第三讲 大题考法——圆锥曲线中的最值、范围、证明问题
- 格式:ppt
- 大小:1.50 MB
- 文档页数:30
专题 圆锥曲线综合应用(2)- 最值、范围、证明问题一、 高考题型特点:最值、范围、证明问题是高考圆锥曲线大题中的常考题型,难度中等偏上。
二、重难点:1.求解圆锥曲线中的最值问题主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.2.圆锥曲线中的范围问题: (1)解决这类问题的基本思路是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适 的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.3.圆锥曲线中的证明问题常以椭圆、抛物线为载体,借助设而不求法,考查数形结合思想、方程思想、化归与转化能力、逻辑思维能力、运算求解能力. 三、易错注意点:本部分对学生的能力要求较高,解题中主要数形结合及各种方法的综合应用,同时对数学推理运算能力有很高的要求。
四、典型例题:例1.(2019全国卷III )已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()()2222121212||11421AB t x t x x x x t =+-=++-=+.设12,d d 分别为点D ,E 到直线AB 的距离,则21221,1d t d t =+=+.因此,四边形ADBE 的面积()(22121||312S AB d d t t =+=++设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,42S =因此,四边形ADBE 的面积为3或42例2.(2019全国卷II )已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得212x k =+.记212u k=+,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k,方程为()2k y x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ k =+221||uk k PG +=, 所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 例3.(2016年山东)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是3,抛物线E :22x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m Pm m >(, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F , 所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t -当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为21()24P . 例4.(2016年全国卷II)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【解析】(I )设11(,)M x y ,则由题意知10y >.当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 由已知及椭圆的对称性知,直线AM 的倾斜角为4π. 因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =. 所以AMN △的面积为21112121442227749AMN S AM ∆==⨯⨯⨯=. (Ⅱ)由题意知3,0,(,0)t k A t >>,则直线AM 的方程为(y k x t =+,联立(2213x y t y k x t ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x tk x t k t +++-=解得x t =23t tk tx -=所以2223611t tk t t AM k t k -=+=+由题意MA NA ⊥,所以AN 的方程为1()y x t k=-+, 同理可得26(1)||k t k AN +=由2AM AN =,得22233k tk k t=++,即3(2)3(21)k t k k -=- 当32k =时上式成立,因此23632k kt k -=-. 因为3t >,即236332k k k ->-,整理得()()231202k k k +-<- 即3202k k -<-,解得322k <<. 五、强化提升训练:1.(2019·广东佛山模拟)已知中心在坐标原点,焦点在x 轴上的椭圆M 的离心率为12,椭圆上异于长轴顶点的任意点A 与左、右两焦点F 1,F 2构成的三角形中面积的最大值为 3.(1)求椭圆M 的标准方程;(2)若A 与C 是椭圆M 上关于x 轴对称的两点,连接CF 2与椭圆的另一交点为B ,求证:直线AB 与x 轴交于定点P ,并求PA →·F 2C →的取值范围.【解析】(1)由题意知c a =12,12·2c ·b =3,a 2=b 2+c 2,解得c =1,a =2,b = 3.所以椭圆M 的标准方程是x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 1,-y 1),直线AB :y =kx +m .将y =kx +m ,代入x 24+y 23=1得,(4k 2+3)x 2+8kmx +4m 2-12=0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3.因为B ,C ,F 2共线,所以kBF 2=kCF 2,即kx 2+m x 2-1=-kx 1+mx 1-1, 整理得2kx 1x 2+(m -k )(x 1+x 2)-2m =0,所以2k 4m 2-124k 2+3-(m -k )8km4k 2+3-2m =0,解得m =-4k .所以直线AB :y =k (x -4),与x 轴交于定点P (4,0).因为y 21=3-34x 21,所以PA →·F 2C →=(x 1-4,y 1)·(x 1-1,-y 1)=x 21-5x 1+4-y 21=74x 21-5x 1+1=74⎝⎛⎭⎪⎫x 1-1072-187.因为-2<x 1<2,所以PA →·F 2C →的取值范围是⎣⎢⎡⎭⎪⎫-187,18.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.【解析】(1)由题意知e =c a =32,2b =2,又a 2=b 2+c 2,所以b =1,a =2, 所以椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0.则Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1. ①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,所以4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,则(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,所以(4k 2-5)·4m 2-14k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,化简得m 2+k 2=54. ② 由①②得0≤m 2<65,120<k 2≤54.因为原点O 到直线l 的距离d =|m |1+k2,所以d 2=m 21+k 2=54-k 21+k 2=-1+941+k2, 又120<k 2≤54,所以0≤d 2<87,解得0≤d <2147. 所以原点O 到直线l 的距离的取值范围为⎣⎢⎡⎭⎪⎫0,2147.3.若F 1,F 2分别是椭圆E :x 25+y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点.(1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 取最大值时,求直线l 的方程.【解析】(1)因为F 1(-2,0),F 2(2,0),所以圆C 半径为2,圆心C 是原点O 关于直线x +y -2=0的对称点.设C (p ,q ),由⎩⎪⎨⎪⎧q p =1,p 2+q2-2=0得p =q =2,所以C (2,2).所以圆C 的方程为(x -2)2+(y -2)2=4.(2)设直线l 的方程为x =my +2,则圆心C 到直线l 的距离d =|2m |1+m2,所以b =222-d 2=41+m2,由⎩⎪⎨⎪⎧x =my +2x 2+5y 2=5得(5+m 2)y 2+4my -1=0,设直线l 与椭圆E 交于两点A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4m 5+m 2,y 1·y 2=-15+m2, a =|AB |=1+m2y 1+y 22-4y 1y 2=25m 2+1m 2+5,ab =85m 2+1m 2+5=85m 2+1+4m 2+1≤25,当且仅当m 2+1=4m 2+1,即m =±3时等号成立.所以当m =±3时,ab 取最大值.此时直线l 的方程为x ±3y -2=0.4.(2019·梅州一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为点F 1,F 2,其离心率为12,短轴长为2 3.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 1与椭圆C 交于M ,N 两点,过点F 2的直线l 2与椭圆C 交于P ,Q 两点,且l 1∥l 2,证明:四边形MNPQ 不可能是菱形.【解析】(1)由已知,得c a =12,b =3,又c 2=a 2-b 2,故解得a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1),知F 1(-1,0),如图, 易知直线MN 不能平行于x 轴,所以令直线MN 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1得(3m 2+4)y 2-6my -9=0,所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.此时|MN |=1+m2[y 1+y 22-4y 1y 2].同理,令直线PQ 的方程为x =my +1,P (x 3,y 3),Q (x 4,y 4), 此时y 3+y 4=-6m 3m 2+4,y 3y 4=-93m 2+4,此时|PQ |=1+m2[y 3+y 42-4y 3y 4],故|MN |=|PQ |.所以四边形MNPQ 是平行四边形.若平行四边形MNPQ 是菱形,则OM ⊥ON ,即OM →·ON →=0,于是有x 1x 2+y 1y 2=0. 又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1, 所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0, 整理得到-12m 2-53m 2+4=0, 即12m 2+5=0,上述关于m 的方程显然没有实数解, 故四边形MNPQ 不可能是菱形.5.已知动圆C 过定点F 2(1,0),并且内切于定圆F 1:(x +1)2+y 2=12. (1)求动圆圆心C 的轨迹方程;(2)若曲线y 2=4x 上存在两个点M ,N ,(1)中曲线上有两个点P ,Q ,并且M ,N ,F 2三点共线,P ,Q ,F 2三点共线,PQ ⊥MN ,求四边形PMQN 的面积的最小值.【解析】(1)设动圆的半径为r ,则|CF 2|=r ,|CF 1|=23-r ,所以|CF 1|+|CF 2|=23>|F 1F 2|,由椭圆的定义知动圆圆心C 的轨迹是以F 1,F 2为焦点的椭圆,且a =3,c =1,所以b =2,动圆圆心C 的轨迹方程是x 23+y 22=1.(2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,易得|MN |=4,|PQ |=23,四边形PMQN 的面积S =4 3.当直线MN 的斜率存在时,设直线MN 的方程为y =k (x -1)(k ≠0),联立方程得⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,消元得k 2x 2-(2k 2+4)x +k 2=0,设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4k 2+2,x 1x 2=1,|MN |=1+k2⎝ ⎛⎭⎪⎫4k 2+22-4=4k 2+4.因为PQ ⊥MN ,所以直线PQ 的方程为y =-1k(x -1),由⎩⎪⎨⎪⎧ y =-1k x -1,x 23+y 22=1,得(2k 2+3)x 2-6x +3-6k 2=0. 设P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧ x 3+x 4=62k 2+3,x 3x 4=3-6k 22k 2+3,|PQ |=1+1k 2⎝ ⎛⎭⎪⎫62k 2+32-4×3-6k 22k 2+3=43k 2+12k 2+3. 则四边形PMQN 的面积S =12|MN ||PQ |=12⎝ ⎛⎭⎪⎫4k 2+443k 2+12k 2+3=83k 2+12k 22k 2+3.令k 2+1=t ,t >1,则S =83t 2t -12t +1=83-1t 2-1t +2=83-⎝ ⎛⎭⎪⎫1t +122+94. 因为t >1,所以0<1t <1,易知-⎝ ⎛⎭⎪⎫1t +122+94的范围是(0,2),所以S >832=4 3. 综上可得S ≥43,S 的最小值为4 3.6.(2019·安庆二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2). (1)求椭圆C 的标准方程;(2)设A 、B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.【解析】(1)根据题意可得:c a =22,4a 2+2b 2=1,a 2=b 2+c 2, 解得:a 2=8,b =2.故椭圆C 的标准方程为:x 28+y 24=1. (2)由(1)知F (2,0),当直线l 的斜率不存在时,S 1=S 2,于是|S 1-S 2|=0;当直线l 的斜率存在时,设直线l :y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =k x -2,x 28+y 24=1,得(1+2k 2)x 2-8k 2x +8k 2-8=0. ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k2,于是|S 1-S 2|=12×42×|y 1+y 2|=22|k (x 1+x 2)-4k |=22⎪⎪⎪⎪⎪⎪k ×8k 21+2k 2-4k =82|k |1+2k 2=821|k |+2|k |≤8222=4.当且仅当k =±22时等号成立,此时|S 1-S 2|的最大值为4. 综上,|S 1-S 2|的最大值为4.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右焦点为F ,且该椭圆过点⎝⎛⎭⎪⎫1,-32. (1)求椭圆C 的方程;(2)当动直线l 与椭圆C 相切于点A ,且与直线x =433相交于点B 时,求证:△FAB 为直角三角形. 【解析】(1)由题意得c a =32,1a 2+34b 2=1,又a 2=b 2+c 2,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)由题意可得直线l 的斜率存在,设l :y =kx +m ,联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0, 判别式Δ=64k 2m 2-16(4k 2+1)(m 2-1)=0,得m 2=4k 2+1>0.设A (x 1,y 1),则x 1=-8km 24k 2+1=-8km 2m 2=-4k m ,y 1=kx 1+m =-4k 2m +m =1m ,即A ⎝ ⎛⎭⎪⎫-4k m ,1m . 易得B ⎝ ⎛⎭⎪⎫433,433k +m ,F (3,0), 则FA →=⎝ ⎛⎭⎪⎫-4k m -3,1m ,FB →=⎝ ⎛⎭⎪⎫33,433k +m , FA →·FB →=33⎝ ⎛⎭⎪⎫-4k m -3+1m ⎝ ⎛⎭⎪⎫433k +m =-43k 3m -1+43k 3m +1=0, 所以FA →⊥FB →,即△FAB 为直角三角形,得证.8.(2019·朝阳区模拟)过椭圆W :x 22+y 2=1的左焦点F 1作直线l 1交椭圆于A ,B 两点,其中A (0,1),另一条过F 1的直线l 2交椭圆于C ,D 两点(不与A ,B 重合),且D 点不与点(0,-1)重合.过F 1作x 轴的垂线分别交直线AD ,BC 于E ,G .(1)求B 点坐标和直线l 1的方程;(2)求证:|EF 1|=|F 1G |.【解析】(1)由题意可得直线l 1的方程为y =x +1.与椭圆方程联立,由⎩⎪⎨⎪⎧ y =x +1x 22+y 2=1可求B ⎝ ⎛⎭⎪⎫-43,-13. (2)证明:当l 2与x 轴垂直时,C ,D 两点与E ,G 两点重合,由椭圆的对称性,|EF 1|=|F 1G |. 当l 2不与x 轴垂直时,设C (x 1,y 1),D (x 2,y 2),l 2的方程为y =k (x +1)(k ≠1).由⎩⎪⎨⎪⎧ y =k x +1x 22+y 2=1消去y ,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0. 则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1. 由已知,x 2≠0,则直线AD 的方程为y -1=y 2-1x 2x ,令x =-1, 得点E 的纵坐标y E =x 2-y 2+1x 2. 把y 2=k (x 2+1)代入得y E =x 2+11-k x 2. 由已知,x 1≠-43, 则直线BC 的方程为y +13=y 1+13x 1+43⎝ ⎛⎭⎪⎫x +43, 令x =-1,得点G 的纵坐标y G =y 1-x 1-13⎝ ⎛⎭⎪⎫x 1+43.把y 1=k (x 1+1)代入得y G =x 1+1k -13x 1+4. y E +y G =x 2+11-k x 2+x 1+1k -13x 1+4 =1-k [x 2+13x 1+4-x 2x 1+1]x 2·3x 1+4 =1-k [2x 1x 2+3x 1+x 2+4]x 2·3x 1+4把x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1代入到2x 1x 2+3(x 1+x 2)+4中, 2x 1x 2+3(x 1+x 2)+4=2×2k 2-22k 2+1+3×⎝ ⎛⎭⎪⎫-4k 22k 2+1+4=0. 即y E +y G =0, 即|EF 1|=|F 1G |.。