将介绍一些常见的旋转机械故障诊断技术,包括振动分析、红外热像仪、声波分析、油液分析和电机电流分析等。
这些技术可以用来检测旋转机械的各种故障,包括轮毂偏心、轴承故障、轴传动故障等,并且可以提供及时的故障定位和诊断。
关键词:旋转机械、故障诊断、振动分析、红外热像仪、声波分析、油液分析、电机电流分析一、引言旋转机械在许多行业中广泛应用,包括电力、石化、矿山等。
故障的发生会导致设备停机,给企业带来巨大的经济损失。
因此,旋转机械的故障诊断技术对于保证设备安全稳定运行具有重要意义。
二、振动分析振动分析是一种常用的旋转机械故障诊断技术。
通过安装振动传感器,采集旋转机械的振动信号,然后通过信号处理和分析,可以检测出旋转机械的各种故障,如轮毂偏心、轴承故障、轴传动故障等。
振动分析主要通过分析振动频谱和振动图形来判断故障类型和严重程度。
三、红外热像仪红外热像仪是一种可以检测旋转机械工作状态的先进技术。
它使用红外线摄像头获取旋转机械的红外热图像,通过分析热图像的表面温度分布,可以发现旋转机械的异常情况,如轴承温升、轮毂过热等。
红外热像仪可以在设备正常运行时进行在线监测,大大提高了故障诊断的效率。
四、声波分析声波分析是一种通过分析旋转机械发出的声波信号,来判断故障类型和严重程度的技术。
通过布置合适的声音传感器,可以采集旋转机械的声波信号,在分析和处理声波信号的过程中,可以发现旋转机械的故障源,如齿轮磨损、轴承故障等。
声波分析的优点是适用于高速旋转机械,可以在线监测机械的故障。
五、油液分析油液分析是一种通过检测旋转机械的油液中的污染物、金属磨粒等物质,来判断机械的故障情况的技术。
油液分析可以通过采集机械的油液样品,进行化学分析和物理性质测试,从而判断机械的故障类型、故障源和故障严重程度。
旋转机械碰摩故障的诊断案例分析综旋转机械碰摩故障的诊断案例分析综述【引言】旋转机械在工业生产中起着重要作用,然而由于长期运转和各种原因,旋转机械碰摩故障时有发生。
碰摩故障会导致机械的性能下降、寿命缩短甚至完全失效。
因此,对旋转机械碰摩故障的诊断和分析具有重要意义。
本文将通过分析多个案例,总结旋转机械碰摩故障的常见原因、诊断方法和解决方案,以期为相关行业提供参考。
【案例一:轴承碰摩故障】案例描述:某工厂的离心泵在运行过程中出现异常噪音和振动,经过检查发现是轴承碰摩故障导致的。
1. 碰摩故障原因分析:a) 润滑不良:轴承润滑油不足、油质污染等;b) 轴承过载:泵的工作负荷超过轴承额定负荷;c) 轴承损坏:轴承内外圈间隙过大、轴承疲劳等。
2. 碰摩故障诊断方法:a) 振动分析:通过振动传感器采集振动信号,分析频谱特征;b) 温度检测:测量轴承温度,异常升高可能表示碰摩故障;c) 润滑油分析:检测润滑油中的金属颗粒和污染物。
3. 碰摩故障解决方案:a) 更换润滑油并保持良好的润滑状态;b) 调整工作负荷,避免轴承过载;c) 定期检查轴承状态,及时更换疲劳损坏的轴承。
【案例二:齿轮碰摩故障】案例描述:一台工厂的传动装置在运行时出现异常噪音和振动,经过检查发现是齿轮碰摩故障导致的。
1. 碰摩故障原因分析:a) 齿轮配合间隙过大或过小;b) 齿轮润滑不良;c) 齿轮磨损严重。
2. 碰摩故障诊断方法:a) 声音分析:通过声音传感器采集齿轮工作时的声音特征;b) 振动分析:分析齿轮工作时的振动频谱;c) 润滑油分析:检测润滑油中的金属颗粒和污染物。
3. 碰摩故障解决方案:a) 调整齿轮配合间隙,确保正常工作;b) 更换润滑油并保持良好的润滑状态;c) 定期检查齿轮磨损情况,及时更换磨损严重的齿轮。
【案例三:轴承与齿轮共同碰摩故障】案例描述:某设备在运行时出现异常噪音和振动,经过检查发现是轴承与齿轮共同碰摩故障导致的。
旋转机械碰摩故障诊断案例分析综近年来,随着工业化的快速发展,旋转机械在各个领域中扮演着重要的角色。
然而,由于长时间的运转和各种外界因素的干扰,旋转机械碰摩故障时有发生。
因此,对于旋转机械碰摩故障的诊断和分析显得尤为重要。
本文将通过几个实际案例,来探讨旋转机械碰摩故障的诊断与分析方法。
案例一:轴承碰摩故障在某工厂的生产线上,一台旋转机械突然出现了异响和振动的问题。
经过初步观察,发现该机械的轴承存在异常现象。
为了进一步分析问题的根源,工程师们使用了振动分析仪器进行了测试。
测试结果显示,该机械的振动频率超过了正常范围,且振动的主要频率为轴承的固有频率。
基于此,工程师们初步判断该机械的问题可能是由于轴承碰摩引起的。
为了确认诊断结果,工程师们进行了更加详细的检查。
他们拆卸了该机械的轴承,并对其进行了仔细观察。
结果显示,轴承表面出现了明显的磨损和划痕。
通过进一步的分析,工程师们发现,该机械在运行过程中,轴承润滑油的供给存在问题,导致轴承摩擦增大,最终引发了碰摩故障。
案例二:齿轮碰摩故障在另一家工厂的生产线上,一台旋转机械的齿轮出现了异常噪音。
工程师们利用红外热像仪对该机械进行了检测。
结果显示,齿轮的温度异常升高,表明存在摩擦和碰摩的问题。
为了进一步确定问题的原因,工程师们拆卸了该机械的齿轮,并进行了详细的观察。
他们发现,齿轮表面存在明显的磨损和齿面断裂现象。
通过与其他部件的对比,工程师们发现该机械的齿轮硬度不足,无法承受正常的工作负荷,从而导致了碰摩故障的发生。
综合分析与讨论通过以上两个案例的分析,我们可以得出一些共同的结论。
首先,振动和噪音是旋转机械碰摩故障的常见表现。
通过振动分析仪器和红外热像仪等先进工具的应用,可以有效地检测和诊断碰摩故障。
其次,对于旋转机械的碰摩故障,常见的原因包括润滑不良、材料问题、设计缺陷等。
因此,在日常维护和保养过程中,应加强对润滑系统的检查和维护,并确保材料的质量和齿轮的设计符合要求。
旋转机械故障相关诊断技术范文一、引言:旋转机械在工业生产中占据着重要的地位,如电机、风机、水泵等。
这些机械设备的正常运行对于工业生产中的连续性和效率有着至关重要的影响。
然而,由于长期的使用和运转,旋转机械往往会出现各种故障,影响其正常运行。
因此,对旋转机械的故障进行及时准确的诊断非常重要。
本文将介绍几种常用的旋转机械故障诊断技术,包括振动分析、红外热成像、声音诊断、油液分析等。
这些技术可以通过检测旋转机械的振动、温度、声音、油液等参数来检测故障,准确判断故障的原因和程度,为维修和保养提供科学依据。
二、振动分析:振动分析是一种常用的旋转机械故障诊断方法。
通过检测旋转机械的振动信号,分析其频谱和特征,可以判断出故障的类型和位置。
常见的故障类型包括轴承故障、不平衡、偏心、齿轮故障等。
振动分析的基本原理是利用传感器检测旋转机械产生的振动信号,然后通过信号处理和频谱分析来得到故障特征。
常用的振动传感器包括加速度传感器和速度传感器。
振动分析一般分为时域分析和频域分析两种方法。
时域分析是通过对振动信号的波形进行分析,来判断故障的类型。
常见的时域分析方法有峰值幅值分析、包络分析等。
频域分析是通过将振动信号转换为频谱信号,来判断故障的位置。
常见的频域分析方法有傅里叶变换、功率谱分析等。
三、红外热成像:红外热成像是一种通过检测物体表面的红外辐射来获取其温度分布的技术。
在旋转机械故障诊断中,可以利用红外热成像仪来检测机械的温度分布,从而判断是否存在异常热点,进而确定故障的位置和严重程度。
在旋转机械中,故障常常伴随着局部摩擦、磨损或电流异常等现象,这些异常会导致机械产生异常的热量。
通过红外热成像仪可以直观地观察到这些热点,从而准确诊断故障。
在使用红外热成像仪进行故障诊断时,需要注意机械运行时的环境温度对诊断的影响,以及机械表面的反射率等因素的影响。
四、声音诊断:声音诊断是一种通过检测机械产生的声音信号来诊断故障的技术。
旋转机械的常见故障诊断尽管旋转机械的故障是由机械仪表自行诊断是最终目的,但机械还是机械,它不是万能的,现实的问题不能全部死搬硬套,自动诊断。
系统的诊断只能做参考,最终诊断还需要人的大脑。
人一机对话,还需要人的大脑。
下面举几个各种类型振动的典型例子,可以认为是固定模式的一类,可以在判断故障时做以参考。
1 不平衡大家知道,转动部分在转动过程中,一定会产生振动,振动是绝对的,不振动是相对的,不平衡是绝对的,平衡也是相对的。
转动部分或多或少会有残余的不平衡量存在。
这种不平衡量是由于转子的重心偏移所产生的。
由于重心偏移而引起离心力E32(W 转子重量,;g:重力加速度,2;£ :偏心量;宀:回转角速度;F:离心力)。
这种情况,机械在转动时会发生振动,明显地表现为1次/转。
如是3000 ,振动频率为50 。
这种由于偏心、不平衡产生的离心力,迫使转子在运转过程中发生振动,其振动频率为转速的一次方成正比,转速高而高,转速低而低,这是判断转子由于偏心而产生振动的不平衡的最简单也是最直观的判断方法。
2热的不平衡已在常温下平衡好的转子,当进入工况后,由于热的影响温度的上升,转子转轴导热性的影响,转子可能会产生弯曲。
这种振动可随时间的延长而变大。
也可能随负荷的变化而改变。
3找正同轴度的变化,而引起的不平衡振动即使多缸的每个转子都是完全平衡了,但当将二个或三个以上的转子联接在一起时,如果不能正确对中,也就是说给每个转子重新增加了新的不平衡量,那么整个转子在运转中,也会发生振动。
这相当于转子轴被强制弯曲。
发生角不对中或端面不对中的振动,还可能是在找正对中时,对温度梯度的影响考虑不周,预留量不合适也会产生振动,这种情况一般发生二倍频的现象。
4油膜振荡问题具有油膜的滑动轴承的转子系统,由于滑动轴承油膜引起的自激振动,即使时完全平衡好的转子,也会产生非常激烈的振动,使巴氏合金烧损。
这种振动在一般的讲来认为是“油膜振荡”。
旋转机械故障诊断旋转机械故障诊断旋转机械是指依靠转⼦旋转运动进⾏⼯作的机器,在结构上必须具备最基本的转⼦、轴承等零部件。
典型的旋转机械:各类离⼼泵、轴流泵、离⼼式和轴流式风机、汽轮机、涡轮发动机、电动机、离⼼机等。
⽤途:1、在⼤型化⼯、⽯化、压缩电⼒和钢铁等部门,某些⼤型旋转机械属于⽣产中的关键设备2、炼油⼚催化⼯段的三机组或四机组3、⼤化肥装置中的四⼤机组或五⼤机组4、⼄烯装置中的三⼤机组5、电⼒⾏业的汽轮发电机、泵和⽔轮机组6、钢铁部门的⾼炉风机和轧钢机组旋转机械可能出现的故障类型:1、转⼦不平衡故障2、转⼦不对中故障3、转轴弯曲故障4、转轴横向裂纹的故障5、连接松动故障6、碰摩故障7、喘振转⼦的不平衡振动机理及特性:旋转机械的转⼦由于受材料的质量分布、加⼯误差、装配因素以及运动中的冲蚀和沉积等因素的影响,致使其质量中⼼与旋转中⼼存在⼀定程度的偏⼼距。
偏⼼距较⼤时,静态下,所产⽣的偏⼼⼒矩⼤于摩擦阻⼒距,表现为某⼀点始终恢复到⽔平放置的转⼦下部,其偏⼼⼒矩⼩于摩擦阻⼒距的区域内,称之为静不平衡。
偏⼼距较⼩时,不能表现出静不平衡的特征,但是在转⼦旋转时,表现为⼀个与转动频率同步的离⼼⼒⽮量,离⼼⼒F=Mew2,从⽽激发转⼦的振动。
这种现象称之为动不平衡。
静不平衡的转⼦,由于偏⼼距e较⼤,表现出更为强烈的动不平衡振动。
虽然做不到质量中⼼与旋转中⼼绝对重合,但为了设备的安全运⾏,必须将偏⼼所激发的振动幅度控制在许可范围内。
1、不平衡故障的信号特征1)时域波形为近似的等福正弦波。
2)轴⼼轨迹为⽐较稳定的圆或椭圆,这是因为轴承座及基础的⽔平刚度与垂直刚度不同所造成。
3)频谱图上转⼦转动频率处的振幅。
4)在三维全息图中,转动频率的振幅椭圆较⼤,其他成分较⼩。
2、敏感参数特征1)振幅随转速变化明显,这是因为,激振⼒与⾓速度w是指数关系。
2)当转⼦上得部件破损时,振幅突然变⼤。
例如,某烧结⼚抽风机转⼦焊接的合⾦耐磨层突然脱落,造成振幅突然增⼤。
第5章旋转机械常见故障诊断分析案例积累典型设备诊断案例在设备监测诊断工作中具有重要作用。
首先它为设备诊断理论提供支撑。
常见的设备故障有成熟的理论基础,一个成功的案例通常是诊断理论在现场正确应用和诊断人员长期实践的结果。
典型诊断案例具有强大的说服力,一次成功而关键的诊断足可以改变某些人根深蒂固的传统观念,对现场推广设备诊断技术具有重要意义。
其次它为理论研究提供素材。
在医学上,由典型的特例研究发现病理或重大理论的案例很多。
设备故障的情形多种多样,现场疑难杂症还比较多,有许多故障很难用现有理论解释,只能作为诊断经验看待,这种经验有没有通用参考价值,需要在理论上进行说明。
另外,有许多案例无法在试验室模拟,而它们在不同的现场又常常出现,因此典型案例为同行提供了宝贵经验和经过证实的分析方法。
诊断人员可以参考相似案例的解决方案解决新的问题,提供快速的决策维护支持,并为基于案例的推理方法提供数据基础。
典型案例分析的重要性还表现在它是监测诊断人员快速成长的捷径。
目前实用的振动诊断方法、技术和诊断仪器已经相当完善,而许多企业在诊断技术推广应用方面存在困难除了思想观念方面的原因外,更主要的原因是缺乏专业人才。
研究案例的一般做法是,从新安装设备或刚检修好的设备开始,可以选择重点或典型设备进行监测,根据不同设备制定不同的监测方案和监控参数,定期测试设备的振动,包括各种幅值、振动波形和频谱等。
如果设备出现劣化迹象或异常,要缩短监测周期,倍加留心振动波形和频谱的变化,注意新出现的谱线及其幅值的变化,在检修之前做出故障原因的判断。
设备检修时要到现场,了解第一手资料,全程跟踪设备拆检情况,掌握设备参数(如轴承型号,必要时测量有关尺寸、齿轮齿数、叶片数、密封结构、联轴器和滑动轴承形式等),做好检修记录(有时需要拍照记录),比较自己的判断对在哪里,错在哪里,进行完善的技术总结。
几个过程下来,水平自然有很大提高。
总之,添置几件诊断仪器是很容易的事,诊断成果和效益的产生不是一朝一夕的事,需要柞大量艰苦、细致的工作,长期积累设备的状态数据,对此应有应清醒地认识。
第5章旋转机械常见故障诊断分析案例积累典型设备诊断案例在设备监测诊断工作中具有重要作用。
首先它为设备诊断理论提供支撑。
常见的设备故障有成熟的理论基础,一个成功的案例通常是诊断理论在现场正确应用和诊断人员长期实践的结果。
典型诊断案例具有强大的说服力,一次成功而关键的诊断足可以改变某些人根深蒂固的传统观念,对现场推广设备诊断技术具有重要意义。
其次它为理论研究提供素材。
在医学上,由典型的特例研究发现病理或重大理论的案例很多。
设备故障的情形多种多样,现场疑难杂症还比较多,有许多故障很难用现有理论解释,只能作为诊断经验看待,这种经验有没有通用参考价值,需要在理论上进行说明。
另外,有许多案例无法在试验室模拟,而它们在不同的现场又常常出现,因此典型案例为同行提供了宝贵经验和经过证实的分析方法。
诊断人员可以参考相似案例的解决方案解决新的问题,提供快速的决策维护支持,并为基于案例的推理方法提供数据基础。
典型案例分析的重要性还表现在它是监测诊断人员快速成长的捷径。
目前实用的振动诊断方法、技术和诊断仪器已经相当完善,而许多企业在诊断技术推广应用方面存在困难除了思想观念方面的原因外,更主要的原因是缺乏专业人才。
研究案例的一般做法是,从新安装设备或刚检修好的设备开始,可以选择重点或典型设备进行监测,根据不同设备制定不同的监测方案和监控参数,定期测试设备的振动,包括各种幅值、振动波形和频谱等。
如果设备出现劣化迹象或异常,要缩短监测周期,倍加留心振动波形和频谱的变化,注意新出现的谱线及其幅值的变化,在检修之前做出故障原因的判断。
设备检修时要到现场,了解第一手资料,全程跟踪设备拆检情况,掌握设备参数(如轴承型号,必要时测量有关尺寸、齿轮齿数、叶片数、密封结构、联轴器和滑动轴承形式等),做好检修记录(有时需要拍照记录),比较自己的判断对在哪里,错在哪里,进行完善的技术总结。
几个过程下来,水平自然有很大提高。
总之,添置几件诊断仪器是很容易的事,诊断成果和效益的产生不是一朝一夕的事,需要柞大量艰苦、细致的工作,长期积累设备的状态数据,对此应有应清醒地认识。
表5-1为某钢铁公司多年来162例典型故障的原因或部位分布情况。
可见转子不平衡、轴承故障、基础不良、不对中和齿轮故障是主要原因。
5.1 转子动平衡故障诊断、现场校正方法与实例分析5.1.1 转子不平衡的几种类型与诊断【左经刚,设备故障的相位分析诊断法,中国设备管理,2001年第5期】转子不平衡通常是由于转子质量中心线与旋转中心线存在物理差异引起的。
按照两线的物理位置可以将转子不平衡分为四种类型:静不平衡或力不平衡、力矩不平衡或偶不平衡、准静不平衡和动不平衡。
静不平衡或力不平衡(5-1):转子中央平面内存在不平衡质量,使轴的质量中心线与旋转中心线偏离,但两线平行。
对于两端支撑的简支型转子,两轴承处的振动幅值和相位接近。
图5-1 静不平衡力矩不平衡或偶不平衡(图图5-2):转子两端平面存在质量相等、相位相差180度的不平衡质量,使轴的质量中心线与旋转中心线相交于重心处。
力矩不平衡一般发生在宽径比较大的转子上。
对于简支型转子,两轴承处的振动幅值接近,但相位相差180度。
图5-2 力矩不平衡准静不平衡(图5-3):是静不平衡和力矩不平衡的组合。
但静不平衡质量于力矩不平衡质量之一在一条与轴心线平行的直线上,使轴的质量中心线与旋转中心线相交但不交于重心处。
对于简支型转子,两轴承处的振动幅值存在差异,相位相差180度或相等。
图5-3 准静不平衡动不平衡(图5-4):是静不平衡和力矩不平衡的随机组合,轴的质量中心线与旋转中心线不平行也不相交。
对于简支型转子,一般情况下两轴承处的振动幅值接近,但相位相差在0度~180度之间。
图5-4 动不平衡一般情况下,叶轮的宽度与直径之比大于5时易产生力矩不平衡,小于5时易产生动不平衡。
静不平衡可采用单面平衡法校正;力矩不平衡应采用双面平衡法校正;动不平衡采用单面法或双面平衡法校正。
转子不平衡故障具有如下振动特征:(1)振动波形接近正弦波、波形对称、连续;(2)轴心轨迹近似圆形;(3)振动频率以1X转频振动为主,高次谐波较小;没有其它显著频率;(4)振动以径向为主,一般水平方向幅值大于垂直方向的幅值;(5)水平方向和垂直方向的1X转频振动幅值差别不大(3:1以内);(6)轴线方向1X转频振动幅值明显小于水平方向和垂直方向;(7)振动幅值随转速增加而大幅度增加;(8)振动相位一般稳定(波动范围在20°以内)。
要特别强调使用相位信息进行确认。
对于静不平衡或力不平衡故障,两轴承测点水平方向振动同相位、垂直方向振动也同相位;同一轴承垂直和水平测点相位差为90°(±30°)。
对于力矩不平衡故障,两轴承测点水平方向振动反相位、垂直方向振动也反相位;同一轴承垂直和水平测点相位差为90°(±30°)。
对于一般的动不平衡故障,两轴承座同方向振动相位差约为±30°,同一轴承垂直和水平测点相位差约为90°(±30°)。
(9)若转动频率的谱线能量占70%~80%或更高,而其它频率谱线成分所占比例只有20%~30%,其幅值(速度、位移)超过正常的3~4倍。
在排除了其它原因后,可认为振动是由转子不平衡引起的。
在诊断转子不平衡故障时,必须关注联轴器的故障问题。
联轴器故障通常造成旋转件之间同心度变差、质量偏移、张角等,因此联轴器故障常常引起转子不平衡、轴系不对中的故障特征。
根据一些诊断经验,联轴器故障所引起的振动主要表现为轴的转频振动,有时有较丰富的高次谐波,有时不一定有明显的高次谐波。
一般情况下振动表现为径向。
由于诊断中,人们往往把注意力集中在与之相连的转子上,因而通常把联轴器的故障排除在诊断视线之外,常常判断为转子不平衡和不对中。
从维修的经济性考虑,应充分注意到联轴器故障的可能性。
对于悬臂式转子,根据测试诊断经验,当转子平衡状况较好时,在垂直径向、水平径向和轴线方向,近转子侧轴承振动和远转子侧轴承振动都比较小,振动值接近。
当转子存较严重不平衡时,在垂直径向和水平径向,近转子侧轴承振动比远转子侧轴承振动大30%~40%,轴线方向两轴承振动相当或有一定差异,径向振动一般远大于轴向振动。
当转子存在非常严重不平衡时,在垂直径向和水平径向,近转子侧轴承振动比远转子侧轴承振动大50%~100%,轴线方向两轴承振动相当或有一定差异,径向振动一般远大于轴向振动。
相位方面两轴承测点轴向同相位振动,而水平径向相位可能不稳定。
5.1.2 转子动平衡故障的确认在动平衡前首先要排除是否存在潜在性的结构振动问题,这是关系到平衡是否成功的关键因素之一。
结构振动的主要问题有:严重机械松动、结构共振以及基础不良等。
为检查是否存在结构振动问题,建议分别测量两端轴承垂直和水平方向在转频上的振动幅值、以及相位,如图1,图中显示的数据是较为典型动不平衡振动模式。
不平衡力是径向力,它应该分别在垂直和水平方向产生同样的振幅。
此外,轴承座从上到下,水平方向振幅应该越来越小,而不是相当或变大。
通过这些数据分析,可以发现是否存在结构松动等。
图1图2 参考图2,首先注意到各点振幅相对差异较大,后轴承测点水平和垂直振幅比值超过3倍。
其次后轴承测点水平和垂直径向相位差为182°,接近0°或180°,而不是接近90°,因此很可能存在转速下结构共振的问题。
在接近共振区运行的转子会出现相位不稳定、振幅很大的特点,而且经常出现轴承等零部件的损坏等故障。
5.1.3 现场动平衡质量分解13mm/s@156°15mm/s@169° 9mm/s@51° 11mm/s@72°5.5mm/s@155°16.5mm/s@274° 6.1mm/s@71° 4.9mm/s@92°21000011.0F W )(n R =g 4.4010001500100*011.05%*2000W 2==)(5.1.3 转子动不平衡现场校正方法5.1.3.1 单面平衡法静不平衡指的是不平衡量处于单个平面里。
当转子仅由安装在完全平衡过的轴上的单个薄盘构成或纯粹是静不平衡问题时才属于单面平衡。
工业现场的许多转子如大量的风机转子,其动不平衡问题都可以通过单面平衡校正【J.S.米切尔 著.机器故障的分析与监测,机械工业出版社,1990;施维新】。
其平衡步骤(如图5-5)为:a . 在工作转频下,测试初始不平衡量A(幅值和相角);b . 加上试重W 后,测试新的不平衡量B(幅值和相角);引入单位效果矢量α,其方向角为零度,定义为α=(B -A)/W ,则平衡条件为:α²P =-A (5-1)解式5-1可得校正质量P(幅值和相角)。
图5-5 单面平衡法过程加试重W 的大小及方位的确定是现场平衡工作的重要技巧。
试重加上后应引起振动有足够大的变化,但不应造成设备损坏(如果加放的位置不当),可以称之为“30——30规则”,即通常要求振幅变化在30%以上或相位的变化量30度以上。
一般认为,试重引起的不平衡力约等于转子重量的10%,试重W 可按下式计算:式中: W ——试加重量,gR ——加试重处的半径,cmn ——旋转体转速,r/minF ——单个轴承承受的试重引起的不平衡力,约等于转子重量的5%(低速时为10%~20%),kg例如,转子质量=2000kg ,加重半径=100cm ,转子转速=1500 r/min ,则试重W 为: (5-2)5.1.2.2 双面平衡法当叶轮的宽度与直径之比>5时易产生力偶不平衡,这时宜应采用双面平衡法。
双面平衡法中影响系数法矢量运算法应用最广泛,其运算原理如下【袁宏义等著.设备振动诊断技术基础.国防工业出版社,1991;屈梁生、何正嘉编著.机械故障诊断学.上海科学技术出版社,1986】平衡步骤为:a)测得转子的原始不平衡下左、右侧面的不平衡量幅值V10 、相角P10和幅值V20 、相角P20;b)在左侧面R1处加试重P1,测得左、右侧面新的不平衡量V11 、P11和V21、P21;c)取下试重P1,在右侧面R2处加试重P2,测得左、右侧面新的不平衡量V12 、P12和V22、P22;d)据上述参数计算左、右侧面的校正质量和相位角。
若定义K11=(V11-V10)/P1 K21=(V21-V20)/P1K12=(V12-V10)/P2 K22=(V22-V20)/P2(上式中P1和P2的方向角为0°)则得平衡方程为:K11·MC1+K12·MC2=-V10 (5-3)K21·MC1+K22·MC2=-V20 (5-4 式中MC1和MC2分别为左、右侧面的校正质量,包括幅值和相位。