高等数学教材(免费下载)
- 格式:doc
- 大小:723.76 KB
- 文档页数:108
高等数学上下册完整版教材高等数学是大学数学的一门基础课程,旨在培养学生的数学思维能力和解决实际问题的能力。
下面是《高等数学上下册完整版教材》的内容概述:第一章导数与微分1.1 导数的定义与几何意义1.2 基本求导法则1.3 函数的微分1.4 高阶导数与高阶微分1.5 隐函数与参数方程的导数1.6 微分中值定理与导数的应用第二章不定积分2.1 定积分的概念2.2 不定积分与不定积分的性质2.3 基本不定积分法2.4 特殊函数的不定积分2.5 不定积分的应用第三章定积分3.1 定积分的定义与几何意义3.2 定积分的性质3.3 定积分的计算方法3.4 牛顿-莱布尼茨公式3.5 定积分的应用第四章微分方程4.1 微分方程的概念与分类4.2 一阶微分方程4.3 高阶线性微分方程4.4 变量可分离的方程4.5 齐次线性微分方程4.6 非齐次线性微分方程4.7 常系数线性齐次微分方程4.8 微分方程的应用第五章多元函数的微分学5.1 多元函数的极限5.2 多元函数的偏导数5.3 多元复合函数的偏导数5.4 隐函数与参数方程的偏导数5.5 高阶偏导数5.6 多元函数的全微分5.7 多元函数的极值与最值第六章重积分与曲线积分6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 极坐标下的二重积分6.4 三重积分的概念与性质6.5 三重积分的计算方法6.6 曲线积分的概念与性质6.7 曲线积分的计算方法6.8 曲线积分在物理学中的应用第七章曲面积分与格林公式7.1 曲面积分的概念与性质7.2 曲面积分的计算方法7.3 散度与无源场7.4 格林公式的推广与应用第八章空间解析几何与向量代数8.1 空间直角坐标系与向量8.2 空间曲线与曲面8.3 向量的运算与坐标表示8.4 点、直线与平面的方程8.5 空间向量的夹角与投影8.6 空间点、直线与平面的位置关系8.7 空间曲线与曲面的位置关系第九章广义与特殊函数9.1 广义积分的概念9.2 常数项一般项相消法9.3 幂函数、指数函数与对数函数9.4 三角函数与反三角函数9.5 常见特殊函数第十章数项级数10.1 级数概念与性质10.2 收敛级数的判定方法10.3 常见级数的和10.4 绝对收敛与条件收敛10.5 幂级数与泰勒展开10.6 常见函数的泰勒展开第十一章函数级数11.1 函数列与函数项级数11.2 函数列极限与函数项级数的一致收敛11.3 函数列极限的性质11.4 一致收敛级数的和函数的性质11.5 函数项级数的逐项积分与逐项求导11.6 Fourier级数以上是《高等数学上下册完整版教材》的内容概述。
大学数学高等数学教材pdf 数学一直以来都是大学教育中不可或缺的一门学科,而高等数学更是大学数学课程中的重要组成部分。
为了方便广大学子学习和参考,许多高校、教育机构以及个人都提供了大学数学高等数学教材的PDF 版本。
在本文中,我们将介绍一些获取大学数学高等数学教材PDF的途径和一些常用的高等数学教材。
获取大学数学高等数学教材PDF的途径1. 教育网站:许多高校和教育机构的官方网站都提供了免费下载教材的服务。
学生可以直接在这些网站上搜索并下载所需的高等数学教材PDF。
例如,某大学的教学资源中心部分会提供学生所需的各类教材。
2. 知识分享平台:类似于百度文库、豆丁网等知识分享平台上也有许多用户上传了大量的高等数学教材PDF供他人免费下载。
用户只需在相应平台上搜索相关的高等数学教材,往往就能找到自己所需要的版本。
3. 学术论坛:有些学术论坛上也有不少人分享了自己整理的高等数学教材PDF。
学生可以通过在这些论坛上提问或搜索,找到志同道合的人分享的教材资料。
一些常用的高等数学教材1. 《高等数学(上、下)》(同济大学数学系编著):这是一本经典的高等数学教材,由同济大学数学系编写。
该教材系统全面地介绍了高等数学的基本概念、理论和方法。
此外,该教材的例题和习题数量也相当丰富,有助于学生加深对数学知识的理解。
2. 《数学分析》(清华大学出版社):这本教材是清华大学的一本高等数学经典教材,通过对数学分析基本概念和方法的讲解,帮助学生建立起逻辑推理和抽象思维能力。
该教材在数学分析中的证明过程也非常详细,有助于学生理解和掌握证明的方法和技巧。
3. 《高等数学(上、下)》(北京大学出版社):这本教材是北京大学的一本高等数学教材,内容与其他教材相似,但在一些章节中加入了一些具体问题的讨论和解决方法,有助于学生更好地理解数学知识的实际应用。
总结大学数学高等数学教材PDF的获取途径多种多样,学生可以选择适合自己的途径进行获取。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (10)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学 (电子版)1. 介绍高等数学是大学数学的一门重要课程,它是数学的一门基础性学科,也是理工类专业学习的必备环节。
本文档旨在为大学生和自学者提供一份高等数学的电子版教材,帮助他们更好地学习和理解高等数学的概念和方法。
2. 内容概述本教材主要包括以下几个部分:2.1 微积分微积分是高等数学的核心内容之一,它包括了函数、极限、导数和积分等重要概念和方法。
本教材将详细介绍微积分的基本概念和定理,包括函数的定义与分类,极限的计算与性质,导数的求解和应用,以及积分的定义和运算法则等。
2.2 线性代数线性代数是高等数学的另一个重要分支,它主要研究向量空间和线性映射的性质和运算。
本教材将详细介绍线性代数的基本概念和定理,包括向量的定义和运算,矩阵的基本性质,线性方程组的求解,以及特征值和特征向量等内容。
2.3 级数和数项级数级数和数项级数是高等数学中的另两个重要内容,它们在数学和物理中有着广泛的应用。
本教材将详细介绍级数和数项级数的概念和性质,包括级数的定义和收敛性判定,常见级数的求和公式,以及数项级数的收敛、发散和收敛域等内容。
2.4 偏微分方程偏微分方程是高等数学中的一门重要课程,它主要研究多元函数的偏导数和偏微分方程的解法。
本教材将详细介绍偏微分方程的基本概念和方法,包括一阶和二阶偏导数的计算,常见的偏微分方程类型,以及常系数和变系数偏微分方程的解法等内容。
2.5 多元函数与多元微积分多元函数和多元微积分是高等数学的另一重要分支,它研究多个自变量的函数和多元微积分的概念和方法。
本教材将详细介绍多元函数和多元微积分的基本概念和定理,包括多元函数的极限、连续性和偏导数,多元函数的极值和条件极值,以及多重积分的计算和应用等内容。
3. 学习目标通过学习本教材,读者将能够:•理解微积分的基本概念和方法,能够计算函数的极限、导数和积分。
•了解线性代数的基础知识,能够进行向量的运算和线性方程组的求解。
•掌握级数和数项级数的概念和收敛性判定方法,能够求解常见级数的和。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
【最新整理,下载后即可编辑】高等数学教材完整一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数一 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N。
⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A 的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
目录一、函数与极限21、集合的概念22、常量与变量32、函数43、函数的简单性态54、反函数65、复合函数76、初等函数87、双曲函数及反双曲函数98、数列的极限119、函数的极限1310、函数极限的运算规则15一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合一个元素都是集合B的元素,我们就说A、B A为集合B的子集,记作(或)。
⑵相等:如何集合B B的子集,此时集合A B A与集合B相等,记作A=BB但不属于A②、对于集合A、B B B是则A是C的子集。
”“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。
【最新整理,下载后即可编辑】目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (5)7、双曲函数及反双曲函数 (6)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (10)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N。
⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
国外高等数学经典教材pdf 随着全球教育的快速发展和互联网的迅猛普及,人们对优质教育资源的需求也越来越高。
尤其是在数学学科这样的理工科领域,一本好的教材对学习者来说至关重要。
在国外,有许多经典的高等数学教材备受推崇,今天我们就来介绍一些著名的国外高等数学经典教材,并提供它们的PDF版本供大家免费下载使用。
1. "Calculus" by James Stewart《计算学》是由詹姆斯·斯图尔特(James Stewart)撰写的经典数学教材。
该教材以深入浅出的方式介绍微积分的基本概念和技巧,并通过丰富的图表和实例帮助学生理解数学的本质。
此外,该书还包含了大量的习题和解答,供学生练习和巩固所学知识。
PDF下载链接:[Calculus by James Stewart](暂无链接)2. "Linear Algebra and Its Applications" by David C. Lay《线性代数及其应用》是大卫·C·莱(David C. Lay)编写的经典线性代数教材。
该教材以一种直观的方式引导学生理解和运用线性代数的基本概念和技巧。
从向量空间到线性变换,从特征值和特征向量到矩阵分解,该书涵盖了线性代数的重要主题,并提供了许多实际应用的例子。
PDF下载链接:[Linear Algebra and Its Applications by David C. Lay](暂无链接)3. "Probability and Statistics" by Morris H. DeGroot and Mark J. Schervish《概率与统计》是莫里斯·H·德格鲁特(Morris H. DeGroot)和马克·J·谢维什(Mark J. Schervish)合著的一本经典教材。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (5)4、反函数 (5)5、复合函数 (6)6、初等函数 (7)7、双曲函数及反双曲函数 (8)8、数列的极限 (9)9、函数的极限 (11)10、函数极限的运算规则 (13)-----------------------------------------------------------------------------------------------------------------------一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A ∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
-----------------------------------------------------------------------------------------------------------------------⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A ∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A =B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
-----------------------------------------------------------------------------------------------------------------------以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:-----------------------------------------------------------------------------------------------------------------------3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------⑴、反函数的定义:设有函数,若变量y 在函数的值域内任取一值y 0时,变量x 在函数的定义域内必有一值x 0与之对应,即,那末变量x 是变量y 的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a ,b)上严格增(减),其值域为 R ,则它的反函数必然在R上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x 2,其定义域为(-∞,+∞),值域为[0,+∞).对于y 取定的非负值,可求得x=±.若我们不加条件,由y 的值就不能唯一确定x 的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。