选修3 第1讲
- 格式:ppt
- 大小:3.36 MB
- 文档页数:52
带电粒子在匀强电场中的运动1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动). (2)运动的分析方法(看成类平抛运动): ①沿初速度方向做速度为v 0的匀速直线运动. ②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少? 解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d 由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qULat 0== 离子离开偏转电场时的偏转角度θ可由下式确定:dmv qULv v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL yx θ答案:见解析例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .U edh B .edUh C .dheU D .d eUh解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h d U Eh U OA ==,所以deUh mv =2021 . 答案:D .例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)解析:水平方向匀速,则运动时间t =L/ v 0 ①竖直方向加速,则侧移221at y = ② 且dmqUa =③ 由①②③得222mdv qULy =则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 答案:减少222222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ; ④离子在偏转电场中的加速度;图1—8—4图1—8-5⑤离子在离开偏转电场时的横向速度y v ; ⑥离子在离开偏转电场时的速度v 的大小; ⑦离子在离开偏转电场时的横向偏移量y ; ⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得: 0121mv qU =mqUv 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动.∴在水平方向102qU mlv l t ==③d U E 2= F =qE =.d qU 2④mdqU m F a 2==⑤.mU qdl U qU ml md qU at v y 121222=•== ⑥1242222212220U md U ql U qd v v v y +=+=⑦1221222422121dU U l qU ml md qU at y =•==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)答案: 见解析基础演练1.如图l —8—6所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( )A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间延长 答案:CD2.如图1—8—7所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的 ( )图1—8-6A .2倍B .4倍C .0.5倍D .0.25倍 答案:C3.电子从负极板的边缘垂直进入匀强电场,恰好从正极板边缘飞出,如图1—8—8所示,现在保持两极板间的电压不变,使两极板间的距离变为原来的2倍,电子的入射方向及位臀不变,且要电子仍从正极板边缘飞出,则电子入射的初速度大小应为原来的( )A .22B .21C .2D .2答案:B4.下列带电粒子经过电压为U 的电压加速后,如果它们的初速度均为0,则获得速度最大的粒子是 ( ) A .质子 B .氚核 C .氦核 D .钠离子Na +答案:A5.真空中有一束电子流,以速度v 、沿着跟电场强度方向垂直.自O 点进入匀强电场,如图1—8—9所示,若以O 为坐标原点,x 轴垂直于电场方向,y 轴平行于电场方向,在x 轴上取OA =AB =BC ,分别自A 、B 、C 点作与y 轴平行的线跟电子流的径迹交于M 、N 、P 三点,那么:(1)电子流经M ,N 、P 三点时,沿x 轴方向的分速度之比为 . (2)沿y 轴的分速度之比为 .(3)电子流每经过相等时间的动能增量之比为 . 答案:111 123 1356.如图1—8—12所示,一个电子(质量为m)电荷量为e ,以初速度v 0沿着匀强电场的电场线方向飞入 匀强电场,已知匀强电场的场强大小为E ,不计重力,问:(1)电子在电场中运动的加速度. (2)电子进入电场的最大距离.(3)电子进入电场最大距离的一半时的动能.答案:(1)m eE(2)eE m v 220 (3)420m v7.如图1—8—13所示,A 、B 为两块足够大的平行金属板,两板间距离为d ,接在电压为U 的电源上.在A 板上的中央P 点处放置一个电子放射源,可以向各个方向释放电子.设电子的质量m 、电荷量为e ,射出的初速度为v .求电子打在B 板上区域的面积.图1—8-8图1—8-9图1—8—12答案:eUd m v 222π8. 如图1—8—1 4所示一质量为m ,带电荷量为+q 的小球从距地面高h 处以一定初速度水平抛出,在距抛出点水平距离l 处,有一根管口比小球直径略大的竖直细管,管上口距地面h/2,为使小球能无碰撞地通过管子,可在管子上方的整个区域里加一个场强方向水平向左的匀强电场,求: (1)小球的初速度v 0. (2)电场强度E 的大小. (3)小球落地时的动能E k .答案:(1)hql v 20= (2)E=qhm gl2 (3)mgh E k =巩固提高1.一束带电粒子以相同的速率从同一位置,垂直于电场方向飞入匀强电场中,所有粒子的运动轨迹都是一样的,这说明所有粒子 ( ) A .都具有相同的质量 B .都具有相同的电荷量C .电荷量与质量之比都相同D .都是同位素 答案:C2.有三个质量相等的小球,分别带正电、负电和不带电,以相同的水平速度由P 点射入水平放置的平行金属板间,它们分别落在下板的A 、B 、C 三处,已知两金属板的上板带负电荷,下板接地,如图1—8—15所示,下列判断正确的是 ( )A 、落在A 、B 、C 三处的小球分别是带正电、不带电和带负电的 B 、三小球在该电场中的加速度大小关系是a A <a B <a C C 、三小球从进入电场至落到下板所用的时间相等D 、三小球到达下板时动能的大小关系是E KC <E KB <E KA 答案:AB3.如图1—8—16所示,一个带负电的油滴以初速v 0从P 点倾斜向上进入水平方向的匀强电场中,若油滴达最高点时速度大小仍为v 0,则油滴最高点的位置 ( )A 、P 点的左上方B 、P 点的右上方C 、P 点的正上方D 、上述情况都可能 答案:A图1—8—14图1—8—15图1—8—164. 一个不计重力的带电微粒,进入匀强电场没有发生偏转,则该微粒的 ( ) A. 运动速度必然增大 B .运动速度必然减小C. 运动速度可能不变 D .运动加速度肯定不为零 答案:D5. 氘核(电荷量为+e ,质量为2m)和氚核(电荷量为+e 、质量为3m)经相同电压加速后,垂直偏转电场方向进入同一匀强电场.飞出电场时,运动方向的偏转角的正切值之比为(不计原子核所受的重力) ( )A .1:2B .2:1C .1:1D .1:4 答案:C6. 如图1-8-17所示,从静止出发的电子经加速电场加速后,进入偏转电场.若加速电压为U 1、偏转电压为U 2,要使电子在电场中的偏移距离y 增大为原来的2倍(在保证电子不会打到极板上的前提下),可选用的方法有 ( ) A .使U 1减小为原来的1/2 B .使U 2增大为原来的2倍C .使偏转电场极板长度增大为原来的2倍D .使偏转电场极板的间距减小为原来的1/2答案:ABD7.如图1-8-18所示是某示波管的示意图,如果在水平放置的偏转电极上加一个电压,则电子束将被偏转.每单位电压引起的偏转距离叫示波管的灵敏度,下面这些措施中对提高示波管的灵敏度有用的是 ( ) A .尽可能把偏转极板L 做得长一点 B .尽可能把偏转极板L 做得短一点C .尽可能把偏转极板间的距离d 做得小一点D .将电子枪的加速电压提高答案:AC8.一个初动能为E k 的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为2E k ,如果此电子的初速度增至原来的2倍,则它飞出电容器的动能变为 ( )A .4E kB .8E kC .4.5E kD .4.25E k 答案:D9. 电子所带电荷量最早是由美国科学家密立根通过油滴实验测出的.油滴实验的原理如图1-8-19所示,两块水平放置的平行金属板与电源连接,上、下板分别带正、负电荷.油滴从喷雾器喷出后,由于摩擦而带电,油滴进入上板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动情况.两金属板间的距离为d ,忽略空气对油滴的浮力和阻力.(1)调节两金属板间的电势u ,当u=U 0时,使得某个质量为m 1的油滴恰好做匀速运动.该油滴所带电荷量q 为多少?图1-8-17图1-8-18(2)若油滴进入电场时的速度可以忽略,当两金属板间的电势差u=U 时,观察到某个质量为m 2的油滴进入电场后做匀加速运动,经过时间t 运动到下极板,求此油滴所带电荷量Q.答案:(1)01U gd m q =(2))2(22t dg U d m Q -=1.如图1—8—10所示,—电子具有100 eV 的动能.从A 点垂直于电场线飞 入匀强电场中,当从D 点飞出电场时,速度方向跟电场强度方向成1500角.则 A 、B 两点之间的电势差U AB = V .答案:300V2.静止在太空中的飞行器上有一种装置,它利用电场加速带电粒子形成向外发射的高速电子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器质量为M ,发射的是2价氧离子.发射离子的功率恒为P ,加 速的电压为U ,每个氧离子的质量为m .单位电荷的电荷量为e .不计发射氧离子后飞行器质量的变化,求:(1)射出的氧离子速度.(2)每秒钟射出的氧离子数.(离子速度远大于飞行器的速度,分析时可认为飞行器始终静止不动)答案:(1)2meU (2)eU P23.在匀强电场中,同一条电场线上有A 、B 两点,有两个带电粒子先后由静止从A 点出发并通过B 点.若两粒子的质量之比为2:1,电荷量之比为4:1,忽略它们所受重力,则它们由A 点运动到B 点所用时间之比为( ) A.1:2 B .2:1 C .1:2 D .2:1答案:A4.图1—8—20是静电分选器的原理示意图,将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域中央处开始下落,经分选后的颗粒分别装入A 、B 桶中.混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带负电,所有颗粒所带的电荷量与质量之比均为10-5C /kg .若已知两板间的距离为10 cm ,两板的竖直高度为50 cm .设颗粒进入电场时的速度为零,颗粒间相互作用不计.如果要求两种颗粒离开两极板间的电场区域时有最大的偏转量且又恰好不接触到极板. (1)两极板间所加的电压应多大?(2)若带电平行板的下端距A 、B 桶底的高度H=1.3m ,求颗粒落至桶底时速度的大小.答案:(1)1×104V (2)1.36m/s图1-8-20图1—8—105.(20分)如图,水平放置的平行板电容器,原来两极板不带电,上极板接地,它的极板长L=0.1 m,两极板间距离d=0.4 cm.有一束相同微粒组成的带电粒子流从两板中央平行于极板射入,由于重力作用微粒落到下板上.已知微粒质量为m=2×10-6 kg,电荷量为q=+1×10-8 C,电容器电容为C=10-6 F,g取10 m/s2,求:(1)为使第一个微粒的落点范围在下极板中点到紧靠边缘的B点之内,则微粒入射速度v0应为多少?(2)若带电粒子落到AB板上后电荷全部转移到极板上,则以上述速度射入的带电粒子最多能有多少个落到下极板上?答案:(1)2.5 m/s<v0<5 m/s(2)600个__________________________________________________________________________________________________________________________________________________________________1.带电粒子经加速电场加速后垂直进入两平行金属板间的偏转电场,要使它离开偏转电场时偏转角增大,可采用的方法有()A.增加带电粒子的电荷量B.增加带电粒子的质量C.增大加速电压D.增大偏转电压答案:D2.一束带有等量电荷的不同离子从同一点垂直电场线进入同一匀强偏转电场,飞离电场后打在荧光屏上的同一点,则()A.离子进入电场的初速度相同B.离子进入电场的初动量相同C.离子进入电场的初动能相同D.离子在电场中的运动时间相同答案:C3. 一个示波器在工作的某一段时间内,荧光屏上的光点在x轴的下方,如图所示,由此可知在该段时间内的偏转电压情况是()A.有竖直方向的偏转电压,且上正下负B.有竖直方向的偏转电压,且上负下正C.有水平方向的偏转电压,且左正右负D.有水平方向的偏转电压,且右正左负答案:B4.如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中O点自由释放后,分别抵达B、C两点,若AB=BC,则它们带电荷量之比q1:q2等于()A.1:2 B.2:1C.1: 2 D.2:1答案:B5. (2014年80中高二)如图所示,电子由静止开始从A板向B板运动,当到达B板时速度为v,保持两板电压不变,则()A.当增大两板间距离时,v增大B.当减小两板间距离时,v减小C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间增大答案:CD6. (2014年西城期中)如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子(不计重力)以速度vM经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度vN折回N点,则()A.粒子受静电力的方向一定由M指向NB.粒子在M点的速度一定比在N点的大C.粒子在M点的电势能一定比在N点的大D.电场中M点的电势一定高于N点的电势答案:B7.(2014年东城期中)如图所示,竖直放置的一对平行金属板间的电势差为U1,水平放置的一对平行金属板间的电势差为U2.一电子由静止开始经U1加速后,进入水平放置的金属板间,刚好从下板边缘射出.不计电子重力,下列说法正确的是()A.增大U1,电子一定打在金属板上B.减小U1,电子一定打在金属板上C.减小U2,电子一定能从水平金属板间射出D.增大U2,电子一定能从水平金属板间射出答案:BC。
第1讲基因工程1.基因工程的诞生(Ⅰ)2.基因工程的原理及技术(含PCR技术)(Ⅱ)3。
基因工程的应用(Ⅱ)4.蛋白质工程(Ⅰ)1。
基因的结构与功能(生命观念)2。
基因工程的操作流程图及蛋白质的流程图等(科学思维)3。
基因工程的应用和蛋白质工程(科学探究)4.正确看待转基因生物与环境安全问题(社会责任)考点一基因工程的基本工具及基本程序1.基因工程的概念(1)概念:按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
(2)优点①与杂交育种相比:克服了远缘杂交不亲和的障碍。
②与诱变育种相比:定向改造生物的遗传性状。
2.基因工程的基本工具(1)限制性核酸内切酶(简称限制酶)。
①来源:主要来自原核生物。
②特点:具有专一性,表现在两个方面:识别——双链DNA分子的某种特定核苷酸序列.切割-—特定核苷酸序列中的特定位点。
③作用:断裂特定的两个核苷酸之间的磷酸二酯键。
④作用结果错误!—错误!(2)DNA连接酶(3)载体①种类:质粒、λ噬菌体的衍生物、动植物病毒等。
②质粒的特点错误!③运载体的作用:携带外源DNA片段进入受体细胞。
3.基因工程的基本操作程序(1)目的基因的获取①从基因文库中获取②人工合成错误!③利用PCR技术扩增(2)基因表达载体的构建—-基因工程的核心①目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。
②基因表达载体的组成(3)将目的基因导入受体细胞①转化含义:目的基因进入受体细胞内,并且在受体细胞内遗传和表达的过程.②转化方法生物类型植物动物微生物受体细胞体细胞受精卵大肠杆菌或酵母菌等(4)目的基因的检测与鉴定4。
PCR技术(1)原理:DNA复制。
(2)前提:已知目的基因的一段核苷酸序列,以便根据这一序列合成引物。
(3)条件:DNA模板、引物、热稳定DNA聚合酶和4种脱氧核苷酸.(4)扩增过程变性温度上升到90~95 ℃左右,双链DNA解链为单链复性温度下降到55~60 ℃左右,两种引物通过碱基互补配对与两条单链DNA结合延伸温度上升到70~75 ℃左右,Taq 酶从引物起始合成互补链,可使新链由5′端向3′端延伸(5)结果:上述三步反应完成后,一个DNA分子就变成了两个DNA分子,随着重复次数的增多,DNA分子就以2n的形式增加.PCR的反应过程都是在PCR扩增仪中完成的。
高中数学选修3-1基础精品讲义
一、函数的基本概念
- 函数的定义及表示方法
- 定义域、值域、对应关系和逆函数
- 函数的相等和不等关系
二、一次函数
- 一次函数的定义、性质和图像
- 一次函数的斜率和截距
- 求一次函数的解析式和图像
三、二次函数
- 二次函数的定义、性质和图像
- 二次函数的最值和对称轴
- 求二次函数的解析式和图像
四、指数函数
- 指数函数的定义、性质和图像
- 指数函数与对数函数的关系
- 指数函数的增长速度
五、对数函数
- 对数函数的定义、性质和图像
- 对数函数与指数函数的关系
- 对数函数的应用场景
六、三角函数
- 三角函数的定义、性质和图像
- 三角函数的周期性和奇偶性
- 三角函数的应用场景
七、数列与数学归纳法
- 数列的定义、性质和常见类型
- 数学归纳法的基本原理和应用
- 数列的求和公式和递推公式
八、排列与组合
- 排列和组合的基本概念和表示方法- 排列和组合的性质和运算规则
- 排列和组合的应用
以上是《高中数学选修3-1基础精品讲义》的主要内容,希望对同学们的学习有所帮助。
高三物理选修3—1《恒定电流》考点复习资料第1讲 电路的基本定律 串、并联电路考点一 基本概念与定律1.电流:电荷的形成电流。
tqI =,适用于任何电荷的定向移动形成的电流。
在电解液导电时,是正、负离子向相反方向定向移动形成电流,在用公式I =q/t 计算电流强度时q 为正、负电荷电量的代数和 。
电流的微观表达式:I=nqvS 2.欧姆定律:导体中的电流I 跟成正比,跟成反比。
RUI =(适用于金属导体和电解液,不适用于气体导电) 3. 电阻定律:在温度不变时,导体的电阻跟它的成正比,跟它的成反比。
表达式:R=ρSL考点二 电功和电热的区别1、电功:在导体两端加上,导体就建立了,导体中的自由电荷在的作用下发生定向移动而形成电流,此过程中电场力对自由电荷做功,我们说电流做了功,简称电功。
表达式:。
2、电功率:电流所做的功跟完成这些功的比值。
表达式:。
3、焦耳定律:电流通过导体产生的热量,跟、和成正比。
表达式:纯电阻用电器:电流通过用电器以发热为目的,例如电炉、电熨斗、电饭锅、电烙铁、白炽灯泡等。
非纯电阻用电器:电流通过用电器是以转化为热能以外的形式的能为目的,发热不是目的,而是不可避免的热能损失,例如电动机、电解槽、给蓄电池充电、日光灯等。
☞特别提醒:在纯电阻电路中,电能全部转化为热能,电功等于电热,即W=UIt=I2Rt=R U 2t 是通用的,没有区别,同理P=UI=I2R=R U 2也无区别,在非纯电阻电路中,电路消耗的电能,即W=UIt 分为两部分,一大部分转化为其它形式的能;另一小部分不 可避免地转化为电热Q=I2Rt ,这里W=UIt 不再等于Q=I2Rt ,应该是W=E 其它+Q ,电 功就只能用W=UIt 计算,电热就只能用Q=I2Rt 计算。
考点三 串、并联电路1 、串联电路:用导线将、、逐个依次连接起来的电路。
串联电路的特征如下:①I=I 1=I 2=I 3=… ②U=U 1+U 2+U 3+… ③R=R 1+R 2+R 3+… ④11R U =22R U =33R U =…=R U =I⑤11R P =22R P =33R P =…=R P=I 22 、把几个导体连接起来,就构成了并联电路。
.第一讲原子结构与性质[2021高考导航]考纲要求真题统计命题趋势1.了解原子核外电子的排布原理及能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子、价电子的排布。
了解原子核外电子的运动状态。
2.了解元素电离能的含义,并能用以说明元素的某些性质。
3.了解原子核外电子在肯定条件下会发生跃迁,了解其简洁应用。
4.了解电负性的概念,知道元素的性质与电负性的关系。
2021,卷Ⅰ37T(1);2021,卷Ⅱ37T(1);2022,卷Ⅰ37T(2);2022,卷Ⅱ37T(1);2021,卷Ⅰ37T(1);2021,卷Ⅱ37T(1)(2)高考对本部分的考查主要有三个方面:前四周期元素核外电子排布式的书写与推断;运用电离能、电负性解释推断某些元素的性质;原子结构与性质的应用。
考查题型为非选择题,分数约为3~6分。
估计2021年高考将会稳中有变,可能与元素周期律、元素周期表的学问或元素及其化合物的学问相结合进行考查。
留意本部分考查内容的规律性强,因此命题空间宽敞,考查方式也会向多方位、多层次进展。
考点一原子核外电子排布原理[同学用书P261] 一、能层与能级能层(n)能级最多容纳电子数序数符号各能级各能层一K 1s 2 2二L 2s 28 2p 6三M 3s 218 3p 63d 10四N 4s 232 4p 64d 104f 14……………n………2n2二、原子轨道1.轨道外形(1)s电子的原子轨道呈球形。
(2)p电子的原子轨道呈哑铃形。
2.各能级上的原子轨道数目能级n s n p n d n f …原子轨道数 1 3 5 7 …3.能量关系(1)相同能层上原子轨道能量的凹凸:n s<n p<n d<n f…。
(2)外形相同的原子轨道能量的凹凸:1s<2s<3s<4s…。
(3)同一能层内外形相同而伸展方向不同的原子轨道的能量相等,如n p x、n p y、n p z轨道的能量相等。
第1讲 电 流[目标定位] 1.知道持续电流产生的条件,并能进行微观解释.2.了解电流速度(传导速度)、自由电子热运动的平均速度和电子漂移速度(即电子定向移动速度).3.理解电流的定义,知道电流的单位、方向的确定,会用公式q =It 分析相关问题.一、电流的形成1.形成电流的条件:(1)自由电荷;(2)电压.2.形成持续电流的条件:导体两端有持续电压.二、电流的速度1.电流的速度:等于电场的传播速度,它等于3.0×108m/s.2.自由电子的运动速率:常温下,金属内的自由电子以105_m/s 的平均速率在无规则的运动.3.电子定向移动的速率:数量级大约是10-5m/s ,被形象的称为“电子漂移”.想一想 导线内自由电子的定向移动速率等于电流的传导速率吗?为什么?答案 不等于,事实上电子定向移动的速率是很慢的,而且跟导体材料有关,只是导体中自由电子的定向移动是产生电流的原因.电流的速率可以认为等于光速.三、电流的方向1.电流的方向:正电荷的定向移动的方向规定为电流的方向;2.在电源外部的电路中电流的方向:从电源正极流向负极;在电源内部的电路中电流的方向:从电源负极流向正极.想一想 金属导体中电流的方向与自由电荷的移动方向一致吗?为什么?答案 不一致,电流的方向是指正电荷定向移动的方向,而金属导体中自由电荷是电子,电子的定向移动方向与电流方向相反.四、电流的大小和单位1.定义:在单位时间内通过导体任一横截面的电荷量称为电流.2.定义式:I =q t.3.单位:国际单位:安培,符号A ;常用单位:mA 、μA 换算关系为1A =103mA =106μA.4.直流电:方向不随时间改变的电流叫做直流电.恒定电流:方向和强弱都不随时间改变的电流叫做恒定电流.想一想电流是有大小和方向的物理量,电流是矢量吗?答案不是.电流的计算不满足平行四边形定则.一、电流形成条件及三种速率的理解1.电流的形成条件(1)回路中存在自由电荷①金属导体的自由电荷是电子.②电解液中的自由电荷是正、负离子.(2)导体两端有电压:电场对电荷有力的作用,例如两个导体间存在电势差,当用一导线连接时,导线中的自由电子会在电场力的作用下运动,形成电流.(3)导体两端有持续电压是导体中形成持续电流的条件.导体两端有了持续电压,导体中的自由电子就会在电场力的持续作用下形成持续不断的电流.2.电路中三种速率的比较(1)电子热运动的速率:构成导体的电子在不停地做无规则热运动,由于热运动向各个方向运动的机会相等,故不能形成电流,常温下电子热运动的速率数量级为105m/s.(2)电子定向移动的速率:电子定向移动的速率很小,数量级为10-5m/s.自由电子在很大的无规则热运动的速率上又叠加上了一个很小的定向移动的速率.(3)电流传导速率:等于光速,闭合开关的瞬间,电路中各处以真空中光速c建立恒定电场,电路中各处的自由电子几乎同时开始定向移动而形成了电流.例1在导体中有电流通过时,下列说法正确的是( )①电子定向移动速率很小②电子定向移动速率即是电场传导速率③电子定向移动速率是电子热运动速率④在金属导体中,自由电子只不过在速率很大的无规则热运动上附加了一个速率很小的定向移动A.①③B.②C.③D.①④答案 D解析电子定向移动的速率很小,数量级为10-5m/s,自由电子只不过在速率很大的热运动上附加了很小的定向移动的速率.故①、④正确.电场的传导速率为光速c =3×108 m/s ,无规则热运动速率的数量级为105m/s.故②、③错误,故选D.借题发挥 电荷定向移动的速率很小,当电路闭合后,并不是电荷瞬间从电源运动到用电器,而是瞬间在系统中形成电场,使导体中所有自由电荷同时定向移动形成电流.二、电流的表达式1.电流虽然有方向但是标量.2.I =q t是电流的定义式,电流与电量无正比关系,电流与时间也无反比关系. 3.在应用I =q t计算时注意:要分清形成电流的自由电荷的种类.对金属来讲,是自由电子的定向移动,电量q 为通过横截面的自由电子的电量.对电解液来讲,是正、负离子同时向相反方向定向移动,电量q 为正、负离子电荷量绝对值之和.例2 在某种带有一价离子的水溶液中,正、负离子在定向移动,方向如图1所示.如果测得2s 内分别有1.0×1018个正离子和1.0×1018个负离子通过溶液内部的横截面M ,则溶液中电流的方向如何?电流多大?图1答案 由A 指向B 0.16A解析 水溶液中导电的是自由移动的正、负离子,它们在电场的作用下向相反方向定向移动.电学中规定,电流的方向为正电荷定向移动的方向,所以溶液中电流的方向与正离子定向移动的方向相同,即由A 指向B .每个离子的电荷量是e =1.60×10-19C .该水溶液导电时负离子由B 向A 运动,负离子的定向移动可以等效看做是正离子反方向的定向移动.所以,一定时间内通过横截面M 的电荷量应该是正、负两种离子电荷量的绝对值之和.I =q t =|q 1|+|q 2|t=1.0×1018×1.6×10-19+1.0×1018×1.6×10-192A=0.16A.借题发挥 电流的定义式I=q t 中,q 是时间t 内通过某一截面的电荷量,而不是单位截面积内的电荷量.三、电流强度的微观表达式1.建立模型:如图2所示,导体长为l ,两端加一定的电压,导体中的自由电荷沿导体定向移动的速率为v ,设导体的横截面积为S ,导体每单位体积内的自由电荷数为n ,每个自由电荷的电荷量为q .图22.理论推导:AD 导体中的自由电荷总数:N =nlS .总电荷量Q =Nq =nlSq .所有这些电荷都通过横截面D 所需要的时间:t =lv .根据公式q =It 可得:导体AD 中的电流:I =Q t =nlSq lv=nqSv .3.结论:从微观上看,电流决定于导体中单位体积内的自由电荷数、每个自由电荷的电荷量、定向移动速率的大小,还与导体的横截面积有关.例3 一段粗细均匀的金属导体的横截面积为S ,导体单位体积内的自由电子数为n ,金属导体内的自由电子的电荷量为e ,自由电子做无规则热运动的速率为v 0,导体中通过的电流为I ,以下说法中正确的有( )A .自由电子定向移动的速率为v 0B .自由电子定向移动的速率为v =I neSC .自由电子定向移动的速率为真空中的光速cD .自由电子定向移动的速率为v =I ne答案 B 解析 I =nevS ,所以v =I neSv 为自由电子定向移动的速率.电流形成条件及三种速率的理解1.关于电流,以下说法正确的是( )A .通过截面的电荷量多少就是电流的大小B .电流的方向就是电荷定向移动的方向C .在导体中,只要自由电荷在运动,就一定会形成电流D .导体两端没有电压就不能形成电流答案 D解析 根据电流的概念,电流是单位时间内通过截面的电荷量,知A 项错.规定正电荷定向移动的方向为电流方向,知B 项错.自由电荷持续的定向移动才会形成电流,知C 错、D 对.2.在导体中有电流通过时,下列说法正确的是( )A .电子定向移动速率很小B .电子定向移动速率即是电场传导速率C .电子定向移动速率是电子热运动速率D .在金属导体中,自由电子只不过在速率很大的无规则热运动上附加了一个速率很小的定向移动答案 AD解析 电子定向移动的速率很小,数量级为10-5m/s ,自由电子只不过在速率很大的热运动上附加了速率很小的定向移动.故A 、D 正确.电场的传导速率为光速c =3×108 m/s ,无规则热运动速率的数量级为105m/s.故B 、C 错.公式I =q t的理解与应用 3.电路中有一电阻,通过电阻的电流为5A ,当通电5分钟时,通过电阻横截面的电子数为( )A .1500个B .9.375×1019个C .9.375×1021个D .9.375×1020个 答案 C解析 q =It ,n =q e =It e =9.375×1021个.电流强度的微观表达4.如图3所示,一根横截面积为S 的均匀长直橡胶棒上带有均匀的负电荷,每单位长度上电荷量为q ,当此棒沿轴线方向做速度为v 的匀速直线运动时,由于棒运动而形成的等效电流大小为( )图3A .qv B.q vC .qvSD.qvS答案 A 解析 t s 内棒通过的长度l =vt ,总电荷量Q =ql =qvt .由I =Q t =qvt t=qv ,故选项A 正确.题组一 对电流的理解1.关于电流,下列叙述正确的是( )A .只要将导体置于电场中,导体内就有持续电流B .电源的作用是可以使电路中有持续电流C .导体内没有电流时,就说明导体内部的电荷没有移动D .恒定电流是由恒定电场产生的答案 BD2.关于电流的方向,下列说法中正确的是( )A .电源供电的外部电路中,电流的方向是从高电势一端流向低电势一端B .电源内部,电流的方向是从高电势一端流向低电势一端C .电子运动形成的等效电流方向与电子运动方向相同D .电子运动形成的等效电流方向与电子运动方向相反答案 AD解析 在电源的外部电路中,电流从正极流向负极,在电源内部,电流从负极流向正极,电源正极电势高于负极电势,所以A 正确,B 错误;电子带负电,电子运动形成的电流方向与电子运动的方向相反,C 错误,D 正确.3.关于电流的方向,下列描述正确的是( )A .规定正电荷定向移动的方向为电流的方向B .规定自由电荷定向移动的方向为电流的方向C .在金属导体中,自由电子定向移动的方向为电流的反方向D .在电解液中,由于正、负离子的电荷量相等,定向移动的方向相反,故无电流答案 AC解析 规定正电荷定向移动的方向为电流的方向,故A 对,B 错;金属导体中定向移动的是自由电子,电子带负电,故电子运动的方向与电流的方向相反,C 正确;在电解液中,正、负离子的电荷量相等,定向移动的方向相反,产生的电流的方向相同,故D 错误.题组二 公式I =q t的理解与应用 4.关于电流的说法中正确的是( )A .根据I =q t,可知I 与q 成正比 B .如果在任何相等的时间内通过导体横截面的电荷量相等,则导体中的电流是恒定电流C .电流有方向,电流是矢量D .电流的单位“安培”是国际单位制中的基本单位答案 D解析 依据电流的定义式可知,电流与q 、t 皆无关,显然选项A 错误.虽然电流是标量,但是却有方向,因此在任何相等的时间内通过导体横截面的电荷量虽然相等,但如果方向变化,电流也不是恒定电流,所以,选项B 错误.电流是标量,故选项C 错误.5.如图1所示,电解池内有一价的电解液,t s 内通过溶液内截面S 的正离子数是n 1,负离子数是n 2,设元电荷为e ,则以下解释中正确的是( )图1A .正离子定向移动形成电流方向从A →B ,负离子定向移动形成电流方向B →AB .溶液内正负离子向相反方向移动,电流抵消C .溶液内电流方向从A 到B ,电流I =n 1e tD .溶液中电流方向从A 到B ,电流I =n 1+n 2e t答案 D解析 正电荷的定向移动方向就是电流方向,负电荷定向移动的反方向也是电流方向,有正负电荷反向经过同一截面时,I =q t 公式中q 应该是正、负电荷量绝对值之和.故I =n 1e +n 2e t,电流方向由A 指向B ,故选项D 正确.6.如图2所示,将左边的铜导线和右边的铝导线连接起来,已知截面积S 铝=2S 铜.在铜导线上取一截面A ,在铝导线上取一截面B ,若在1s 内垂直地通过它们的电子数相等.那么,通过这两截面的电流的大小关系是( )图2A .I A =I BB .I A =2I BC .I B =2I AD .不能确定 答案 A解析 这个题目中有很多干扰项,例如两个截面的面积不相等,导线的组成材料不同等等.但关键是通过两截面的电子数在单位时间内相等,根据I =q t可知电流强度相等.题组三 电流强度的微观表达式7.导体中电流I 的表达式I =nqSv ,其中S 为导体的横截面积,n 为导体每单位体积内的自由电荷数,q 为每个自由电荷所带的电荷量,v 是( )A .导体运动的速率B .导体传导的速率C .电子热运动的速率D .自由电荷定向移动的速率答案 D解析 从微观上看,电流决定于导体中单位体积内的自由电荷数、每个自由电荷的电荷量、定向移动速率,还与导体的横截面积有关,公式I =nqSv 中的v 就是自由电荷定向移动的速率.故选D.8.金属导体内电流增强,是因为( )A .导体内单位体积的自由电子数增多B .导体内自由电子定向移动的速率增大C .导体内电场的传播速率增大D .导体内自由电子的热运动速率增大答案 B解析 对于确定的金属导体,单位体积内的自由电子数是一定的,而且导体内电场的传播速率也是一定的,所以A 、C 错.导体内电流增强是由于自由电子定向移动的速率增大,使得单位时间内穿过导体横截面的电荷量增大,B 正确.导体内自由电子的热运动速率增大会阻碍电流增强,D 错误.9.有甲、乙两导体,甲的横截面积是乙的2倍,而单位时间内通过乙导体横截面的电荷量是甲的2倍,以下说法正确的是( )A .甲、乙两导体的电流相同B .乙导体的电流是甲导体的2倍C .乙导体中自由电荷定向移动的速率是甲导体的2倍D .甲、乙两导体中自由电荷定向移动的速率大小相等答案 B解析 由于单位时间内通过乙导体横截面的电荷量是甲的2倍,因此通过乙导体的电流是甲的2倍,故A 错,B 对.由于I =nqSv ,所以v =I nqS,由于不知道甲、乙两导体的性质(n ·q 不知道),所以无法判断v ,故C 、D 错.题组四 综合应用10.已知电子的电荷量为e ,质量为m .氢原子的电子在原子核的静电力吸引下做半径为r 的匀速圆周运动,则电子运动形成的等效电流大小为多少? 答案 e 22πr 2mkmr 解析 根据电流大小的定义式去求解,截取电子运动轨道的任一截面,在电子运动一周的时间T 内,通过这个截面的电荷量Q =e ,则有:I =Q T =e T ,再由库仑力提供向心力有:k e 2r 2=m 4π2T 2r .得T =2πr e mr k .解得I =e 22πr 2mkmr .。