2013绥化中考数学
- 格式:doc
- 大小:2.56 MB
- 文档页数:15
2013中考一次函数应用题1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升2、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个 (B)2个 (C)3个 (D) 4个3、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.4、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.5、(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?6、(13年安徽省8分、18)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。
2024年黑龙江省绥化市中考数学试卷(附答案解析)一、单项选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数﹣的相反数是()A.2025B.﹣2025C.﹣D.【解答】解:﹣的相反数是,故选:D.2.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.圆D.菱形【答案】B.分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)某几何体是由完全相同的小正方体组合而成,如图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A.4.(3分)若式子有意义,则m的取值范围是()A.m≤B.m≥﹣C.m≥D.m≤﹣【解答】解:由题意得:2m﹣3≥0,解得:m≥,故选:C.5.(3分)下列计算中,结果正确的是()A.(﹣3)﹣2=B.(a+b)2=a2+b2C.=±3D.(﹣x2y)3=x6y3【解答】解:(﹣3)﹣2=,则A符合题意;(a +b )2=a 2+2ab +b 2,则B不符合题意;=3,则C 不符合题意;(﹣x 2y )3=﹣x 6y 3,则D 不符合题意;故选:A .6.(3分)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是﹣2和﹣5.则原来的方程是()A .x 2+6x +5=0B .x 2﹣7x +10=0C .x 2﹣5x +2=0D .x 2﹣6x ﹣10=0【答案】B .7.(3分)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A .平均数B .中位数C .众数D .方差【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C .8.(3分)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A .5km /hB .6km /hC .7km /hD .8km /h【解答】解:设江水的流速为x km /h ,则沿江顺流航行的速度为(40+x )km /h ,沿江逆流航行的速度为(40﹣x )km /h ,根据题意得:=,解得:x =8,∴江水的流速为8km /h .故选:D .【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.(3分)如图,矩形OABC各顶点的坐标分别为O(0,0),A(3,0),B(3,2),C(0,2),以原点O为位似中心,将这个矩形按相似比缩小,则顶点B在第一象限对应点的坐标是()A.(9,4)B.(4,9)C.(1,)D.(1,)【分析】根据位似变换的性质解答即可.【解答】解:∵以原点O为位似中心,将矩形OABC按相似比缩小,点B的坐标为(3,2),∴顶点B在第一象限对应点的坐标为(3×,2×),即(1,),故选:D.10.(3分)下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【分析】选项A根据中点四边形的定义以及矩形的判定方法解答即可;选项B根据垂径定理判断即可;选项C根据中心投影的定义判断即可;选项D根据圆心角、弧、弦、弦心距的关系定理判断即可.【答案】C.11.(3分)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE的长是()A.B.6C.D.12【解答】解:∵四边形ABCD是菱形,CD=5,BD=8,∴BC=CD=5,BO=DO=4,OA=OC,AC⊥BD,∴∠BOC=90°,在Rt△OBC中,由勾股定理得:OC===3,∴AC=2OC=6,∵菱形ABCD的面积=AE•BC=BD×AC=OB•AC,∴AE===,故选:A.12.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则下列结论中:①>0;②am2+bm≤a﹣b(m为任意实数);③3a+c<1;④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤﹣3.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由题意,∵抛物线开口向下,∴a<0.又抛物线的对称轴是直线x=﹣=﹣1,∴b=2a<0.又抛物线交y轴正半轴,∴当x=0时,y=c>0.∴<0,故①错误.由题意,当x=﹣1时,y取最大值为y=a﹣b+c,∴对于抛物线上任意的点对应的函数值都≤a﹣b+c.∴对于任意实数m,当x=m时,y=am2+bm+c≤a﹣b+c.∴am2+bm≤a﹣b,故②正确.由图象可得,当x=1时,y=a+b+c<0,又b=2a,∴3a+c<0<1,故③正确.由题意∵抛物线为y=ax2+bx+c,∴x1+x2=﹣=﹣=﹣2>﹣3,故④错误.综上,正确的有②③共2个.故选:B.二、填空题(本题共10个小题,每小题3分,共30分)13.(3分)我国疆域辽阔,其中领水面积约为370000km2,把370000这个数用科学记数法表示为.【解答】解:370000=3.7×105,故答案为:3.7×105.14.(3分)分解因式:2mx2﹣8my2=.【分析】先提取公因式再运用公式法进行因式分解即可得出答案.【解答】解:原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y).故答案为:2m(x+2y)(x﹣2y).15.(3分)如图,AB∥CD,∠C=33°,OC=OE.则∠A=°.【解答】解:∵OC=OE,∠C=33°,∴∠E=∠C=33°,∴∠DOE=∠E+∠C=66°,∵AB∥CD,∴∠A=∠DOE=66°,故答案为:66.16.(3分)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50m,则这栋楼的高度为m(结果保留根号).【解答】解:由题意得:AD⊥BC,在Rt△ACD中,∠CAD=60°,AD=50m,∴CD=AD•tan60°=50(m),在Rt△ABD中,∠BAD=45°,∴BD=AD•tan45°=50(m),∴BC=BD+CD=(50+50)m,∴这栋楼的高度为(50+50)m,故答案为:(50+50).17.(3分)化简:÷(x﹣)=.【解答】解:原式=÷=•=,故答案为:.18.(3分)用一个圆心角为126°,半径为10cm的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为__cm.【解答】解:扇形的弧长==7π(cm),故圆锥的底面半径为7π÷2π=(cm).故答案为:.19.(3分)如图,已知点A(﹣7,0),B(x,10),C(﹣17,y),在平行四边形ABCO中,它的对角线OB与反比例函数y=(k≠0)的图象相交于点D,且OD:OB=1:4,则k=.【分析】作BE⊥x轴,DG⊥x轴,根据点的坐标及相似三角形性质可求出点D坐标继而求出k值.【解答】解:如图,作BE⊥x轴,DG⊥x轴,垂足分别为E、G,∵点A(﹣7,0),B(x,10),C(﹣17,y),∴BE=10,OF=17,OA=7,∴EF=BC=OA=7,∴OE=17+7=24,∵BE∥DG,∴△ODG∽△OBE,∵OD:OB=1:4,∴=,∴,∴D(﹣,6),∵点D在反比例函数图象上,∴k=﹣=﹣15.故答案为:﹣15.20.(3分)如图,已知∠AOB=50°,点P为∠AOB内部一点,点M为射线OA、点N为射线OB上的两个动点,当△PMN的周长最小时,则∠MPN=.【解答】解:作P点关于OB的对称点E,连接EP,EO,EM;∴EM=MP,∠MPO=∠OEM,∠EOM=∠MOP,作P点关于OA的对称点F,连接NF,PF,OF,∴PN=FN,∠OPN=∠OFN,∠PON=∠NOF,∴PM+PN+MN=EM+NF+MN≥EF,当E,M,N,F共线时,△PMN周长最短,又∵∠EOF=∠EOM+∠MOP+∠PON+∠NOF,∠AOB=∠MOP+∠PON,∴∠EOF=2∠AOB,又∵∠AOB=50°,∴∠EOF=100°,∴在△EOF中,∠OEM+∠OFN+∠EOF=180°,∴∠OEM+∠OFN=180°﹣100°=80°,∵∠MPO=∠OEM,∠OPN=∠OFN,∴∠MPO+∠OPN=80°,∵∠MPN=∠MPO+OPN=80°,故答案为:80°.21.(3分)如图,已知A1(1,﹣),A2(3,﹣),A3(4,0),A4(6,0),A5(7,),A6(9,),A7(10,0),A8(11,﹣)…,依此规律,则点A2024的坐标为.【答案】(2891,).22.(3分)在矩形ABCD中,AB=4cm,BC=8cm,点E在直线AD上,且DE=2cm,则点E到矩形对角线所在直线的距离是或或cm.【解答】解:如图1,过点E作EF⊥BD于点F,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADC=90°,AC=BD,AD=BC,AB=CD,∵AB=4cm,BC=8cm,∴由勾股定理得cm,∴BD=cm,∵∠EFD=∠BAD=90°,∠EDF=∠BDA,∴△DEF∽△DBA,∴,∴,∴EF=cm;如图2,过点E作EM⊥AC于点M,∵AD=BC=8cm,DE=2cm,∴AE=6cm,∵∠AME=∠ADC=90°,∠EAM=∠CAD,∴△AEM∽△ACD,∴,∴∴EM=cm;如图3,过点E作EN⊥BD的延长线于点N,∴∠END=∠BAD=90°,∴∠EDN=∠BDA,∴△END∽△BAD,∴,∴,∴EN=cm;如图4,过点E作EH⊥AC的延长线于点H,∴∠AHE=∠ADC=90°,∴∠EAH=∠CAD,∴△AHE∽△ADC,∴,∵AD=BC=8cm,DE=2cm,∴AE=10cm,∴,∴EH=cm;综上,点E到矩形对角线所在直线的距离是cm或cm或cm,故答案为:或或.三、解答题(本题共6个小题,共54分)23.(7分)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5cm2,则△ABC的面积是cm2.【解答】解:(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N和点M,连接AM和CN,如图所示,点G即为所求作的点.(2)∵点G是△ABC的重心,∴AG=2MG,∵△ABG的面积等于5cm2,∴△BMG的面积等于2.5cm2,∴△ABM的面积等于7.5cm2.又∵AM是△ABC的中线,∴△ABC的面积等于15cm2.故答案为:15.24.(7分)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动、为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有人;(2)在扇形统计图中,A组所占的百分比是,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示,请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【解答】解:(1)参加本次问卷调查的学生共有12÷20%=60(人).故答案为:60.(2)A组的人数为60﹣20﹣10﹣12=18(人),∴在扇形统计图中,A组所占的百分比是18÷60×100%=30%.故答案为:30%.补全条形统计图如图所示.(3)列表如下:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种等可能的结果,其中选中的2个社团恰好是B和C的结果有:(B,C),(C,B),共2种,∴选中的2个社团恰好是B和C的概率为=.25.(9分)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B 种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间x min 之间的对应关系如图.其中A种电动车支付费用对应的函数为y1;B种电动车支付费用是10min之内,起步价6元,对应的函数为y2.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A种电动车或B种电动车去公司上班.已知两种电动车的平均行驶速度均为300m/min(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km,那么小刘选择B种电动车更省钱(填写A或B).②直接写出两种电动车支付费用相差4元时,x的值5或40.【解答】解:(1)设A、B两种电动车的单价分别为x元、y元,由题意得,,解得:,答:A、B两种电动车的单价分别为1000元、3500元.(2)设购买A种电动车m辆,则购买8种电动车(200﹣m)辆,m(200﹣m),解得:m≤,设所需购买总费用为w元,则w=1000m+3500(200﹣m)=﹣2500m+700000,∵﹣2500<0,∴w随着m的增大而减小,∵m取正整数,∴m=66时,w最少,=700000﹣2500x66=535000(元),∴w最少答:当购买A种电动车66辆时所需的总费用最少,最少费用为535000元.(3)①∵两种电动车的平均行驶速度均为300m/min,小刘家到公司的距离为8km,∴所用时间=26(分钟),根据函数图象可得当x>20时,y2<y1更省钱,∴小刘选择B种电动车更省钱,故答案为:B.②设y1=k1x,将(20,8)代入得,8=20k1,解得:k1=,∴y1=x,当0<x≤10时,y2=6,当x>10时,设y2=k2x+b2,将(10,6)、(20,8)代入得,,解得:,∴y2=x+4,依题意,当0<x<10时,y2﹣y1=4,即6﹣x=4,解得:x=5,当x>10时,|y2﹣y1|=4,即|x+4﹣x|=4,解得:x=0(舍去)或x=40,故答案为:5或40.【点评】本题考查了二元一次方程组的应用,一次函数的应用,找到等量关系是解题的关键.26.(10分)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的⊙O与AD相切于点E,与AC相交于点F.(1)求证:AB与⊙O相切;(2)若正方形ABCD的边长为+1,求⊙O的半径;(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN⊥OC交于点N.当CM:FM=1:4时,求CN的长.【解答】(1)证明:如图,连接OE,过点O作OG⊥AB于点G,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD是正方形,AC是正方形的对角线,∴∠BAC=∠DAC=45°,∴OE=OG,∵OE为⊙O的半径,∴OG为⊙O的半径,∵OG⊥AB,∴AB与⊙O相切;(2)解:如图,∵AC为正方形ABCD的对角线,∴∠DAC=45°,∵⊙O与AD相切于点E,∴∠AEO=90°,∴由(1)可知AE=OE,设AE=OE=OC=OF=R,在Rt△AEO中,∵AE2+EO2=AO2,∴AO2=R2+R2,∵R>0,∴,又∵正方形ABCD的边长为+1,在Rt△ADC中,∴,∵OA+OC=AC,∴,∴,∴⊙O的半径为;(3)解:如图,连接FN,ON,设CM=k,∵CM:FM=1:4,∴CF=5k,∴OC=ON=2.5k,∴OM=OC﹣CM=1.5k,在Rt△OMN中,由勾股定理得:MN=2k,在Rt△CMN中,由勾股定理得:,又∵,∴,∴.【点评】本题考查了圆的综合应用,其中掌握圆的相关知识点、正方形的性质、角平分线性质勾股定理的计算等知识点的应用是本题的解题关键.27.(10分)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值2+或2﹣(结果保留根号).【解答】解:(1)如图:∵∠ACB=∠EDF=90°,且AC=BC=DF=DE=2cm,∴∠A=∠B=∠DFE=45°,∴∠AFH+∠BFG=∠BFG+∠FGB=135°,∴∠AFH=∠FGB,∴△AFH∽△BGF,∴,∴AH•BG=AF•BF,在Rt△ACB中,AC=BC=2,∴,∵O是AB的中点,点O与点F重合,∴,∴,∴,∴y与x的函数关系式为;(2)△CGH的周长定值为2,理由如下:∵AC=BC=2,AH=x,BG=y,∴CH=2﹣x,CG=2﹣y,在Rt△HCG中,∴===,将(1)中xy=2代入得:=,∵1<x<2,y=,∴1<y<2,∴x+y>2,∴GH=x+y﹣2,∴△CHG的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)①过点F作FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,如图:∵∠AFE=60°,∠A=45°,∴∠AHF=75°,∴FM=MH,∵∠FNH=90°,∴∠NFH=15°,∵FM=MH,∴∠NFH=∠MHF=15°,∴∠NMH=30°,在Rt△MNH中,设NH=k,∴MH=MF=2k,∴MN==k,∴FN=MF+MN=(2+)k,在Rt△FNH中,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,∵∠AFE=60°,∠B=45°,∴∠FGB=∠AFE﹣∠B=15°,∵GM=MF,∴∠FGB=∠GFM=15°,∴∠FMB=30°,在Rt△FNM中,设FN=k,∴GM=MF=2k,由勾股定理得MN==k,∴GN=GM+MN=(2+)k,在Rt△FNG中,,综上所述,tan或,故答案为:2+或2﹣.【点评】本题考查几何变换综合应用,涉及相似三角形判定与性质,等腰直角三角形性质及应用,锐角三角函数,勾股定理及应用等知识,解题的关键是作辅助线,构造直角三角形解决问题.28.(11分)综合与探究如图,在平面直角坐标系中,已知抛物线y=﹣x2+bx+c与直线相交于A,B两点,其中点A(3,4),B (0,1).(1)求该抛物线的函数解析式;(2)过点B作BC∥x轴交抛物线于点C.连接AC,在抛物线上是否存在点P使tan∠BCP=tan∠ACB.若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到y1=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点E为原抛物线对称轴上的一点,F是平面直角坐标系内的一点,当以点B,D,E,F为顶点的四边形是菱形时,请直接写出点F的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(3,4),B(0,1),∴,解得:,∴该抛物线的函数解析式为y=﹣x2+4x+1;(2)存在.理由如下:∵BC∥x轴,且B(0,1),∴点C的纵坐标为1,∴1=﹣x2+4x+1,解得:x1=0(舍去),x2=4,∴C(4,1),过点A作AQ⊥BC于Q,设直线CP交y轴于点M,如图,在Rt△ACQ中,∵A(3,4),∴Q(3,1),∵tan∠BCP=tan∠ACB,∴tan∠BCP=×=×=,∵BC=4,∠CBM=90°,∴=tan∠BCP=,∴BM=BC=×4=2,∴|y M﹣1|=2,∴y M=3或﹣1,∴M1(0,3),M2(0,﹣1),∴直线CM1的解析式为y=﹣x+3,直线CM2的解析式为y=x﹣1,由,解得,(舍去),由,解得,(舍去),∴P1(,),P2(﹣,﹣),综上所述,满足条件的点P的坐标为P1(,),P2(﹣,﹣);(3)∵y=﹣x2+4x+1=﹣(x﹣2)2+5,∴原抛物线的对称轴为直线x=2,顶点坐标为(2,5),∵将该抛物线向左平移2个单位长度得到新抛物线y′,∴y′=﹣x2+5,联立得,解得:,∴D(1,4),又B(0,1),设E(2,t),F(m,n),当BD、EF为对角线时,则,解得:,∴F(﹣1,3);当BE、DF为对角线时,则,解得:或,∴F(1,4)与点D重合,不符合题意,舍去,或F(1,﹣2);当BF、DE为对角线时,则,解得:或,∴F(3,4﹣)或F(3,4+);综上所述,点F的坐标为(﹣1,3)或(1,﹣2)或(3,4﹣)或(3,4+).。
确定组成几何体的小正方体的个数一、选择题1. (2013 广西玉林市) 某几何体的三视图如右图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块2. (2013 黑龙江省龙东地区) 由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()(A)4 (B)5 (C)6 (D)73. (2014 黑龙江省齐齐哈尔市) 如图,由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是 ( )A.5个或6个 B.6个或7个第8题图C.7个或8个 D.8个或9个4. (2014 黑龙江省牡丹江市) 由一些大小相同的小正方形搭成的几何体的主视图和左视图所图所示,则搭成该几何体的小正方体的个数最少是A.3B.4C.5D.6主视图左视图5. (2014 四川省达州市) 小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n的值是 ( )12A .6 B. 7 C. 8 D. 96. (2015 甘肃省庆阳市) 某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体( )A .3B .4C .5D . 67. (2015 黑龙江省齐齐哈尔市) 如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是( )A . 5或6或7B . 6或7C . 6或7或8D . 7或8或98. (2015 辽宁省营口市) 如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是 A .5或6 B .5或7 C .4或5或6 D .5或6或739. (2015 四川省绵阳市) 由若干个边长为1cm 的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A . 15cm 2B . 18cm 2C . 21cm 2D . 24cm 210. (2017 贵州省毕节地区) 一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A .3个B .4个C .5个D .6个11. (2017 黑龙江省黑河市) 几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是( ) 俯视图 左视图A .5个B .7个C .8个D .9个第2题图 俯视图 左视图12. (2017 黑龙江省佳木斯市) 如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或713. (2017 湖北省荆门市) 3分)已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B .7个C.8个D.9个14. (2017 内蒙古包头市) 将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A. B. C. D.15. (2017 山东省聊城市) 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()45A . B.C .D .16. (2017 山东省威海市) 一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则n 的最小值是( )A .5B .7C .9D .1017. (2017 四川省内江市) 由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形总的数字表示该位置上的小正方体的个数,那么该几何体的主视图是 ( )18. (2019 黑龙江省鸡西市) (3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .319. (2019 黑龙江省齐齐哈尔市) (3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.820. (2019 四川省宜宾市) (3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10 B.9 C.8 D.7二、填空题21. (2013 黑龙江省齐齐哈尔市) 如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由个小正方体塔成的.22. (2013 黑龙江省绥化市) 由一些完全相同的小正方体搭成的几何体的主视图67和左视图如图所示,则组成这个几何体的小正方体的个数最多..是 个.23. (2014 贵州省黔东南州) 在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为 .24. (2015 黑龙江省牡丹江市) 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是 个.25. (2018 山东省青岛市) (3.00分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.参考答案一、选择题1. D2. C3. B4. B5. B.6.分析:先由俯视图可得最底层有3个小正方体,然后根据主视图得到第二列由两层,于是可判断上面第二列至少有1个小正方体,从而得到几何体所需要最少小正方体的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得上面一层至少有1个小正方体,所以至少需要4个这样的小正方体.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.87. C8. D9.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:综合三视图,我们可以得出,这个几何模型的底层有2+1=3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是3+1=4个.所以表面积为3×6=18cm2.故选:B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.考点U3:由三视图判断几何体.分析从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.9所以图中的小正方体最少4块,最多5块.故选:B.11.考点U3:由三视图判断几何体.分析根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.解答解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.12.考点U3:由三视图判断几何体.分析易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.解答解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.13.答案B.10考点:由三视图判断几何体.14.答案C.考点:几何体的展开图.15.考点U3:由三视图判断几何体;U2:简单组合体的三视图.分析找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答解:从正面看易得第一列有3个正方形,第二列有2个正方形,第三列有1个正方形..故选:C.16.分析从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.解答解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选B.点评本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17. A18.分析主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.点评考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.19.分析主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.点评考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.20.分析从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.点评本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.二、填空题21. 6或7或822. 523. 524.分析:根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.解答:解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.点评:此题考查了由三视图判断几何体,在俯视图上表示出正确的数字是解本题的关键.25.分析先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.解答解:设俯视图有9个位置分别为:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.。
2013年绥化市毕业学业考试数学学科考试说明新课标中删除和新增的内容,今年暂时不作为考试内容。
Ⅰ、命题指导思想1、体现“稳定、改革、创新”原则稳定:试题更注重对学生基础知识、基本技能、基本活动经验和基本思想的考查。
在难度上保持与上一年相当,符合《数学课程标准》(2011版)要求,选拔与毕业考试两者兼顾。
改革:体现《数学课程标》(2011版)的基本思想,减少死记硬背内容,杜绝繁、难、偏题,试题更强调理论联系实际,增加信息给予题和联系社会接触生活的应用试题,几何证明重在基础,逐渐提高二次函数的考查力度,个别题型要有所变化,不命理想化试题,遵循教学大纲,但不拘泥于课本。
创新:命少量开放性试题、综合性试题,答案不唯一,内容开放。
注重对学生综合运用知识分析、解决问题能力的考查。
2、考试内容改革实现“三个有利于”有利于促进数学教学,全面落实《数学课程标准(2011版)》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学生数学学习及终身学习。
Ⅱ、命题原则1、体现义务教育的性质,命题应面向全体学生,关注每个学生的发展。
2、重视对学生学习数学“四基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价。
3、试题的考查内容、素材选取、试卷形式对每个学生而言要体现其公平性。
制定科学合理的参考答案与评分标准,尊重不同的解答方式和表现形式。
4、试题背景具有现实性。
试题背景应来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实。
5、试卷的有效性。
关注学生学习数学结果与过程的考查,加强对学生思维水平与思维特征的考查。
中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致。
试题的求解思考过程力求体现《数学课程标准》(2011版)所倡导的数学活动方式及数学思想,如观察、实验、猜测、验证、计算、推理等活动过程和数学抽象、数学推理、数学模型思想。
2009绥化市直线y=-34x+6与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线D →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t(秒),△OPQ 的面积为S ,求出S 与t 之间的函数关系式:(3)当S=485时,求出点P 的坐标,并直接写出以点0、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2010.如图,在平面直角坐标系中,函数y =2x +12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.2011已知直线y= x+4 与x 轴、y 轴分别交于A 、B 两点,∠ABC=60°,BC 与x 轴交于点C .(1)试确定直线BC 的解析式.(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.2012•绥化如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.2013如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC(OA >OC )的长分别是一元二次方程x 2﹣14x+48=0的两个实数根.(1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.2014如图 ,在平面直角坐标系中 ,已知矩形AOBC 的顶点C 的坐标是(2 ,4) ,动点P 从点A 出发 ,沿线段AO 向终点O 运动 ,同时动点Q 从点B 出发 ,沿线段BC 向终点C 运动 。
二○○八年绥化市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .D OC B A 第3题图 O B A 第4题图 5cmADCEF GB第9题图2341 6 5 第6题图一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNM CNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省绥化市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.910.6或10或1211.12n -⎛ ⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分)242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩ ·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩B9590 85 80 7570分数/分竞选人A B C答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.x (分)B ME A C N D∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。
2013中考全国100份试卷分类汇编列方程解应用题(分式方程)1、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( ) A . B .C .D .2、(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )B3、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天.则可列方程为( ) A .+=1.+8(+)=1 ﹣爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( ) A.1014401001440=--x x B. 1010014401440++=x xC.1010014401440+-=x x D. 1014401001440=-+xx 5、(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 6、(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器.7、(2013•湘西州)吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.8、(2013安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?9、列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。
绥化市初中学业考试 数 学 试 卷一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 解析: 答案:B 点评:2. 下列图形中不是轴对称图形的是( ) 解析: 答案:C 点评:3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( ) 解析: 答案:A 点评:4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 解析: 答案:D 点评:5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱A .15B .30C .50D .20 解析: 答案:B 点评:6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0 解析: 答案:C点评:7.直角梯形ABCD中,AD∥BC,∠ABC=90o,∠C=60o,AD=DC=22,则BC的长为()A. 3 B.4 2 C.3 2 D.2 3解析:答案:C点评:8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=13,则线段AC的长是()A.3 B.4 C.5 D.6解析:答案:B点评:9.现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种 B.4种 C.5种 D.6种解析:答案:B点评:10.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()A.1个 B.2个 C.3个 D.4个解析:答案:D点评:二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米.解析:答案:1.01×105点评:12.函数y=x-1x+2中,自变量x的取值范围是_______________.解析:答案:x≥1点评:13.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:_______________,使得△ADF≌△CBE.解析:答案:AF=CE或AE=CF或DF∥BE或∠ABE=∠CDF等点评:14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_______________个.解析:答案:2点评:15.抛物线y=x2-4x+m2与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_______________.解析:答案:(3,0)点评:16.代数式3x2-4x-5的值为7,则x2-43x-5的值为_______________.解析:答案:-1点评:17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.解析:答案:4或5(答对一值得1分,多答不得分)点评:18.Rt△ABC中,∠BAC=90o,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段B D的长为_______________.解析:答案:4或25或10(答对一值得1分,多答不得分)点评:19.已知关于x的分式方程a+2x+1=1的解是非正数,则a的取值范围是_______________.解析:答案:a≤-1且a≠-2点评:20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.解析:答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )点评:三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a)÷ 1-a 2a 2+a,然后给a 选择一个你喜欢的数代入求值. 解析:答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a×a (a +1) (1-a ) (a +1)……………………2分 =(1-a ) …………………………………………1分点评:(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示.(1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90o ,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B 旋转到B 2的路径长.解析: 答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分点评:23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解析: 答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5b =800 5 k +b =550a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △PAB =12 ×4×3=6 …………………………………………………1分点评:24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解析: 答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x ≤4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 点评:25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式. 解析:答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分设直线AB 的解析式为:y =kx +b ∵B (0,800),C (5,550)∴ ∴k =-50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分(3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分设直线AB 的解析式为: y =k 1x +b 1 ∴k 1=350 b 1=-3200 1分∴直线AD 的解析式为:y AD =350x -3200 ……………………………………1分 点评:26.(本小题满分8分) .已知在Rt △ABC 中,∠ABC =90o ,∠A =30o ,点P 在AC 上,且∠MPN =90o .当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证t △PME ∽t △PNF ,得出PN =3PM .(不需证明)当PC =2PA ,点M 、N 分别在线段AB 、BC 或其延长线上,如图2、图3这两种情况时,请写出线段PN 、PM 之间的数量关系,并任选取一给予证明. 解析:答案:解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F∴四边形BFPE 是矩形 ∴∠EPF =90o , ∵∠EPM +∠MPF =∠FPN +∠MPF =90o可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分∴PF PE =PNPM…………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30o ,∠C =60o ∴PF =32 PC ,PE =12PA ……………………………………………1分 ∴PN PM =PF PE =3PC PA……………………………………………1分 ∵PC =2PA ∴PNPM= 6 即:PN =6PM ………………1分10000 若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 点评:27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A 、B 两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解析: 答案:解:(1种纪念品需要a 元,购进一件B 种纪念品需要b 元 0 1分………1分 50元,购进一件B 种纪念品需要100元 ………………1分(2x 个,购进B 种纪念品y 个………………………………2分 1分∵y 为正整数 ∴共有6种进货方案…………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) (2)分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元………………………………1分点评:28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.解析:答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b......................................................2分 ∴k =1 b =6 ...............................................................1分 ∴直线AM 的解析式为:y =x +6 .............................................1分 (2)P 1(-18,-12),P 2(6,12) (2)分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分点评:。
2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
2013年黑龙江省绥化市中考数学试卷
一、填空题
1.按如图所示的程序计算.若输入x 的值为3,则输出的值为_______
2.函数
y =
中自变量x 的取值范围是_____________ 3.如图,A 、B 、C 三点在同一条直线上,∠A=∠C=90°,AB=CD ,请添加一个..适当的条件 ______________使得△EAB ≌△BCD .
4.在九张质地都相同的卡片上分别写有数字-4、-3、-2、-1,0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是 ___________. 5.计算:
21111x x -=--____________
. 6.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是 ______________
7.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 _____________.
8.如图所示,以O 为端点画六条射线后OA 、OB 、OC 、OD 、OE\OF 后,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1、2、3、4、5、6、7、8…后,那么所描的第2013个点在射线 ___________________上.
9.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有___________种租车方案.
10.若关于x的方程
4
1
22
ax
x x
=+
--
无解,则a的值是____________
11.直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是______________ cm2.(结果保留π)
二、选择题
12.下列计算正确的是()
A.333
2
a a a
=
B. 224
2
a a a
+= C. 842
a a a
÷= D. 236
(2)8
a a
-=-
13.下列几何图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形B.矩形C.平行四边形D.等腰梯形
14.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E、F分别是边AD、
AB的中点,EF交AC于点H,则AH
HC
的值为()
A.1
B. 1
2
C.
1
3
D.
1
4
15.对于反比例函数
3
y
x
=,下列说法正确的是()
A. 图象经过点(1,-3)
B. 图象在第二、四象限
C. x>0时,y随x的增大而增大
D. x<0时,y随x增大而减小16
在这次活动中,该班同学捐款金额的众数和中位数分别是()A. 30,35 B. 50,35 C. 50,50 D. 15,50
17.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()
A. B. C. D.
18.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()
A.4
B.5
C.6
D.7
19.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;
②BD⊥CE;
③∠ACE+∠DBC=45°;
④BE2=2(AD2+AB2),
其中结论正确的个数是()
A.1
B.2
C.3
D.4
20.如图,在Rt△ABC中,∠C=90°,AC= BC=1,D在
AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果
AD⊥ED,那么△ABE的面积是()
A.1
B.
C.
D.
三、解答题(共8小题,满分60分)
21.(本小题满分5分)
如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.
22.(本小题满分6分)
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:
(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;
(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.
23.(本小题满分6分)
为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:
(1)此次调查的样本容量为____________
(2)在表中:m= ___________;n=__________
(3)补全频数分布直方图;
(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优秀人数大约是_____________名.
24.(本小题满分7分)
如图,已知抛物线
1
(2)()
y x x a
a
=-+(a>0)与x轴交于点B、C,与y轴交于点E,且点
B在点C的左侧.
(1)若抛物线过点M(-2,-2),求实数a的值;
(2)在(1)的条件下,解答下列问题;
①求出△BCE的面积;
②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.
25.(本小题满分8分)
2013年4月20日8时02分四川省雅安市芦山县发生7.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.图中的折
线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中停留了________________小时;
(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定?
26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF
(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF、BC、CD三条线段之间的关系;
②若正方形ADEF的边长为AE,DF相交于点O,连接OC.求OC的长度.
27.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. (1)求m 的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
28.如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )的长分别是一元二次方程214480x x -+=的
两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。