“二次根式”的错解例析
- 格式:pdf
- 大小:159.84 KB
- 文档页数:3
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
专题5 二次根式最热考点——阅读材料题(解析版)第一部分 典例精析+变式训练类型一 分母有理化典例1(2022秋•万柏林区校级月考)阅读材料:材料一:两个含有二次根式而非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.×=3,6﹣2=4―材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如1=,8==请你仿照材料中的方法探索并解决下列问题:(1 (均写出一个即可)(2)将下列各式分母有理化:(要求:写出变形过程)思路引领:(1)根据互为有理化因式的定义得出答案即可;(2)①先分子和分母都乘以分母的有理化因式,再根据二次根式的运算法则进行计算即可;②先分子和分母都乘以分母的有理化因式,再根据二次根式的运算法则进行计算即可.解:(1+―(2)①3=5;②11=+3.总结提升:本题考查了平方差公式,分母有理化和二次根式的混合运算,能找出分母的有理化因式是解此题的关键.变式训练1.(2022秋•修水县期中)阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因+11.(1)请你写出两个二次根式,使它们互为有理化因式: .化简一个分母含有二次根式的式子时,可以采用分子、分母同乘分母的有理化因式的方法.例如:3.(2)请仿照上述方法化简:3.(3)比较1与1的大小.思路引领:(1)根据有理化因式的概念写出乘积不含二次根式的两个式子即可;(2)分子,分母同时乘以分母的有理化因式即可;(3)分母有理化后再比较.解:(122互为有理化因式,+22(答案不唯一);(2=(3∴1<1.总结提升:本题考查二次根式的混合运算,解题的关键是掌握二次根式的分母有理化.类型二二重根式的化简典例2(2022秋•郸城县期中)请阅读下列材料:a ,b ,使a +b =m ,ab =n ,即22=m ,a >b ).m =7,n =12,由于4+3=7,4×3=12,即22=7×=2+请根据材料解答下列问题:(1= .(2.思路引领:(1)利用完全平方公式化简得出答案;(2)利用完全平方公式以及二次根式的性质化简得出答案.解:(1―(2m =21,n =108,∵9+12=21,9×12=108,即22=21×===3.总结提升:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.变式训练1.(2022秋•例如:3224=6+数化简中的作用.建立模型:只要我们找到两个数a ,b ,使a +b =m ,ab =n ,这样22==ma>b),m=7,n=12,由于4+3=7,4×3=12,即22=7×=2+模型应用1:利用上述解决问题的方法化简下列各式:(1(2模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4―AC=BC边的长为多少?(结果化成最简).思路引领:(1)先根据完全平方公式进行变形,再求出即可;(2)先根据完全平方公式进行变形,再求出即可;(3)根据勾股定理求出即可.解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+2=6,1====1(2m=13,n=40,由于5+8=13,5×8=40,2+2=13=====(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,2+BC2=(42所以,BC==2.总结提升:本题考查的是分母有理化,勾股定理和完全平方公式,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.类型三整体思想运算典例3(2022秋•皇姑区校级期中)阅读理解:已知x=1,求代数式x2﹣2x﹣5的值.王红的做法是:根据x=1得(x﹣1)2=2,∴x2﹣2x+1=2,得:x2﹣2x=1.把x2﹣2x作为整体代入:得x2﹣2x﹣5=1﹣5=﹣4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x―2,求代数式x2+4x﹣5的值;(2)已知x x3+x2+1的值.思路引领:(1)仿照阅读材料解答即可;(2)把已知变形可得x2+x=1,代入即可求出答案.解:(1)∵x―2,∴x+2=∴(x+2)22,∴x2+4x=﹣1,∴x2+4x﹣5=﹣6;,(2)∵x=2∴2x+1=∴(2x+1)22,变形整理得:x2+x=1,∴x3+x2+1=x(x2+x)+1=x+11总结提升:本题考查二次根式的化简求值,解题的关键是读懂题意,能将已知式子适当变形.针对训练1.(2022春•江都区期末)请阅读下列材料:问题:已知x=,求代数式x2﹣4x﹣7的值.小明的做法是:根据x=得(x﹣2)2=5,∴x2﹣4x+4=5,x2﹣4x=1.把x2﹣4x作为整体代入,得:x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.仿照上述方法解决问题:(1)已知x=―3,求代数式x2+6x﹣8的值;(2)已知x=x3+2x2的值.思路引领:(1)根据x=3求出x+3x2+6x+9=10,求出x2+6x=1,再代入求出答案即可;(2)根据x2x+1=4x2+4x+1=5,求出x2+x=1,再变形后代入,即可求出答案.解:(1)∵x3,∴x+3=两边平方得:(x+3)2=10,即x2+6x+9=10,∴x2+6x=1,∴x2+6x﹣8=1﹣8=﹣7;(2)∵x=∴2x―1,∴2x +1=两边平方,得(2x +1)2=5,即4x 2+4x +1=5,∴4x 2+4x =4,即x 2+x =1,∴x 3+2x 2=x 3+x 2+x 2=x (x 2+x )+x 2=x ×1+x 2=x +x 2=1.总结提升:本题考查了二次根式的化简求值,完全平方公式,整式的加减等知识点,能够整体代入是解此题的关键.类型四 基本不等式求最值典例4(2021春•新泰市期中)观察,计算,判断:(只填写符号:>,<,=或≥,≤)(1)①当a =2,b =2②当a =3,b =3③当a =4,b =4④当a =3,b =5(2)观察以上式子,猜想写出关于a b 2与a >0,b >0)之间的数量关系: 并进行探究证明;(提示:2≥0)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为 .思路引领:(1)把各组a 、b 的值分别代入a b 2和(22≥0,然后利用完全平方公式展开,变形后可得到a b 2≥(3)设长方形的长宽分别为xm ,ym ,则xy =1,利用(2)中的结论得到x y2≥2(x +y )≥4,然后可确定镜框周长的最小值.解:(1)当a =2,b =2时,a b 2=2=2,则a b 2=②当a =3,b =3时,,a b2=33,则a b 2③当a =4,b =4时,a b2=44,则a b 2=④当a =3,b =5时,a b2=4,则a b 2>故答案为:=,=,=,>;(2)a b 2≥2≥0,∴a ﹣b ≥0,∴a +b ≥∴a b 2≥故答案为:a b 2≥(3)设长方形的长为xm ,宽是ym ,则xy =1,∵x y2≥∴x +y ≥2,∴2(x +y )≥4,即镜框周长的最小值为4米.故答案为:4米.总结提升:本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.变式训练1.(2022春•海淀区校级期中)阅读下面材料:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b >0时:2=a ﹣b ≥0,∴a +b ≥a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x的最小值为 .当x <0时,x +1x的最大值为 .(2)若y =x 22x 10x 1(x >﹣1),求y 的最小值.(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和10,求四边形ABCD 面积的最小值.思路引领:(1)根据公式计算即可;(2)先配方,化简,运用公式计算即可;(3)设△BOC 的面积为x ,根据△AOB 与AOD ,△BOC 与△COD 为等高的三角形,且△AOB 与△BOC ,△AOD 与△COD 为同底的三角形,得到S △BOC :S △COD =S △AOB :S △AOD ,求出S △AOD =40x,利用公式求面积的最小值即可.解:(1)当x >0时,1x>0,∴x +1x≥=2,∴x +1x的最小值是2;当x <0时,﹣x >0,―1x >0,∴x +1x =―(﹣x ―1x),∵﹣x ―1x ≥2,∴﹣(﹣x ―1x)≤﹣2,∴x +1x的最大值为﹣2;故答案为:2;﹣2;(2)y =x=x +1+9x 1,∵x >﹣1,∴x +1>0,∴y ≥=2×3=6,∴y 的最小值为6;(3)设△BOC 的面积为x ,∵△AOB 与AOD ,△BOC 与△COD 为等高的三角形,且△AOB 与△BOC ,△AOD 与△COD 为同底的三角形,∴S △BOC :S △COD =S △AOB :S △AOD ,∴x :10=4:S △AOD ,∴S △AOD =40x,∴四边形ABCD 的面积=4+10+x +40x≥=14+2×=当且仅当x =40x,即x =∴四边形ABCD 面积的最小值为总结提升:本题考查了配方法的应用,列出四边形ABCD 面积的表达式解题的关键.类型五 a =的化简典例5 (2022秋•仁寿县校级月考)在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:2﹣|1﹣x |.解:隐含条件1﹣3x ≥0,解得x ≤13,∴1﹣x >0,∴原式=(1﹣3x )﹣(1﹣x )=1﹣3x ﹣1+x =﹣2x.(12;(2)已知a,b,c为△ABC的三边长,化简(3)已知a、b a+3a―b+1,求ab的值.思路引领:(1)根据二次根式有意义条件得出2﹣x≥0,求出x≤2,再根据二次根式的性质进行计算即可;(2)根据三角形三边关系及二次根式的性质可得答案;(3)直接利用二次根式性质进而分析得出a,b的值,进而得出答案.解:(1)隐含条件2﹣x≥0,解得:x≤2,―2=3﹣x﹣(2﹣x)=3﹣x﹣2+x=1;(2)∵a,b,c为△ABC的三边长,∴a﹣b<c,a+c>b,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,=(a+b+c)﹣(a﹣b﹣c)﹣(b﹣a﹣c)﹣(c﹣b﹣a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c;(3=a+3,若a≥2,则a﹣2=a+3,不成立,故a<2,∴2﹣a=a+3,∴a=―1 2,=a﹣b+1,∴a﹣b+1=1或0,∴b=―12或12,∴ab=±1 4.总结提升:本题考查了数轴与实数,二次根式的性质与化简等知识点,能熟记二次根式的性质是解此题的关键.变式训练1.(2022秋•唐河县月考)阅读下列解题过程:2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去).当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2,符合条件.当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去).综上所述,a的取值范围是1≤a≤3.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题.(1)当2≤a≤5 ;(2=4成立,求a的取值范围.思路引领:(1)根据二次根式的性质即可求出答案;(2)先将等式的左边进行化简,然后分情况讨论即可求出答案.解:(1)∵2≤a≤5,∴a﹣2≥0,a﹣5≤0,∴原式=|a﹣2|+|a﹣5|=a﹣2﹣(a﹣5)=3;(2)由题意可知:|3﹣a|+|a﹣7|=4,当a≤3时,∴3﹣a≥0,a﹣7<0,∴原方程化为:3﹣a﹣(a﹣7)=4,∴a=3,符合题意;当3<a<7时,∴3﹣a<0,a﹣7<0,∴﹣(3﹣a)﹣(a﹣7)=4,∴4=4,故3<a<7符合题意;当a≥7时,∴3﹣a<0,a﹣7≥0,∴﹣(3﹣a)+(a﹣7)=4,∴a=7,符合题意;综上所述,3≤a≤7;总结提升:本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.类型六纠正解题过程中的错误典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.针对训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是 .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.类型7 分子有理化求最值和比较大小典例7 (2020秋•梁平区期末)阅读下述材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”:―分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:――=1,―+―再例如:求y ―解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =4.当x =2+2,所以y 的最大值是2.解决下述问题:(1)比较―4和(2)求y =思路引领:(1)利用分母有理化得到4=2,=2,利用4>4<(2)根据二次根式有意义的条件得到由1+x ≥0,x ≥0,则x ≥0,利用分母有理化得到y =1,由于x =01,从而得到y 的最大值.解:(1)∵―4==2,=而4∴+4>∴―4<(2)由1+x ≥0,x ≥0得x ≥0,而y ―1,∵x=01,∴y的最大值为1.总结提升:本题考查了分母有理化:分母有理化是指把分母中的根号化去.也考查了平方差公式.针对训练1.(2021秋•即墨区期中)我们在学习二次根式时,了解了分母有理化及其应用.其实,还有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消除分子中的根式.1.分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较:―+再例如,求y―解:由x+2≥0,x﹣2≥0可知x≥2,而y=4.当x=2+2.所以y的最大值是2.利用上面的方法,完成下面问题:(1(2)求y=+2的最大值.思路引领:(1)利用平方差公式进行分子有理化计算,从而比较大小;(2)利用二次根式有意义的条件确定x的取值范围,然后通过利用平方差公式对原式进行分子有理化变形,从而确定其最大值.解:(1=1;=++――(2)∵x+1≥0且x﹣1≥0,∴x≥1,原式=2,当x=1时,2有最大值为此时,原式有最大值为2+总结提升:本题考查二次根式的有理化计算,理解二次根式的性质,掌握平方差公式(a+b)(a﹣b)=a2﹣b2的结构是解题关键.第二部分专题提优训练1.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=+2,求x y的值.思路引领:根据二次根式中的被开方数是非负数,可得x的值,进而得出y的值,然后代入所求式子计算即可.解:由题意得:2x―1≥01―2x≥0,∴2x﹣1=0,解得x=1 2,所以y=2,所以x y=(12)2=14.总结提升:此题主要考查了二次根式有意义的条件,正确得出被开方数的取值范围是解题关键.2.(2022秋•驻马店期中)阅读材料:(一)如果我们能找到两个正整数x,y使x+y=a且xy=b,这样“和谐二次根式”,则上述过程就称之为化简“和谐二次根式”.=1+(二)在进行二次根式的化简与运算时,我们有时还会碰上如2样的式子,其实我们还可以将其进一12=1.那么我们称这个过程为分式的分母有理化.根据阅读材料解决下列问题:(1)化简“和谐二次根式”: ; .(2)已知m =n ,求m nm n 的值.思路引领:(1)根据阅读材料(一)化简“和谐二次根式”即可;(2)先根据阅读材料(一)化简m 与n 的分母,再根据阅读材料(二)进行分母有理化即可.(1)解:=+2;=2―+2;2―(2)解:∵m =11n =11+∴m ﹣n ―m +n =+∴m n m n=总结提升:本题考查的是估算无理数的大小,二次根式的性质与化简,考查了学生的阅读理解能力以及知识的迁移能力,弄懂题意,熟练掌握二次根式的性质、完全平方公式是解题的关键.3.(2021秋•广平县期末)阅读下列解题过程―(1)观察上面的解答过程,请写出1= .(2⋅⋅⋅思路引领:(1(2)把各加数分母有理化,再合并同类二次根式.解:(1(2)1+11⋅⋅⋅+11=―1+―...=1=10﹣1=9.总结提升:此题考查二次根式的分母有理化,确定最简公分母和合并同类二次根式是关键.4.(2022秋•南召县月考)阅读下面的材料,解答后面提出的问题:在二次根式计算中我们常常遇到这样的情况:(2+×(2―=1,×=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:7+像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决问题:(1)4+ .(2)已知x =y ,则1x +1y = .(3)利用上面所提供的解法,请化简1+1+1+⋯+1+1.思路引领:(1)根据有理化因式的概念解答;(2)利用二次根式的乘法法则计算;(3)根据分母有理化、二次根式的加法法则计算.解:(1)∵(4+(416﹣7=9,∴44―故答案为:4(2)∵x =∴1x =2=5﹣同理,1y =∴1x+1y =5﹣=10,故答案为:10;(3)原式=―1++⋯+=10﹣1=9.总结提升:本题考查的是二次根式的混合运算、分母有理化,掌握二次根式的乘法法则是解题的关键.5.(2022秋•峄城区校级月考)阅读下列材料,然后回答问题:再进行二次根式运算时,我们有时会碰上如5,221=1.以上这种化简的过程叫做分母有理化.(1)请根据以上方法化简:①4;②4;③1(2)直接写出:2― ;(3)计算:⋯⋯+⋅思路引领:(1)根据阅读材料分母有理化即可;(2)根据倒数的概念列式,再分母有理化即可;(3)将括号内各数分母有理化,合并同类二次根式后再算乘法.解:(14+1;1(2)2―=2+故答案为:2(3―......+×+1)―1)1)=2022.总结提升:本题考查二次根式的混合运算,解题的关键是读懂题意,掌握分母有理化的方法.6.(2022春•昭化区期末)=a (a ≥0),+1)―1)=b ﹣1(b ≥0)这样的+1―1,都互为有理化因式.进行含有二次根式的分式计算时,利用有理化因式,可以化去分母中的根号.【解决问题】(1―3的有理化因式为 ;(2)已知正整数a ,bb3―a ,b 的值.思路引领:(1―3的有理化因式;(2)根据题意,将题目中的式子变形,然后即可得到关于a 、b 的二元一次方程组,求出a 、b 的值即可.解:(1―3)+3)=7﹣9=﹣2,―3+3,+3;(2)∵a=3―=3﹣∴a +1)=3﹣+a ―=3﹣∴(a ―12b a =3﹣∴a ―12b =―2a =3,解得a =3b =10,即a 的值是3,b 的值是10.总结提升:本题考查二次根式的混合运算、分母有理化,解答本题的关键是明确二次根式混合运算的运算法则和分母有理化的方法.7.(2022春•新余期末)阅读下列解题过程:=2,求a 的取值.解:原式=|a ﹣2|+|a ﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7(26,求a的取值;(3=5的a的取值范围 .思路引领:(1)根据已知可得3﹣a≤0,a﹣7≤0,然后利用二次根式的性质,进行计算即可解答;(2)按照例题的思路,分类讨论进行计算即可解答;(3)按照例题的思路,分类讨论进行计算即可解答.解:(1)∵3≤a≤7,∴3﹣a≤0,a﹣7≤0,=|3﹣a|+|a﹣7|=a﹣3+7﹣a=4;(2)原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣a﹣1+3﹣a=﹣2a+2=6,解得a=﹣2;当﹣1≤a<3时,原式=a+1+3﹣a=4,等式不成立;当a≥3时,原式=a+1+a﹣3=2a﹣2=6,解得a=4;所以,a的值为﹣2或4;(3)原式=|a﹣1|+|a﹣6|,当a<1时,原式=1﹣a+6﹣a=7﹣2a=5,解得a=1(舍去);当1≤a<6时,原式=a﹣1+6﹣a=5,等式恒成立;当a≥6时,原式=a﹣1+a﹣6=2a﹣7=5,解得a=6;∴a的取值范围:1≤a≤6,故答案为:1≤a≤6.总结提升:本题考查了整式的加减,二次根式的性质与化简,理解例题的解题思路是解题的关键.8.(2022秋•辉县市期中)【阅读学习】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如=(1+ 2.善于思考的小明进行了以下探索:设a+=(m+2(其中a,b,m,n均为整数),则有a+=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把a+【解决问题】(1)当a,b,m,n均为正整数时,若a+(m+2,用含m,n的式子分别表示a,b,得:a = ,b= ;(2)利用(1)的结论,找一组正整数a,b,m,n(m≠n),使得a+(m+2成立,且a+b+m+n 的值最小.请直接写出a,b,m,n的值;(3)若a=(m+2,且a,m,n均为正整数,求a的值.思路引领:(1)根据阅读材料,利用完全平方公式将等式右边展开,即可求出a、b的值;(2)根据(1)的结论即可得到结果;(3)根据题意得到a=m2+5n2,b=2mn,求得mn=3,分类讨论即可得到结论.解:(1)(m+2=m2+3n2=m2+3n2+2∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)当n=1,m=2时,a=22+3×1=7,b=2mn=4,故a=7,b=4,m=2,n=1时,a+b+m+n的值最小.(3)(m+2=m2+5n2=a∴a=m2+5n2,6=2mn,∴mn=3,∵a、m、n均为正整数,∴令m=1,n=3或m=3,n=1;当m=1,n=3时,a=12+5×32=46.当m=3,n=1时,a=32+5×12=14.综上,a的值为14或46.总结提升:本题考查了二次根式的化简求值,完全平方公式,整式的加减,理解题意,弄清阅读材料中把一个式子化为平方式的方法是解题的关键.9.(2022春•邗江区期末)阅读下列材料,并回答问题:把形如a+a﹣a、b为有理数且b>0,m为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: 3+ 3―(2)﹣a、b的值;(3)若两个共轭实数的和是10,差的绝对值是思路引领:(1)根据题意,可以写出一组共轭实数,本题答案不唯一;(2)根据共轭实数的定义,可以判断﹣a和b即可;(3)根据两个共轭实数的和是10,差的绝对值是a、b、m的值,从而可以写出这两个共轭实数.解:(1)由题意可得,3+3―故答案为:33―(2)﹣a=0,b=2;(3)设这两个共轭实数为a+a﹣∵两个共轭实数的和是10,差的绝对值是∴(a++(a﹣10,|(a+a﹣|=∴2a=10,|2∴a=5,b=2或b=﹣2(舍去),m=3,∴这两个共轭实数是5﹣总结提升:本题考查二次根式的混合运算、新定义,解答本题的关键是明确题意,会用新定义解答问题.10.(2022春•武江区校级期末)请阅读下列材料:问题:已知x=2,求代数式x2﹣4x﹣7的值.小敏的做法是:根据x+2得(x﹣2)2=5,∴x2﹣4x+4=5,得:x2﹣4x=1.把x2﹣4x作为整体代入:得x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x―2,求代数式x2+4x﹣10的值;(2)已知x x 3+x 2+1的值.思路引领:(1)根据完全平方公式求出x 2+4x =1,代入计算即可;(2)根据二次根式的乘法法则、完全平方公式计算,答案.解:(1)∵x ―2,∴(x +2)2=5,∴x 2+4x +4=5,∴x 2+4x =1,∴x 2+4x ﹣10=1﹣10=﹣9;(2)∵x =∴x 22=则x 3=x •x 2=2×22,∴x 3+x 2+1=21=总结提升:本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的乘法法则是解题的关键.11.(2021秋•宽城县期末)(1)计算:+1;(2―2;(3)下面是王鑫同学进行实数运算的过程,认真阅读并完成相应的问题:×第一步―第二步―第三步第四步①以上化简步骤中第一步化简的依据是: ;②第 步开始出现错误,请写出错误的原因 ,该运算正确结果应是 .思路引领:(1)利用平方差公式计算;(2)先把各二次根式化简,然后合并即可;(3)①第一步化简的依据为二次根式的除法法则;②第二步去括号错误,然后计算出正确的结果.解:(1)原式=5﹣3+1=3;(2)原式=+912×5=―5=+5;(3)①化简步骤中第一步化简的依据是商的算术平方根,等于算术平方根的商;故答案为商的算术平方根,等于算术平方根的商;②第二步开始出现错误,请写出错误的原因括号前是负号,去掉括号后第二项没有变号;,该运算正确结果应是故答案为:二;括号前是负号,去掉括号后第二项没有变号; 总结提升:本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和除法法则是解决问题的关键.12.(2021秋•岳阳期末)王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:2123―1;2直接写出以下算式的结果:2 ;2(n 为正整数)= ;(2)小明编的题,由二次根式的乘法可知:+1)2=2=+2=a +b a ≥0,b ≥0);再根据平方根的定义可得:+1a ≥0,b ≥0);直接写出以下算式的结果: , , ;(3)王老师编的题,根据你的发现,完成以下计算:(2+2222)思路引领:(1)根据分母有理化化简即可得出答案;(2=|a|化简即可;(3|a|化简,根据平方差公式即可得出答案.解:(17=n1=n为正整数);(2===+1;===―1;===2+1―1,2+(3)原式==1―――1))=11﹣1=10.总结提升:本题考查了分母有理化,二次根式的混合运算,探索二次根式计算中的规律,将第一个多项式的每项分母有理化,裂项相消是解题的关键.13.(嘉祥县期中)阅读理解:对于任意正整数a,b2≥0,∴a﹣b≥0,∴a+b≥a=b时,等号成立;结论:在a+b≥2 a、b均为正实数)中,只有当a=b时,a+b有最小值根据上述内容,回答下列问题:(1)若a+b=9≤ ;(2)若m>0,当m为何值时,m+1m有最小值,最小值是多少?思路引领:(1)根据a+b≥2 a、b均为正实数),进而得出即可;(2)根据a+b≥2 a、b均为正实数),进而得出即可.解:(1)∵a+b≥2 a、b均为正实数),∴a+b=9,则a+b≥9 2;故答案为:9 2;(2)由(1)得:m +1m≥即m +1m ≥2,当m =1m 时,m =1(负数舍去),故m +1m有最小值,最小值是2.总结提升:此题主要考查了二次根式的应用,根据题意结合a +b ≥2 a 、b 均为正实数)求出是解题关键.14.(2021春•莆田期中)阅读下面材料:同学们上学期学习分式,整式还有这个学期的二次根式,小明发现像m +n ,mnp 如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是他把这样的式子命名为神奇对称式.他还发现像m 2+n 2,(m ﹣1)(n ﹣1)等神奇对称式都可以用mn ,m +n 表示.例如:m 2+n 2=(m +n )2﹣2mn ,(m ﹣1)(n ﹣1)=mn ﹣(m +n )+1.于是丽丽把mn 和m +n 称为基本神奇对称式.请根据以上材料解决下列问题:(1)代数式①2,②m 2﹣n 2,③n m ,x ≥0,y ≥0,z ≥0)中,属于神奇对称式的是 (填序号);(2)已知(x ﹣m )(x ﹣n )=x 2﹣px +q .①若p =3,q =﹣2,则神奇对称式1m +1n= ;②―q =0,求神奇对称式m 31m +n 31n的最小值.思路引领:(1)根据神奇对称式的概念进行判断;(2)①首先利用多项式乘多项式的计算法则计算求得mn ,m +n 的值,然后利用分式的计算法则进行计算;②利用分式的运算法则将原式进行化简,然后代入求值,结合配方法求代数式的最值.解:(1①是神奇对称式;只有当m +n =0或m ﹣n =0时,m 2﹣n 2=n 2﹣m 2,∴m 2﹣n 2不一定等于n 2﹣m 2,故②不是神奇对称式;只有当m =n ≠0或m =﹣n 时,n m =m n ,∴n m 不一定等于m n ,故③不是神奇对称式;++④是神奇对称式;故答案为:①④;(2)①∵(x﹣m)(x﹣n)=x2﹣(m+n)x+mn==x2﹣px+q,∴m+n=p=3,mn=q=﹣2,∴1m+1n=m nmn=―32,故答案为:―3 2;②∵(x﹣m)(x﹣n)=x2﹣(m+n)x+mn==x2﹣px+q,∴m+n=p,mn=q,原式=m2+1m+n2+1n=(m+n)2﹣2mn+m n mn=p2﹣2q+p q,q,∴p=±q,当p=q时,原式=p2﹣2q+1=(p﹣1)2≥0,∴此时,原式的最小值是0;当p=﹣q时,原式=p2﹣2q﹣1=(p﹣1)2﹣2≥﹣2,∴此时,原式的最小值是﹣2;综上,m31m+n31n的最小值是﹣2.总结提升:本题考查多项式乘多项式的运算,分式的混合运算,二次根式的混合运算,理解新定义,掌握运算法则是解题关键.。
专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是 .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。
二次根式定义及性质教学内容:并利用它们进行计算和化简•2. 重点:—「汕「•厂—,厂—5及其运用.3. 难点:利用 gx θ(α≥0),(乔「二S0X°),= α⅛≥0) 解决具体问题知识点一:二次根式的概念一般地,我们把形如 丄;(a ≥ 0)?的式子叫做二次根式,“"”称为二次根号. 知识点二:二次根式的性质1.&≥Q(a≥0);(石)=Λ (d ≥ 0)=IaI= <3.2.a (a ≥0) -a (a <0);4. 积的算术平方根的性质:5. 商的算术平方根的性质:λj'.∕∙,- -ΛJ I -■", ' -■;知识点三:代数式S形女口 5, a , a+b , ab ,】,X , & (α≥0)这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式 (algebraic expression).1.学习目标:理解二次根式的概念, 了解被开方数是非负数的理由; 理解并掌握下列结论: U- ■' ■: ■' 111, 经典例题透析类型一:二次根式的概念例1、下列式子,哪些是二次根式,哪些不是二次根式:(X >0)、1匚、=、二、U J i(X ≥0,y ≥ °)∙思路点拨:二次根式应满足两个条件:第一,有二次根号“ ∙∖厂”;第二,被开方数是正数或例2、当X 是多少时,,-I 在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于 0,所以3X -1 ≥0, ?义.1解:由 3X -1 ≥ 0,得:X ≥ j1当X ≥ 1时,「丄-在实数范围内有意义.总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 举一反三【变式1】X 是怎样的实数时,下列各式实数范围内有意义?1解: (1)由 (M ≥ 0,解得:X 取任意实数•••当X 取任意实数时,二次根式' ■'在实数范围内都有意义(2)由 x-1 ≥ 0,且 x-1 ≠ 0,解得:X > 1•当X > 1时,二次根式■在实数范围内都有意义•解:二次根式有:匸、C i(X ≥ 0,y ≥ 0);才能有意J∙. (X >0)、 不是二次根式的有:举一反三【变式1】计算:(x≥0); 1【变式2】当X是多少时,•一在实数范围内有意义?1思路点拨:要使J一上- -;+•■ + I在实数范围内有意义,___ 丄必须同时满足中的2x+3 ≥0和T十〕中的x+1 ≠ 0.2x+3≥0解:依题意,得〔兀+1至°3由①得:X ≥ -.由②得:X ≠ -13 丄当X≥-1且x≠ -1时,,l' ' + , 一在实数范围内有意义.类型二:二次根式的性质例1、计算:(厕(b ≥0)思路点拨:我们可以直接利用「〔(a≥0)的结论解题.(6「厂-解:⑴因为x ≥0,所以x+1 >0⑶ T a 2+2a+仁(a+1)22 2 2 2⑷∙ 4x -12x+9=(2x) -2 ∙ 2x • 3+3 =(2x-3) 又∙∙∙ (2x-3)2≥ 0例2、化简:(1)若=a ,则a 可以是什么数?⑶ L >a ,贝U a 可以是什么数? 思路点拨:思路点拨:因为(1)9=32, ⑵(-4)2=42,⑶25=52,⑷(-3)2=32,所以都可运用 J 「二-「』—山去化简.解:⑴丄I=W =3 ;(Nt 广=4;⑶】F =QI =5;⑷厂T =厂=3.⑴上1;⑵' 「思路点拨: (1)因为 X ≥ 0 ,所以 X+1 > 0 ;2 2(3)a +2a+1=(a+1) ≥0;(2)a 2≥ 0;2 2 2 2(4)4x -12x+9=(2x) -2 ∙ 2x • 3+3 =(2x-3) ≥ 0•所以上面的4题都可以运用= a (a ≥0)的重要结论解题.+ 2α + l=a 2+2a+1; ,?并根据这一性质回答下列问题.(2) ∙∙∙ a 2≥ 0,又••• (a+1)2≥0,∙∙∙ a 2+2a+1 ≥0, 2∙ 4x -12x+9 ≥2=4x -12x+9.例3、填空:当a ≥ 0时,;当a v 0时,=-a ,贝U a 可以是什么数?(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据⑴、(2)可知-I a I ,而I df大于a ,只有什么时候才能保证呢?解:⑴因为 扮= L :,所以 a ≥ 0;类型三:二次根式性质的应用例1、当x=-4时,求二次根式J 一匚:『的值.思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同例 2、(1)已知 y=-∙j2-: + 勺了一 F +5 ,求「"的值.(2)若 C- - +=0,求 丁宀、严的值.j _ 2 解:⑴由—— F -- -可得「 J」,.l _|(2) . V -: '.. r .■. _ J- [-<-_■ 、■一• 一 一U..√^+T = O J 二 0 ..Λ +1 = 0,⅛ — 1 = 0,p . a = - ↑f b-l:.β≡+⅛≡ = (-l)w +l≡=2.例3、在实数范围内分解因式:23(I)X -5; (2)x -2x ;解:⑴原式一;•••要填第一个空格可以根据这个结论,第二空格就不行,应变形,使 ()2”中的数是正数,(2)因为 丄-一,,所以a ≤ 0; (3)因为当a ≥ 0时,要使 1∕" ', J ,即使a > a 所以a 不存在;当要使 \ - '■ I -,即使-a > a ,即 a v 0;综上,a v 0.解:将x=-4代入二次根式,得因为,当a ≤ 0时,那么-a ≥ 0.a v 0 时,= (M)(")■⑵原式= XCX3-2)= ⅛i-(T2)i; =X(X+Λ∕2)(X-T2).学习成果测评基础达标一、选择题1•下列式子中,不是二次根式的是()3. (福建省福州市)若代数式K-1在实数范围内有意义,则X的取值范围为()A . x> 0B . x≥0 C. X ≠ 0 D. x≥0 且X ≠ 15 . a≥0 时,二、'一::、A.—,比较它们的结果,下面四个选项中正确的是()B .C '丿十■'M 1.宀■'■.. <D . V-J ' _ 寸 JN表示的数可能是()A .J- B. j I112•已知一个正方形的面积是 5 ,那么它的边长是()B. LJ-IC. 1 D .以上皆不对”1的值是()C . 4:D.以上都不对4.6.(辽宁省大连市)如图,数轴上点、填空题1. ___________________________ 若亦二 4,贝y X =.2•若血+3有意义,则Q 的取值范围是 __________________⑶(斯+3龍)(2筋-痂)=O10.(内蒙古鄂尔多斯市)如图,在数轴上,A 、B 两点之间表示整数的点有A B-< -- '_-^^3 y∕δ三、解答题1. 求下列二次根式中字母 a 的取值范围:个.9.计算:底面边长应是多少? 能力提升一、选择题2. (山西省临汾市)若■■■ --f∙'--:■,则』与3的大小关系是()B .汽〕3.下列计算正确的是()二、填空题Z-I1.若二 ,则」2. 若■■是一个正整数,则正整数 m 的最小值是3.已知实数「三、解答题1.当X 是多少时, 二+x 2在实数范围内有意义?2•某工厂要制作一批体积为 Im 3的产品包装盒,其高为 0.2m ,按设计需要,?底面应做成正方形试问C . 2D .无数4.(福建省厦门市) 3 √5 5-<—<A. L LJ F 列四个结论中,正确的是5 √5 3 _ <——<-B.→ LJC. D.⑴二• 1 ,1.使式子有意义的未知数B . 1A .B .C .D .在数轴上的对应点如图所示,则2•若T ■一 " +^- ■有意义,求4•已知' .l^ ",求 x+y 的值.综合探究1.(福建省南安市)观察分析下列数据,寻找规律: 0,匚「,3,2匸,,3、,,,那么 第10个数据应是 ____________ .两种解答中, _______ 的解答是错误的,错误的原因是 _____________4. 若:--一时,试化简八 ’厂一 U T -'.5. 在实数范围内分解下列因式(1)「- ; (2)打-::.二次根式定义及性质测试题、复习1、什么叫平方根?开平方?2、平方根如何表示?3、求下列各数的平方根:4、求下列各数的正平方根:(1) 4; (2) 0.16; (3)旦. (1) 225; (2) 0.0001;163•先化简再求值:当a=9时,求a+J —「的值,甲乙两人的解答如下:甲的解答为:原式 =a+ * '' =a+(1-a)=1 ;=a+ 厂T3.(北京市海淀区)已知实数X , y 满足∣Λ-5∣÷λj7+4 = 030082.(江苏省苏州市)等式)中的括号应填入 ______________=a+(a-1)=2a-1=17 .乙的解答为:原式,求代数式 的值.初二数学(下)知识改变命运创造未来258二、二次根式的意义1.二次根式的意义代数式________________ 叫做二次根式,读作 ________________ ,其中 __________ 是被开方数.通常把形如__________________ 的式子也叫做二次根式.2 •二次根式何时有意义二次根式有意义的条件是______________________________ .3. 例题例题1下列各式是二次根式吗?√2、总、口、√齐、jb(b<o)、√b r^τac.例题2设X是实数,当X满足什么条件时,下列各式有意义?(1) ∙∙.2x" ;(2) ^-X ; (3) ] - ; (4) ...1 X2.4 •练习(一)设X是实数,当X满足什么条件时,下列各式有意义?(1) (3) ∙. χ2 -2x 1 .、二次根式的性质性质性质2:性质性质4:例题3求下列二次根式的值:(1):(3 7)2;• X2 -2x 1 ,其中X = - 3 .2、选择题 (1)、实数a 、b 在数轴上对应的位置如图,则 J (b T)2 - J (aT)2 =(A 、b-aB 、2-a-bC 、a-bD 、2+a-b∙∙ ∙ _______ a0 b(2) 、化简√(^√2^)2的结果是()A 、1-.2B 、、2-1C 、_ ( 2 -1)D 、_ (1- 2) (3) 、如果茫丄=,那么X 的取值范围是() J X-2 Y X-2A 、1 ≤ X ≤ 2B 、1v X ≤ 2C 、X ≥ 2D 、X >2例题4化简二次根式(1),72 ;(2),12a 3 ;(3)∙.18X 2 x _0 ;I® °)例题5设a 、b 、C 分别是三角形三边的长,化简:.(a _ b c)2C - a)2练习(二):1、化简下列二次根式 (1)32 ;(2) '.. 27X 2(X -0);(3);,243(n-0);最简二次根式和同类二次根式1、最简二次根式符合的两个条件:(1) ______________________________________________ ; (2) ____________________________________________________ . 例题6判断下列二次根式是不是最简二次根式:;(2)、、42a ;( 3) 、24X 3 ;(4) . 3 a 2 2a 1 (a _ -1)例题7将下列二次根式化成最简二次根式:(1) ,4x 3y 2 y 0 ; ( 2) . a 2-b 2 ][abab _ - 0 ; (3) . m n m n 02、练习(三)(1)判断下列二次根式中,哪些是最简二次根式:I . ab,2c2y, . 4a 2 4a 1, . a 2 b 2(2)找出下列二次根式中的非最简二次根式,并把它们化成最简二次根式:(3)将下列各二次根式化成最简二次根式:侑,再(b >0),J a3(χT (x 一 y g y f 爲(p ®°)3、同类二次根式几个二次根式化成 ________________________ 后,如果 _________________ 相同,那么这几个二次根式叫做同 类二次根式.u 2「v 2 , ,a 2b-a 2 c a 0 ,(1例题8下列二次根式中,哪些是同类二次根式?例题9合并下列各式中的同类二次根式:_ 1 _ IL(I)2 2 —3 ÷—2 3 ;2 34、练习(四)(1)判断下列各组中的二次根式是不是同类二次根式:A. (32,750,2』丄;B. j4χ3,2ι∕2X, J8χ2(X ≥0 );(2)合并下列各式中的同类二次根式:A. 3 .5 5 -4 .5;212,2一4,(2) 3 xy _ a . Xy b XyB. 2需+4拓-6禹+丄Vb.2。
21.1 二次根式知识点1.二次根式的相关概念:像这样一些正数的算术平方根的式子,我们就把它称二次根式。
因此,一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
二次根式a 的特点:(1)在形式上含有二次根号 ,表示 a 的算术平方根。
(2)被开方数 a ≥0,即必须是非负数。
(3)a 可以是数,也可以是式。
(4)既可表示开方运算,也可表示运算的结果。
2.二次根式中字母的取值围的基本依据:(1)被开方数不小于零。
(2)分母中有字母时,要保证分母不为零。
3.二次根式的相关等式:a a =2(a ≥0) ⎩⎨⎧<-≥==)0()0(2a a a a a a 相关例题1.二次根式的概念例题一: 下列各式中144,20,,1,3,152222-++-m b a b a , 二次根式的个数是()考点: 二次根式的概念.分析: 二次根式的被开方数应为非负数,找到根号为非负数的根式即可. 解答: 解:3a ,12-b 有可能是负数,-144是负数不能作为二次根式的被开方数,所以二次根式的个数是3个。
点评: 本题考查二次根式的概念,注意利用一个数的平方一定是非负数这个知识点.变式一:下列各式中①,a ②,z y +③,6a ④,32+a ⑤,962++x x ⑥,12-x 一定是二次根式的有()个。
解:①被开方数a 有可能是负数,不一定是二次根式;②被开方数y+z 有可能是负数,不一定是二次根式;③被开方数6a 一定是非负数,所以③一定是二次根式;④被开方数32+a 一定是正数,所以④一定是二次根式;⑤被开方数22)3(96+=++x x x 一定是非负数,所以⑤一定是二次根式; ⑥被开方数12-x 有可能是负数,不一定是二次根式; 一定是二次根式的有3个,故选C .点评: 用到的知识点为:二次根式的被开方数为非负数;一个数的偶次幂一定是非负数,加上一个正数后一定是正数.2.二次根式中字母的取值围的基本依据例题二:函数y=31-x 中自变量x 的取值围是 _______ .考点: 函数自变量的取值围;分式有意义的条件;二次根式有意义的条件. 分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解. 解答: 解:依题意,得x ﹣3>0,解得x >3.点评: 本题考查的是函数自变量取值围的求法.函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数. 变式二:若式子x x 1+有意义,则x 的取值围是_______ .考点: 二次根式有意义的条件;分式有意义的条件.分析: 根据二次根式及分式有意义的条件解答即可.解答: 解:根据二次根式的性质可知:x+1≥0,即x ≥﹣1,又因为分式的分母不能为0,所以x 的取值围是x ≥﹣1且x ≠0.点评:此题主要考查了二次根式的意义和性质: 概念:式子a (a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义; 当分母中含字母时,还要考虑分母不等于零.3.二次根式的相关等式例题三:对任意实数a ,则下列等式一定成立的是( )A .a a =B .a a -=2C . a a ±=2D . a a =2考点: 二次根式的性质与化简. 专题: 计算题.分析: 根据二次根式的化简、算术平方根等概念分别判断. 解答:解:A 、a 为负数时,没有意义,故本选项错误;B 、a 为正数时不成立,故本选项错误;C 、a a =2,故本选项错误.D 、故本选项正确. 故选D .点评: 本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.练习题 11x x>0)、2、当x 在实数围有意义?3、当x 11x +在实数围有意义? 4、下列式子中,是二次根式的是( )A ..x5.下列式子中,不是二次根式的是( )A .1x6.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 7.形如________的式子叫做二次根式.8.面积为a 的正方形的边长为________.9.负数________平方根.10、计算1.2(x ≥0) 2.2 3.24. 2课后作业1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,x+x 2在实数围有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b =b+4,求a 、b 的值.6、计算(1)2(2)-2(3)(122(4)()2(5)练习题与课后作业答案练习题1、x>0)x≥0,y≥0);不、1x1x y+.2、解:由3x-1≥0,得:x≥13,当x≥13在实数围有意义.3、解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-1+11x+在实数围有意义.4.A 5.D 6.B7a≥0) 8.没有10、解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9作业题1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0+x 2在实数围没有意义. 3.134.B5.a=5,b=-46、.(1)2=9 (2)-2=-3 (3)(122=14×6=32(4)(2=9×23=6 (5)-621.2二次根式的乘除法知识点1.二次根式的乘法 )0,0(≥≥=⋅b a ab b a),0(o b a b a ab ≥≥⋅=2.二次根式的除法有两种常用方法:(1)利用公式:)0,0(>≥=b a ba b a )0,0(>≥=b a ba b a (2)把除法先写成分式的形式,再进行分母有理化运算。
二次根式非等价变形致误例析解答有关二次根式的问题时,由于概念不清,或思维不周等原因,很多同学往往对二次根式实施一些非等价的变形,进而导致解题错误。
下面举例分类加以剖析,望能引起注意。
一、忽视二次根式为正数的前提条件,盲目开方导致等价变形例1 化简aa a 13---。
错解:原式=a a a aa a a --=-⋅--)1(1。
错因剖析:上述解法由于对二次根式概念不清,忽视3a ->0这一隐含条件,即a <0,盲目进行开方,进而导致变形不等价,造成错解。
我们早已知道⎩⎨⎧-≥==时)<时)0(0(||2a a a a a a 。
事实上由于aa 13--与均为算术平方根,应有0103>且>aa --,而01<与a aa a --。
正解:原式=a a a a a a a --=--⋅---)1()(1。
二、忽视隐含条件,导致非等价变形 例2 已知21,2=-=+ab b a ,求ba ab +的值。
错解:原式=22212-=-=+=+abb a ba ab 。
错因剖析:出错原因在于忽视隐含条件,进而导致在解答过程中实施了非等价变形。
事实上,由于2-=+b a ,21=ab ,可知a <0,b <0,从而将ba ab +变形成ba ab +是不成立的。
正解:原式=22)(2222=+=-+-=+=+abb a ab bab aab bab aab bab aab 。
三、忽视字母讨论,导致非等价变形 例3 分母有理化:2111a++。
错解:原式=222221111)(11(11aa aa a-+=+-+++-。
错因剖析:错误的原因在于忽视了对字母a 的讨论,从而导致了变形的不等价。
事实上,当a =0时,121a +-=0,进而导致分式)11)(11(11222a a a+-+++-的分母为0,并且结果2211aa -+中的分母亦为0,此时分式无意义。
正解:(1)当a =0时,原式=21;(2)当a ≠0时,121a +-≠0,此时原式=2211aa -+。
第5讲 二次根式一、考点知识梳理【考点1 二次根式的概念和性质】 1.平方根、算术平方根若x 2=a ,则x 叫a 的平方根.当a≥0时,a 是a 的算术平方根.正数b 的平方根记作± b.a 是一个非负数,只有非负数才有平方根. 2.立方根及性质若x 3=a ,则x 叫a 的立方根.求一个数的立方根的运算叫开立方;任一实数a 的立方根记作3a ;3a 3=a ,(3a)3=a ,3-a =-3a . 3.二次根式的概念(1)形如a(a≥0)的式子叫二次根式,而a 为二次根式的条件是a≥0; (2)满足下列两个条件的二次根式叫最简二次根式: ①被开方数的因数是整数,因式是整式; ②被开方数中不含有开得尽方的因数或因式. 4.二次根式的性质 (1)ab =a·b(a≥0,b≥0);a b =ab(a≥0,b >0); (2)(a)2=a(a≥0); (3)a 2=|a|=⎩⎪⎨⎪⎧ a (a≥0)-a (a <0).【考点2 二次根式的运算】 二次根式的运算(1)二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并; (2)二次根式的乘法:a·b =ab(a≥0,b≥0); (3)二次根式的除法:ba =ba(a≥0,b >0); (4)二次根式的估值:二次根式的估算,一般采用“夹逼法”确定其值所在范围.具体地说,先对二次根式平方,找出与平方后所得的数相邻的两个能开得尽方的整数,对其进行开方,即可确定这个二次根式在哪两个整数之间;(5)在二次根式的运算中,实数的运算性质和法则同样适用.二次根式的混合运算顺序是:先算乘除,后算加减,有括号时,先算括号内的(或先去括号). 二、考点分析【考点1 二次根式的概念和性质】 【解题技巧】1.判断二次根式有意义的条件: (1)二次根式的概念.形如(a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.2.二次根式的基本性质:①≥0; a ≥0(双重非负性).②a = (a ≥0)(任何一个非负数都可以写成一个数的平方的形式).③=a (a ≥0)(算术平方根的意义)【例1】(2019 甘肃中考)使得式子有意义的x 的取值范围是( )A .x ≥4B .x >4C .x ≤4D .x <4【答案】D .【分析】直接利用二次根式有意义的条件分析得出答案. 【解答】解:使得式子有意义,则:4﹣x >0,解得:x <4,即x 的取值范围是:x <4. 故选:D .【一领三通1-1】(2019•广西)若二次根式有意义,则x 的取值范围是 .【答案】x ≥﹣4;【分析】根据被开数x +4≥0即可求解; 【解答】解:x +4≥0, ∴x ≥﹣4; 故答案为x ≥﹣4;【一领三通1-2】(2019•广州)代数式有意义时,x 应满足的条件是 .【答案】x >8.【分析】直接利用分式、二次根式的定义求出x 的取值范围. 【解答】解:代数式有意义时,x ﹣8>0, 解得:x >8.()2a ()2a故答案为:x>8.【一领三通1-3】(2019 台湾中考)若=2,=3,则a+b之值为何?()A.13B.17C.24D.40【答案】B.【分析】根据二次根式的定义求出a、b的值,代入求解即可.【解答】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.【一领三通1-4】(2016河北中考)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【答案】B.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【一领三通1-5】(2019 山东济南中考模拟)如图,表示7的点在数轴上表示时,在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【分析】(1)根据平方根的定义和绝对值的性质分别填空即可;(2)主要考查数轴,根据数轴上的点利用平方法,估算7的大致范围,然后结合数轴上点的位置和大小即可得到7的位置.【解答】(1)7是一个正数,它的绝对值大于2;②它的绝对值小于3;③2.5的平方是6.25;故选A【考点2 二次根式的运算】【解题技巧】1.二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.2.化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.二次根式运算的结果可以是数或整式,也可以是最简二次根式,如果二次根式的运算结果不是最简二次根式,必须化为最简二次根式.【例2】(2019 江苏南京中考)计算﹣的结果是.【答案】0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【一领三通2-1】计算÷的结果是.【答案】3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【一领三通2-2】(2019 山西中考)下列二次根式是最简二次根式的是()A.B.C.D.【答案】D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.【一领三通2-3】(2019 天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【一领三通2-4】(2019•青岛)计算:﹣()0=2+1.【答案】2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【一领三通2-5】(2019•广州中考模拟)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A B 2 C D【答案】C【分析】利割补法求阴影部分的面积.【解答】阴影部分的面积5,新正方形的边长为 5.故选:C三、【达标测试】(一)选择题1.(2019 云南中考)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【答案】B.【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.2.(2019 重庆中考)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.3.(2019•兰州)计算:﹣=()A.B.2C.3D.4【答案】A.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:﹣=2﹣=,故选:A.4.(2019 山东青岛中考模拟)若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2B.﹣4x﹣2C.﹣2D.2【答案】A.【分析】根据x的取值﹣4≤x≤3以及二次根式的性质,化简绝对值即可得到结果.【解答】解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.5.(2019 河北衡水中考模拟)化简﹣a的结果是()A.﹣2a B.﹣2a C.0D.2a【答案】A.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.6.(2019 河北沧州中考模拟)若(a+)2与|b﹣1|互为相反数,则的值为()A.B.+1C.﹣1D.1﹣【答案】C.【分析】根据互为相反数的两个数等于0得出(a+)2+|b﹣1|=0,推出a+=0,b﹣1=0,求出a=﹣,b=1,代入求出即可.【解答】解:∵(a+)2与|b﹣1|互为相反数,∴(a+)2+|b﹣1|=0,∴a+=0,b﹣1=0,∴a=﹣,b=1,∴===﹣1,故选:C.7.(2019 山东青岛中考模拟)已知a为实数,则代数式的最小值为()A.0B.3C.D.9【答案】B.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选:B.8.(2019 辽宁盘锦中考模拟)方程,当y=2时,m的取值范围是()A.350B.C.O D.m≤2【答案】C.【分析】根据两个非负数的和为0,必须都为0,得出4x﹣8=0,x﹣y﹣m=0,求出xy的值,代入即可求出m的值.【解答】解:∵方程,∴4x﹣8=0,x﹣y﹣m=0,x=2,m=y﹣2,∵y=2,∴m=0,故选:C.(二)填空题1.(2019 天津中考)计算(+1)(﹣1)的结果等于.【答案】2.【分析】利用平方差公式计算.【解答】解:原式=3﹣1 =2. 故答案为2.2.(2019 上海中考)如果一个正方形的面积是3,那么它的边长是 . 【答案】【分析】根据算术平方根的定义解答. 【解答】解:∵正方形的面积是3, ∴它的边长是.故答案为:3.(2019•长春)计算:3﹣= .【答案】2.【分析】直接合并同类二次根式即可求解. 【解答】解:原式=2.故答案为:2.4.(2019 山东枣庄中考模拟)函数y ,自变量x 的取值范围是 . 【答案】x≥-12且x≠1【分析】二次根式的被开方数为非负数,分式的分母不为0. 【解答】根据题意得⎩⎨⎧≠-≥+01012x x ∴x≥-12且x≠1.故答案是:x≥-12且x≠15. (2019 湖南长沙中考模拟)已知a 、b 为两个连续整数,且a <7<b ,则b a += . 【答案】5.【分析】利用估算求二次根式的范围. 【解答】因为2<7<3, 所以a=2,b=3, ∴a+b=2+3=5. 故答案是:56.(2019 上海中考模拟)方程31x 2=-的根是 . 【答案】x=5【分析】求根式中的被开方数中的未知数.乘法法则,乘法公式适合于二次根式. 【解答】两边平方,得2x -1=9. ∴2x=10 ∴x=5.经检验x=5是方程2x+1=3的根. 故答案是:x=57.(2019 上海中考模拟)化简:=-321 .【答案】2+ 3 【分析】化简1a+b形式通常乘以a -b,利用平方差公式(a+b)(a -b)=a -b. 【解答】原式=12-3=1×(2+3)(2-3)( 2+3) =2+322-(3)2 = 2+ 3.故答案是:2+ 38. (2019 河北沧州中考模拟)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:. 【答案】(1)﹣(2).【分析】(1)分式的分子和分母都乘以﹣,即可求出答案;把2看出5﹣3,根据平方差公式分解因式,最后进进约分即可. (2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.【解答】解:(1).(2)原式==. (三)解答题1.(2019 河北石家庄中考模拟)如图,实数a 、b 在数轴上的位置,化简222()a b a b -【分析】a 2=|a|=⎩⎨⎧<-≥).0(),0(a a a a 【解答】∵-1<a<0,0<b<1∴a -b<0.∴原式=|a|-|b|-|a -b|=-a -b+a -b=-2b.2.(2019 河北唐山中考模拟)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a . 【分析】结果的分母应不含根号.先化简,再代入求值,化简时把分子、分母进行因式分解.【解答】当a=2-2时,原式=a(a+3)(a+2)2·a+2a+3-2a+2=a -1a+2=2-2-22-2+2 =2-42=1-2 2. 3. (2019 辽宁沈阳中考模拟)计算:cos45°·(-21)-2-(22-3)0+|-32|+121 【分析】先把三角函数,负指数、零指数、绝对值及分子分母中的根号等进行化简.a -p =1a p (a≠0,p 为正整数), 1a -b 化简为1a -b =a+b (a -b)(a+b)=a+b a -b. 【解答】原式=22×4-1+32+12-1=22-1+42+2+1=7 2.4.(2019 山东淄博中考模拟)(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y =﹣+4,求的值.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a +3+2a ﹣15=0,解得:a =4,a +3=2a ﹣15,解得:a =18, 答:a 的值为4或18;(2)满足二次根式与有意义,则,解得:x =9,∴y =4,∴=+=5. 5.(2019 湖南长沙中考模拟)阅读材料:小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n)2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列何题:(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果a=,b=;(2)利用(1)中的结论,选择一组正整数填空:=+;(3)化简:.【分析】(1)利用已知直接去括号进而得出a,b的值;(2)取m=2,n=1,计算a和b的值,利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)由题意得:a+b=(m+n)2,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn;故答案为:m2+3n2;2mn;(2)取m=2,n=1,则a=m2+3n2=7,b=2mn=4,7+4=(2+)2;故答案为:;(3)==+1.6.(2019 河北衡水中考模拟)已知a、b、c为△ABC的三边长,化简:+.【分析】直接利用三角形三边关系得出a+b﹣c>0,b﹣c﹣a<0,进而化简得出答案.【解答】解:∵a、b、c为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴原式=a+b﹣c﹣(b﹣c﹣a)=2a.7.(2019 河北石家庄中考模拟)已知|2018﹣m|+=m,求m﹣20182的值.【分析】直接利用二次根式有意义的条件分别分析得出答案.【解答】解:∵m﹣2019≥0,∴m≥2019,∴2018﹣m≤0,∴原方程可化为:m﹣2018+=m,∴=2018,∴m﹣2019=20182,∴m﹣20182=2019.8.(2019 河北石家庄中考模拟)在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.。