2019-2020年八年级数学下学期期末复习2 新人教版
- 格式:doc
- 大小:382.00 KB
- 文档页数:8
2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
2019-2020 学年八年级数学下学期期末考试试题新人教版一、选择题(本大题共8 小题,每小题只有一个正确选项,每小题3 分,满分 24 分)1.下列各式: 1 , 3xy , 3a 2 b 3c , x , 9x10 , x 2中,分数的个数是( )a4 7y xA . 1 个B . 2 个C . 3 个D .4 个2.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:x 甲x 乙80, s2240s 2 180,则成绩较 为稳定的班级是()甲 , 乙A. 甲班B. 乙班C.两班成绩一样稳定D. 无法确定3 . 下 列 各 数 组 中 , 不 能 作 为 直 角 三 角 形 三 边 长 的是()A. 9,12,15B. 7,24,25C. 6,8,10D.3,5,74. 下列函数中, y 是 x 的反比例函数的是()1 1 1 1A . yB . y2C . yD . y 12xxx 1x5.若把分式 2xy的 x 、 y 同时扩大 3 倍,则分式值()x yA .扩大 3 倍B .缩小 3 倍C .不变D .扩大 9 倍6.对角线互相垂直平分的四边形是( )A .平行四边形B .矩形C .菱形D .梯形7.如图, E 是平行四边形内任一点,若 S □ABCD = 8,则图中阴影部分的面积是 ()A .3B . 4C . 5D . 68.在同一直角坐标系中, 函数 ykxk 与 yk( k 0) (k ≠ 0) 的图像大致是 ()x二、填空题(本大题共6 小题,每小题 3 分,满分 18 分)9.数据“ 1, 2, 1,3, 1”的众数是 _ ____.10.当 x时,分式x 有意义;11x x 1 x =2y =6 ,则 y 与 x的反比例函数,当 时, 的 函数关系式为 ;.已知 y 是 12. 0.000002013 用科学计数法表示为:;13.如图,有两棵树,一棵高8 米,另一棵高 2 米,两树相距 8 米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行 _______米.14.等腰三角形底边长为 5cm ,一腰上的中线把它的周长分为两个部分的差为 3cm ,则它的腰长是。
人教版2019-2020学年八年级下学期期末考试数学试卷姓名:成绩:C . m v 54.( 3分)等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( )A . 12B . 15C . 12 或 15D . 185.( 3分)如果把分式 亠中的x 和y 都扩大5倍,那么分式的值()x+yA .扩大5倍B .缩小5倍C .扩大25倍D .不变2 26. ( 3 分)若 x +mxy+y 是一 一个完全平方式,则 m=( )A . 2B . 1C . ±1D . ±7. ( 3分)如图所示,一次函数 y=kx+b (k 、b 为常数,且k 和)与正比例函数 y=ax (a 为 常数,且a 用)相交于点P ,则不等式kx+b >ax 的解集是()& ( 3分)矩形具有而平行四边形不一定具有的性质是( )A .对角相等B .对边相等C .对角线相等9. ( 3分)下列命题错误的是( )A . 一组对边平行,一组对角相等的四边形是平行四边形B .对角线互相垂直且相等的四边形是正方形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是菱形2. ( 3分)下列分解因式正确的是()2A . 3x - 6x=x ( 3x - 6) C . 4x - y = (4x+y ) (4x - y )B. 2 2-a +b = ( b+a ) (b - a ) D .2 c 2 / 、 2 4x - 2xy+y = (2x - y )3. ( 3分)如果不等式组 \+l<6H >ITI有解,那么m 的取值范围是( A . m >5D .对角线互相平分一、选择题(每小题 3分,共30分)1.( 3分)下面四个汽车标志图案中是中心对称图形的是()B . x v 1第1页共20页。
2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。
2019-2020 学年八年级数学下学期期末考试试题 2新人教版班 级姓名成 绩一、选择题(每小题 3 分,共 30 分)1.多项式 x 2 kx 9 能用公式法分解因式,则 k 的值为()A . 3B . 3C. 6D . 62.若将a b( a , b 均为正数)中的字母a ,b 的值分别扩大为原来的 3 倍,则分式的值ab( )A .扩大为原来的 3 倍 B.缩小为原来的C . 不变D.缩小为原来的191 33. 人数相等的八( 1)和八( 2)两个班学生进行了一次 数学测试,班级的平均分和方差如下: x 1 86 , x 286 , s 12 159, s 22 186,则成绩较为稳定的班级是()A. 八( 1)班B.八( 2)班 C. 两个 班成绩一样稳定D.无法确定4. 化简 (11 )a 2a 的结果是( )a 12a 1A.a + 1B.1C.a1– 1a 1D.aa5. 若 x 为任意有理数,下列分式中一定有意义的是 ()A .x 1B .x 1C .x 1D .x 1x 2x 2 1x 2 1x16. 如图 1,DE ∥BC ,则下列不成立的是( )A.ADAEB.AD DEBD BCBDECAC ECD.AB ACC.DBADAEAB7、如图所示, D 、 E 分别是 ABC 的边 AB 、 AC上的点, DE ∥ BC ,并且 AD ∶BD=2: 1,那么 S ADE 和 S ABC 的比为( )A .2B.3C.4D.43 4598、某烟花爆竹厂从20 万件同 品中随机抽取了100 件 行 , 其中有5 件不合格那么你估 厂 20 万件 品中不合格品 ( A . 1 万件B .19 万件C.15 万件9. 下列从左到右的 形是因式分解的是( )A. ab-a-b+1 =(a-1)(b-1)B.(a-b)(m-n)D.20 万件)=(b-a)(n-m)C. ( x+1)(x-1)=x2-1D.m2-2m-3=m(m-2 -3)m10.下列各式从左到右的 形不正确的是()A.22 . B.y y3y3 y6x 6xC. 3x3x D.8x 8x4 y4 y3y3y二 、填空 (每小4 分,共 20 分)11、函数 y3 的自 量的取 范 是.x 212、分解因式: 2 x 2 4x 2.13、当 x,分式x 210.x -114 、 如, 点 C 是 段 AB 的 黄 金 分 割 点 ( ACBC ) , 写 出 一 个 正 确 的。
2019—2020学年度下学期期末考试八年级数学试题题号 一 二三 总分2122 23 24 25 26 27 28 29 得分卷首语:亲爱的同学们,你已顺利的完成了本学期学习任务,现在是检测你学习效果的时候,希望你带着轻松.带着自信来解答下面的题目,同时尽情展示自己的才能。
答题时,请记住一.精心选一选(每小题3分,共30分,每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中) 1.若正比例函数kx y =的图象经过点(1,2),则k 的值为( ) A.21-B. -2C.21D.22.如图,□ABCD 中,∠C=100°,BE 平分∠ABC ,则∠AEB 的度数为( )A.60°B.50°C.40°D.30° 3. 化简2)21(-的结果是( )A.21-B.12-C.1D.223-4. 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/时,特快车的速度为150千米/时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( )5. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A .47B .48.5C .49D .49.5 6.若菱形的周长为8,高为1,则菱形两邻角的度数比为( ) A.3:1 B.4:1 C.5:1 D.6:1 7. 如图,一棵高为16m 的大树被台风刮断.若树在地面6m 处折断,则树顶端落在离树底部( )处.A.5mB.7mC.7.5mD.8m8.尺码/厘米 23 23.5 24 24.5 25 25.5 26得分 评卷人销售量/双 5 10 22 39 56 43 25()A. 平均数B. 众数C. 中位数D. 方差9.如图,在△ABC中,BD、CE是△BC的中线,BD与CE相交于点 0,点F、G分别是BO、CO的中点,连接 AO、EF、FG、GD、DE.若AO=6cm,BC= 8cm,则四边形DEFG的周长是()A.14cm B.18cm C.24cm D.28cm10.函数3+=xy中,自变量x的取值范围是()x.x≥-3 C.x≠-3 D.x≤-3二.细心填一填(每题3分,共30分)11.计算5)4580(÷-的结果是 .12.若一次函数1+=kxy(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是 .13.若一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是 .14.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值.15.若函数xy2-=的图象经过A(1,1y)、B(-1,2y)、C(-2,3y)三点,则1y,2y,3y的大小关系是 .16.如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是.17.如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD =4,BC=12,CD=13,则四边形ABCD的面积为.(16题图)(17题图)(19题图)(20题图)18.将正比例函数xy6-=的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是 .19.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.20.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 .三.解答下列各题(本大题共9题,满分60分)得分评卷人得分评卷人21.(本题满分6分)a ,b 分别是56-的整数部分和小数部分.(1)分别写出a ,b 的值; (2)求23b a -的值.22.(本题满分6分)我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运动会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:通过计算说明应选择哪个运动员参加省运动会比赛?23.(本题满分6分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明222bac+=.24.(本题满分6分)已知32+=x,求代数式3)32()347(2+-+-xx的值.25.(本题满分7分)在Rt△ABC中,∠C=90°,AC=6,BC=8,D,E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是点B′.得分评卷人得分评卷人(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′落在直角边AC的中点上,求CE的长.26.(本题满分7分)如图,在□ABCD中,E、F分别为AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊的四边形?说明你的理由.27.(本题满分7分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发x(分钟)后,小明离小刚家的距离为y(米),y与x的函数关系如图所示.(1)小明的速度为米/分,a,小明家离科技馆的距离为米;得分评卷人得分评卷人(2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为1y(米),请求出1y与x之间的函数关系式,并在图中画出1y (米)与x (分钟)之间的函数关系图象;(3)小刚出发几分钟后两人在途中相遇?28.(本题满分7分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支 (不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x (支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;得分评卷人(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.得分评卷人29.(本题满分8分)如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P. (1)求证:CE=EP;(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.八年级数学期末测试题答案二.填空题11. 1 12.k >0 13. 3,3,0.4 14. 1 15. 1y <2y <3y 16.48 17.36 18. 126+-=x y 19.20 20.3或1.5 三.解答题21.解:(1)a =3,53356-=--=b ;…………………………3分(2)22)53(333--⨯=-b a …………………………4分)5569(9+--=…………………………5分556-=……………………………………6分22.解:甲的平均成绩:95998910=++++=甲x ,……………1分乙的平均成绩:951089810=++++=乙x ,……………2分甲成绩的方差:[]4.09-99-99-89-99-1051222222=++++=)()()()()(甲s ;…3分乙成绩的方差:[]8.09-109-89-99-89-1051222222=++++=)()()()()(乙s ;…4分∵2甲s <2乙s ,∴甲的成绩稳定,…………………………5分∴应选择甲运动员参加省运动会比赛。
2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义. ∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟, 由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大 ∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==。
八年级第二学期数学期末模拟试卷(1)一、选择题(本大题共10小题,每小题2分,共20分.)1. 下列所给图形是中心对称图形但不是轴对称图形的是 ( )A .B .C .D .2. 下列式子中,属于最简二次根式的是( )A .7B .9C .20D .133. 一组数据:a -1,a ,a ,a +1,若添加一个数据a ,下列说法错误的是( )A .平均数不变B .中位数不变C .众数不变D .方差不变4. 若关于x 的一元二次方程(k -1) x 2+2x -2=0有不相等实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠15. 若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A .正方形B .对角线相等的四边形C .菱形D .对角线相互垂直的四边形6. 如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是 ( )A .2-B .22-C .12-D .12+7. 四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,则DH 长为( )A .125cmB .245cmC .185cmD .165cm8. 一次函数y ax b =+的图象如图所示,则化简2()||b a a b --+ 的结果是 ( )A .2aB .2a -C .2bD .2b -9. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y (m)与乙出发的时间t (s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③ 10.已知平面直角坐标系内,点D 与点(0,1)A -,(0,5)B ,(1)C a a -+,是平行四边形的四个顶点,则CD 长的最小值为( )A .6B .2C .3D .22二、填空题(本大题共8小题,每小题2分,共16分.)11.函数21x y x +=的自变量x 的取值范围是 .12.已知点()11y -,、()22y ,在函数y =-2x +1的图象上,则y 1与y 2的大小关系是 .13.若103-=a ,则代数式262--a a 的值为 . 14.如图,已知函数12y x b =-+和y kx =的图象交于点P (﹣4,﹣2),则根据图象可得关于x 的不等式12x b kx -+>的解集为 .15.如图,平行四边形ABCD 的周长是26cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3cm ,则AE 的长度为 cm .16.如图,将△ABC 绕点B 顺时针旋转到△DBE 的位置.连接AD ,若∠ADB =60°,则∠1= °.17.如图,直线AB 的解析式为25y x =+,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段 EF 的最小值为 .18.如图,在平面直角坐标系xOy 中,平行四边形OABC 的顶点A ,B 的坐标分别为(6,0), (7,3),将平行四边形OABC 绕点O 逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC 的延长线上时,线段OA ′ 交BC 于点E ,则线段C′E 的长度为 . 三、解答题(本大题共8小题,共64分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤) 19. (本小题满分8分)(1)计算:1(312248)123-+÷;(2)解方程:x 2-3x +1=0﹒ 20.(本小题满分7分)已知关于x 的方程222(1)0x k x k --+=有两个实数根x 1、x 2.(1)求k 得取值范围; (2)若∣x 1+x 2∣=x 1x 2-1,求k 的值.第9题图 OH A B C D 第6题图 第7题图 第8题图 第16题图 第15题图 第14题图 O B A E C ′ C x y B ′ A ′ 第17题图 第18题图图2图1如图,△ABC 中,∠ACB =90°,点D ,点E 分别是AC ,AB 的中点,点F 在BC 的延长线上,且∠CDF =∠A .求证:四边形DFCE 是平行四边形.22.(本小题满分7分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分.前5名选手的笔试成绩如下:选手序号 1 2 3 4 5 笔试成绩/分8584808492(1)这5名选手笔试成绩的平均数是 分,中位数是 分,众数是 分;(2)求这5名选手笔试成绩的方差;(3)根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).若1号选手的面试成绩为90分,最后的综合成绩为87分,求笔试成绩和面试成绩各占的百分比.24.(本小题满分7分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了迎接“双11”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件. (1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?如图,直线12(0)2y kx k k =-≠与x 轴交于A ,与y 轴正半轴交于B ,4AOB S ∆= .点 M 在第二象限内直线AB 上. (1)求直线AB 的解析式;(2)若OB 是△AOM 的中线,求直线OM 的解析式;(3)在(2)的条件下,N 是射线MO 上一点,AO 平分∠MAN ,求N 点的坐标.26.(本小题满分10分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,动点F 在边BC 上,且不与 点B 、C 重合,将△EBF 沿EF 折叠,得到△EB′ F . (1)当∠BEF =45°时,求证:CF =AE ; (2)当B′ D = B′C 时,求B′ C 的长; (3)直接写出△CB ′F 周长的最小值.E F C D B A B′ D C B A 备用图 G。
2019-2020学年八年级数学第二学期期末考试试卷 新人教版(I)考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的左上角填写学校、班级、姓名和考试编号. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.二次根式1-x 中,字母x 的取值范围是( )A .x >1B .x ≥1C .x <1D .1≠x2.下列图形:①等腰梯形②平行四边形③正三角形④菱形,既是轴对称图形,又是中心对称图形的是( ) A .①B .②C .③D .④3.在下列方程中,是一元二次方程的是( )A .xx x 232=+ B .2)1(2=+-x x C .x x 322+= D .0432=+-x x4.下列运算中,正确的是( )A .5)5(2-=-B .3223=-C .5)32(2=+D .3)3(2=- 5.若一个多边形的内角和是︒1260,则这个多边形的边数为( ) A .10 B .9 C .8 D .7 6.在下列命题中,是真命题的是( ) A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形 C .两条对角线互相平分的四边形是平行四边形 D .两条对角线互相垂直且相等的四边形是正方形7.如图,将□ABCD 折叠,使点D 、C 分别落在点F 、E 处(点F 、E都在AB 所在的直线上),折痕为MN ,若∠AMF =50°,则∠A 等于( ) A .40° B .50° C .60° D .65° 8.下列命题:①若0)1(=-x x ,则0=x ;②关于x 的方程)0(02<=++c c bx x 必定有实数解;③若菱形的两条对角线长分别为a 、b ,则菱形的面积为ab 21;④一次统计八年级若干名学生(第7题)(第8题④)每分钟跳绳次数的频数分布直方图如图,则由图可知这些学生平均每分钟跳绳约110个.其中假命题的个数是()A.3 B. 2 C.1 D.09.在正方形ABCD的边AB,BC,CD,DA上分别任意取点E,F,G,H,依次连结得到的四边形EFGH,其中是正方形的个数是()A.1 B.2 C.4 D.无数个10.如图,在菱形纸片ABCD中,两对角线AC,BD长分别为16,12,折叠纸片使DO边落在边DA上,则折痕DP的长为()A.35 B.5 C.33 D. 32二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11. 一元二次方程x2﹣2x=0的解是▲ .12.将50个数据分成5组,列出频数分布表,其中第一组的频数是6,第二组与第五组的频数和为20,第三组的频率是0.2,则第四组的频数为▲ .13.把“在同一个三角形中,等角对等边”写成“如果---那么---”的形式是▲ .14. 如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1(即正方形的四个顶点都在△OAB的边上);在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……,依次作下去,则第n个正方形A n B n C n D n的边长是▲ .15. 如图,梯形ABCD中,AD//BC,AB=CD,对角线AC,BD交于点O,AC⊥BD,点E,F,G,H分别为AB,BC,CD,DA的中点,若AD=2,BC=4,则四边形EFGH的面积为▲ .16.某区要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀参加比赛的球队支数是▲ .三、全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)计算:(1(2))12(22)12(2---18.(本小题满分8分)(第15题)HGFE ODCBA(第14题)D2C2B2A2D1C1B1A1B AO解方程:(1))3(3)3(2-=-x x x (2)05)1(22=--x 19.(本小题满分8分)某校王老师随机抽取本校八年级一部分学生上学期期末考试的数学成绩作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)请将频数分布表补充完整; (2)请将频数分布直方图补充完整;(3)若该校八年级共有400名学生,请估计成绩超过80分的学生有多少人? 20. (本小题满分10分)如图,分别延长□ABCD 的边CD ,AB 到E ,F ,使DE =BF ,连接EF ,分别交AD ,BC 于G ,H ,连结CG ,AH . 求证:CG ∥AH . 21. (本小题满分10分)为落实“两免一补”政策,某区2012年投入教育经费2500万元,预计2013年和2014年投入教育经费共6600万元.已知2012年至2014年的教育经费投入每年以相同的百分率逐年增长,则2013年该区投入的教育经费为多少万元? 22. (本小题满分12分)邻边不相等的矩形纸片, 剪去一个正方形,余下一个四边形,称为第一次操作;在余下的四边形中减去一个正方形,又余下一个四边形,称为第二次操作;……,以此类推,若第n 次操作后余下的四边形是正方形,则称原矩形是n 阶矩形.如图1,矩形ABCD 中,若AB =1,AD =2,则矩形ABCD 是1阶矩形.探究:(1)两边分别是2和3的矩形是 阶矩形;(2)小聪为了剪去一个正方形,进行如下的操作:如图2,把矩形ABCD 沿着BE 折叠(点E 在AD 上),使点A 落在BC 的点F 处,得到四边形ABFE .请证明四边形ABFE 是正方形 .(3)操作、计算:①已知矩形的两边分别是2,(第19题)(第20题)图1图2FEABCDD CBA(第22题)a (a >2),而且它是3阶矩形,请画出此矩形及裁剪线的示意图,并在示意图下方直接写出a 的值;②已知矩形的两邻边长为a ,b ,(a >b ),且满足a =5b +m ,b =4m .请直接写出矩形是几阶矩形.23.(本小题满分12分)如图,在Rt △ABC 中,∠C =90º,AC =6,BC =8,动点P 从点A 开始,沿边AC 向点C 以每秒1个单位长度的速度运动,动点D 从点A 开始,沿边AB 向点B 以每秒35个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD ⊥AC ,动点Q 从点C 开始,沿边CB 向点B 以每秒2个单位长度的速度运动,连结PQ .点P ,D ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t 秒(t ≥0).(1)当t 为何值时,四边形BQPD 的面积为△ABC 面积的21? (2)是否存在t 的值,使四边形PDBQ 为平行四边形?若存在,求出t 的值;若不存在,说明理由;(3) 是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度.参考答案一、选择题 (每小题3分, 共30分)二、填空题 (每小题4分,共24分)11 . 0,2 ;12. 14 ; 13.如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等 ; 14.n13; 15. 29 ;16. 8 ; 三、解答题 (本大题有7个小题,共66分) 17.(本小题满分6分) 解:(1)原式=2223332⨯-⨯=2-4----2分 =-2-------------------------------------1分 (2)原式=2241222+-+-------2分 =-1--------------------------------1分PCA(第23题)18.(本小题满分8分)解:(1)移项,提取公因式x -3得:(x -3)(2-3x )=0----2分 ∴x-3=0或2-3x=0解得:x 1=3,x 2=32--------------------2分(2) 原方程可化为,25)1(2=-x 2101±=-x ------------------------------2分 解得2101x 2101-=+=或x -----------2分 19. (本小题满分8分) 解: (1)----------------2分(2)补充频数直方图如图所示:-----------------3分(3)该同学成绩不低于80分的频率是:0.32+0.08=0.40=40%.----------1分 所以总人数是40%×400=160人-----------------2分 20. (本小题满分10分) 证明:在□ABCD 中, AB∥CD,AD∥CB ,AD=CB∴∠E=∠F,∠EDG=∠DCH=∠FBH ----2分 又 DE =BF ----------------------1分 ∴△EGD≌△FHB(AAS )---------1分 ∴DG=BH ----------------------1分 ∴AG=HC,-------------------1分 又∵AD∥CB∴四边形AGCH 为平行四边形----3分 ∴AH∥CG ------------------1分 21. (本小题满分10分)解:设某市教育经费的年平均增长率是x ,2013年的教育经费为2500(1+x),则2014年底的的教育经费为2500(1+x) (1+x) =2500(1+x)2.据此列出方程: 2500(1+x)+2500(1+x)2=3600,------------5分 得x 2+3x-0.64=0,解得x=0.2=20%或x=-3.2(不合题意,舍去)------------3分(第20题)∴2013年该市要投入的教育经费为2500×(1+20%)=3000(万元). -----------1分 答: ----------1分 22.(本小题满分12)解:(1)2--------------------------2分 (2)证明:由折叠可知:AB=BF ,∠1=∠3 又∵AE∥BF ∴∠2=∠3 ∴∠1=∠2 ∴AB=AE ,∴AE=BF 又AE∥BF∴四边形ABFE 是平行四边形 又∵AB=AE,∠A=90°∴四边形ABFE 是正方形-------------------3分 (3)①如图对1个给1分共4分, ②8阶正方形-------------3分 23. (本小题满分12分)解:(1)由题意可知:QB =8-2t ,PD =43t ,BD =10-35t. ∵ PD⊥AC, BC⊥AC∴四边形PDBQ 的面积为2)6)(3428(2)(t tt CP PD BQ -+-=+ --------1分 由题意可列方程:8621212)6)(3428(⨯⨯⨯=-+-t tt --------1分03618t t 2=+-化简得解得t=539± ---------------------------1分 ∵点Q 最先到达终点B, ∴t 的取值范围是0≤t≤4∴t=9-35 ------------------------------1分 (2)存在.理由如下:在Rt△ABC 中,∠C=90°,AC =6,BC =8,∴ AB=10.FCP DQBCA∵PD⊥AC, AD =53t.∴ BD=AB -AD =10-53t.∵ BQ∥DP,∴ 当BQ =DP 时,四边形PDBQ 是平行四边形. ∴8-2t =43t ,------------------------------2分解得:t =125. (属于0≤t≤4)----------------------------1分∴当t =125时,四边形PDBQ 是平行四边形.(3)不存在. -----------------------------1分 当t =125时,四边形PDBQ 是平行四边形,但此时PD =43×125=165,BD =10-53×125=6,∴ DP≠BD. -----------1分∴PDBQ 不能为菱形.设点Q 的速度为每秒v 个单位长度,则BQ =8-vt ,PD =43t ,BD =10-53t.要使四边形PDBQ 为菱形,则PD =BD =BQ ,当PD =BD 时,即43t =10-53t ,解得:t =103. -----------1分当PD =BQ 时,t =103时,即43×103=8-103v ------------1分解得:v =1615. -------------------------------------1分∴要使四边形PDBQ 在某一时刻为菱形,点Q 的速度为1615单位长度/秒.。
2019-2020年八年级数学下学期期末复习2 新人教版第16章二次根式1、若式子3-x 有意义,在实数范围内有意义,则x 的取值范围是( ) A 、3≥x B 、3≤x C 、 3>x D 、3<x 3、一个长方形的长和宽分别是63、32,则它的面积是( ) A 、220 B 、218 C 、 217 D 、216 4、下列各式是最简二次根式的是( )A 、9B 、7C 、 20D 、3.08、若果a a -=-2)2(2,那么( )A 、2<xB 、2≤xC 、 2>xD 、2≥x 10、若92+-y x 与3--y x 互为相反数,则y x +的值是( )A 、3B 、9C 、12D 、2712、化简:32= . 6)32(2+-= .4、计算:2850-+= . 15、若n 20是整数,则正整数n 的最小值是 .17、计算:)3223)(3223(-+= . 三、解答题21、计算下列各题: (1)0)2(218+⨯ (2))5.02313()81448(---(3)520)61(2÷+-22、(12分)先化简,再求值:)111(1222+-+÷+-x x x x x ,其中12+=x .第17章勾股定理2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )CABDS 3S 2S 1C BA DCAA :26B :18C :20D :214、△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A :△ABC 是直角三角形,且AC 为斜边B :△ABC 是直角三角形,且∠ABC =90° C :△ABC 的面积是60D :△ABC 是直角三角形,且∠A =60° 5) A :::37、一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A :36 海里 B :48 海里 C :60海里 D :84海里 8、若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A :14 B :4 C :14或4 D :以上都不对 9、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 (填“合格”或“不合格”);10、如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ; 11、将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的 距离为6米,则梯子的底端到墙的底端的距离为 米。
12、如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;17、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?19、如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,• 则这条小路的面积是多少?20、(6分)如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。
(1)求DC 的长。
(2)求AB 的长。
27.(6分)如图,已知△DEF 中,DE=17㎝,EF=30㎝,EF 是等腰三角形。
第18章平行四边形一、选择题(本大题共10小题,每题2分,共20分)1.已知四边形ABCD 是平行四边形,则下列各图中∠1与∠2一定不相等的是 ( )2. 能判定四边形ABCD 为平行四边形的题设是 ( )(A )AB∥CD,AD=BC (B )AB=CD ,AD=BC (C )∠A=∠B,∠C=∠D (D )AB=AD ,CB=CD3.菱形和矩形一定都具有的性质是 ( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分且相等D 、对角线互相平分4.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是 ( )A.0个B. 1个C. 3个D. 4个 5.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为 ( )A.512 B.2 C.25 D.5137. 如图,在平行四边形ABCD 中,DE 是∠ADC 的平分线,F 是AB的中点,AB=6,AD=4,则AE ∶EF ∶BE 为( ) A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶28. 如图,△ABC 中,AB=AC,点D,E 分别是边AB,AC 的中点,点G,F 在BC 边上,四边形DEFG 是正方形.若DE=2cm,则AC 的长为 ( )A. B.4cmC.D.9. 在四边形ABCD 中,若有下列四个条件:①AB//CD ;②AD=BC ;③∠A=∠C ;④AB=CD ,现以其中的两个条件为一组,能判定四边形ABCD 是平行四边形的条件有 ( ) A .3组 B .4组 C .5组 D .6组二、填空题(本大题共8小题,每题2分,共16分)新 课 标 第 一 网 12.如图菱形ABCD 的边长是2cm ,E 是AB 的中点,第12题第7题第13题第14题且DE ⊥AB ,则菱形ABCD 的面积为________cm 2.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO, BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米, 则EF= 厘米.14.如图,矩形ABCD 的对角线AC,BD 相交于点O,CE ∥BD,DE ∥AC.若AC=4,则四边形CODE 的周长是 .三、解答题(本大题共9小题,第19—26每题7分,第27题8分,共64分)19. 如图:在□ABCD 中,∠BAD 的平分线AE 交DC 于E ,若∠DAE =25o,求∠C 、∠B 的度数.20. 如图,BD 是菱形ABCD 的对角线,点E,F 分别在边CD,DA 上,且CE=AF.求证:BE=BF.22. 如图,在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B ,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E ,F 两点,求证:△ADF ≌△BAE .23. 如图,在菱形ABCD 中,E 为AD 中点,EF ⊥AC 交CB 的延长线于F.求证:AB 与EF 互相平分.DCFEB AHGC26. 如图,一张矩形纸片ABCD ,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折,点C 落在点C ′的位置,BC ′交AD 于点G .(1)求证:AG =C′G.(2) 求△BDG 的面积第19章一次函数1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 . 2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是图象与坐标轴所围成的三角形面积是 .4.某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .5、若直线与直线平行,则此直线的解析式为________。
6、若函数是一次函数,则m =_______,且随的增大而_______.7.由上表得y 与x 之间的关系式是 .二.选择题(每题4分,共32分)9.下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个10.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1, y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较11.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )(A) (B) (C ) (D ) 12.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是(A)k>0,b>0 (B)k>0,b<0(C)k<0,b>0 (D)k<0,b<013.弹簧的长度y cm 与所挂物体的质量x(kg)如右图所示,则弹簧不挂物体时的长度是( )(A)9cm (B)10cm (C)10.5cm (D)11cm 14.若把一次函数y=2x -3,向上平移3个单位长度,(A) y=2x (B) y=2x -6 (C ) y=5x -3 (D )y=-x -315.下面函数图象不经过第二象限的为 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2 16、如图,一次函数的图象经过A 、B 两点,则解集是( )A .B .C .D .17、下列图象中,以方程的解为坐标的点组成的图象是( )三.解答题18.已知函数y=(2m+1)x+m -3(1)若函数图象经过原点,求m 的值(2) 若函数图象在y 轴的截距为-2,求m 的值 (3)若函数的图象平行直线y=3x –3,求m 的值 (4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.19、已知一次函数的图象经过A(-2,-3),B(1,3)两点.求这个一次函数的解析式;第20章《数据的分析》1.10名学生的体重(单位:㎏)分别是41,48,50,53,49,50,53,53,51,67,这组数据的极差是( )A.27B.26C.25D.242.某校五个绿化小组一天植树的棵数如下:10,10,12,x ,8.已知这组数据的众数与平均数相等,那么这组数据的中位数是( ) A.8 B.9 C.10 D.123.某班50名学生身高测量结果如下表:A.1.60,1.56B.1.59,1.58C.1.60,1.58D.1.60,1.604.如果一组数据1a ,2a ,3a ,…,n a ,方差是2,那么一组新数据31a ,32a ,…,3n a 的方差是( )A.2B.6 C9 D.185.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:(1)甲、乙两班学生成绩平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论正确的是( ) A. ①②③ B. ①② C. ①③ D. ②③ 二、填空题(每小题4分,共20分)7.八年级(5)班为了正确引导学生树立正确的消费观,随机调查了10名同学某日的零花钱情况,其统计图如下:零花钱在3元以上(包括3元)的学生所占比例数为 ,该班学生每日零花钱的平均数大约是元.8.为了调查某一路段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天284辆,4天290辆人,12天312辆人,10天314辆人,那么这30天该路口同一时段通过的汽车平均数为 .10.某地两校联谊晚会上甲、乙两个文艺节目均由10名演员表演,他们的年龄(单位:岁)分别如下:甲节目:13,13,14,15,15,15,15,16,17,17;乙节目:5,5,6,6,6,6,7,7,50,52(1)甲节目中演员年龄的中位数是,众数是 .乙节目中演员年龄的中位数是,众数是 .(2)不计算直接指出两个节目中,演员年龄波动较小的一个是 .三、解答题11.当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的直方图(长方形的高表示该组人数)如下:解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围Array内?(3)若视力为4.9, 5.0, 5.1及以上为正常,试估计该校学生视力正常的人数约为多少?14.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创造能力考察,他们的成绩(百分制)如下表:(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,那么你认为该公司应该录取谁?。