数学模拟试卷一
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
2024年四川省绵阳市小升初分班数学应用题达标模拟试卷一含答案及解析姓名:________ 考号:________ 得分:________一、应用题(精选150道题;要求一、审题:在开始解答前,应仔细阅读题目,理解题目的意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用楷书,尽量避免连笔,字迹稍大,并注意排版;四、π一律取值3.14。
)1.商店有三种书包,价格分别是22元、31元、39元.某学校用1900元为贫困学校的同学买59个同样的书包,要求剩下的钱尽量得少.请你估算一下,买哪种书包最合适?2.一次爱心捐款活动中,六年级同学捐了390元,比五年级多捐了30%,五年级捐款多少元?3.甲、乙两地相距231千米,一辆摩托车与一辆自行车同时从两地相向而行,3小时相遇.已知摩托车每小时行的路程是自行车的2.5倍.摩托车、自行车每小时各行多少千米?4.一辆汽车从武汉开往长沙市,每小时行驶32千米,6小时到达.如果另外一辆汽车从武汉开往长沙,只需4小时,那么另外一辆汽车每小时行驶多少千米?5.某公司要生产54万部手机,前10天平均每天制造1.5万部,余下的要在20天完成,平均每天要制造多少万部?6.四年级部分同学表演节目,要买49套表演服,一件上衣55元,一条裤子35元,张老师带了5000元钱,够吗?7.甲、乙两辆汽车同时从一个加油站向相反方向开出,行驶了3小时,两车相距294.6km,甲车每小时行46.8km,乙车每小时行多少千米?8.甲、乙两辆汽车同时从相距287.5千米的两地相对开出,经过2.5小时相遇.甲汽车每小时行47千米,乙汽车每小时行多少千米?9.饲养场养鸡68只,养的鸡的只数是鸭的2倍.鸡、鸭一共养了多少只?10.一个长方形的宽是13与39的最大公因数,长是6与8的最小公倍数,这个长方形的面积是多少?11.有两个养鸡场,甲鸡场有2/5是公鸡,其余都是母鸡,总只数比乙养鸡场多150只,乙养鸡场的全部是公鸡,两个养鸡场中的公鸡只数共690只.甲养鸡场养母鸡多少只?12.将一根4 m长的钢管插入池塘中,插入泥中的部分是0.45 m,露出水面的部分是1.6 m,这个池塘的水深是多少米?13.甲乙两个修路队合铺一条95千米的铁路,甲队铺铁路的长度是乙队的1.5倍.甲乙两队各铺了多少千米?14.一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?15.师徒两人合作加工一批零件,按7:5分配给师徒,结果师傅加工了308个零件,超额完成任务的10%.徒弟实际加工多少个?16.甲乙两桶油,甲连桶重150千克,乙连桶重130千克,甲乙各用去一半油后,甲比乙连桶重11千克,甲桶油比乙桶油重多少千克?甲桶比乙桶重多少千克?17.甲、乙两列火车同时从相距280千米的两地相向而行,甲车每小时行48千米,乙车每小时行60千米,几小时后,两车还相距10千米?18.一辆客车以每小时45千米的速度从甲城开往乙城.上午9时发车,16时到达,甲、乙两城相距多少千米?19.一辆汽车每小时行70千米,上午7:00从甲地开出,下午3:00离乙地还有76千米。
2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。
2024年初一数学模拟试卷一、选择题(每题2分,共10分)1.下列哪个数是质数?A.21B.29C.35D.392.若a=3,b=5,则a²+b²的值是?A.34B.58C.74D.643.一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长是?A.18cmB.20cmC.22cmD.24cm4.下列哪个数是偶数?A.101B.103C.1075.一个正方形的边长为6cm,则它的对角线长度是?A.4.5cmB.6cmC.8cmD.9cm6.下列哪个数是立方数?A.64B.81C.98D.1007.若a=2,b=3,则2a+3b的值是?A.12B.15C.18D.218.一个长方形的长是10cm,宽是6cm,则它的面积是?A.40cm²B.50cm²C.60cm²D.70cm²9.下列哪个数是素数?B.27C.31D.3710.若a=4,b=6,则a²b²的值是?A.-20B.-10C.10D.20二、判断题(每题2分,共10分)1.两个质数的和一定是偶数。
()2.一个等边三角形的周长是它的任意一边长的三倍。
()3.任何两个奇数的和都是偶数。
()4.一个正方形的对角线长度等于它的边长。
()5.两个负数相乘的结果一定是正数。
()6.任何数乘以0都等于0。
()7.两个偶数的和一定是偶数。
()8.任何数除以1都等于它本身。
()9.两个负数相加的结果一定是负数。
()10.任何数乘以-1都等于它的相反数。
()三、填空题(每题2分,共10分)1.一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是______cm。
2.若a=7,b=8,则a²+b²的值是______。
3.一个正方形的边长为8cm,则它的面积是______cm²。
4.下列哪个数是偶数?______5.两个质数的积一定是______数。
一、选择题(每题4分,共40分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. -0.52. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 84. 下列各式中,能被3整除的是()A. 24B. 25C. 26D. 275. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,3)D. (2,-3)6. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形7. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²8. 下列各式中,表示圆的周长的式子是()A. S = πr²B. C = πdC. A = πr²D. V = πr³9. 若a² + b² = 100,a - b = 6,则ab的值为()A. 14B. 16C. 18D. 2010. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = x²D. y = k/x(k≠0)二、填空题(每题4分,共40分)11. 若a = -3,则a² - 2a + 1的值为__________。
12. 已知x + y = 5,xy = 6,则x² + y²的值为__________。
13. 在直角坐标系中,点A(2,3)到原点O的距离是__________。
14. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的体积是__________cm³。
2023-2024学年一年级数学上册期末模拟试卷一(满分:100分,完成时间:60分钟)题号一二三四五六总分得分亲爱的同学们,学期末的智慧之旅马上就要开始了!只要你认真地分析每一道题,你一定能获得一次难忘的旅途记忆!一、反复比较,精心选择。
(满分16分)1.下图中数量最多的是()。
A.B.C.2.最长的是()。
A.B.C.3.9–3=()。
A.1﹢5 B.10–3 C.7﹢24.和另外两种不同类的是()。
A.B.C.5.小松鼠排在最()面,小狗排在最()面。
A.上,下B.下,上C.前,后D.后,前6.物体表面没有的是()。
A.B.C.7.7个一和1个十组成()。
A.17 B.71 C.88.现在是8时,2小时前是()时。
A.10 B.6 C.8二、认真读题,谨慎填写。
(满分16分)9.排队的小动物们。
(1)一共有( )只小动物。
(2)如果排第1,那么排第( )。
10.( )最高,( )最矮。
11.小朋友排队做操,从前面数小红排第5,从后面数小红排第4,这一排小朋友共有( )个。
12.分一分,填序号。
(1)_____;(2)_____。
13.认一认,填一填。
(1)在的( )面。
(2)在的( )边。
14.正方体有( )个;圆柱有( )个;长方体有( )个,球有( )个。
15.一个车间有2排机器,一排有5台,另一排有6台,一共有多少台机器?算式:________+________=________(台)16.分针指向6,时针指在3和4中间就是( )。
三、学会分析,判断正误。
(满分8分)17.尺子上的0表示没有。
( )18.10大于8,写作10<8。
( )19.7比3多4。
( )20.把同类的圈起来。
( )四、口算题(满分12分)21.(12分)算一算。
8+6= 3+9= 6+7=5+8=2+9= 4+7= 9+4=3+7=7+5= 10+4=8-3=9+8=13-2=4+8= 0+6=10-5=五、连线题(满分24分)22.(6分)数一数,连一连。
一、选择题(每题3分,共30分)1. 下列各数中,是质数的是()A. 10B. 15C. 17D. 18答案:C2. 求下列算式的结果:(45 + 36)÷ 9 = ()A. 11B. 12C. 13D. 14答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?()A. 20B. 25C. 30D. 35答案:C4. 下列各数中,能同时被2和3整除的是()A. 14B. 15C. 16答案:D5. 求下列算式的结果:5.2 × 0.8 + 3.6 ÷ 0.6 = ()A. 10.8B. 11.4C. 12.2D. 13.0答案:B6. 一个圆的半径是6厘米,它的面积是多少平方厘米?()A. 36B. 72C. 108D. 216答案:C7. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,它的体积是多少立方厘米?()A. 60B. 72C. 90D. 120答案:B8. 求下列算式的结果:0.3 × 4.5 - 1.2 ÷ 0.6 = ()A. 1.2B. 2.2D. 4.2答案:B9. 下列各数中,是合数的是()A. 11B. 12C. 13D. 14答案:B10. 求下列算式的结果:8.5 × 2.5 + 3.2 × 1.5 = ()A. 23.5B. 24.5C. 25.5D. 26.5答案:C二、填空题(每题5分,共25分)1. 0.3 × 4.5 = ()答案:1.352. 6.8 ÷ 0.4 = ()答案:173. 一个长方形的面积是24平方厘米,长是8厘米,它的宽是()答案:3厘米4. 一个圆的半径是5厘米,它的直径是()答案:10厘米5. 下列各数中,能同时被2和3整除的是()答案:12三、解答题(每题10分,共30分)1. 求下列算式的结果:5.2 × 0.8 + 3.6 ÷ 0.6解答:5.2 × 0.8 = 4.163.6 ÷ 0.6 = 64.16 + 6 = 10.16答案:10.162. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,求它的体积。
2023年陕西省宝鸡市高考数学模拟试卷(理科)(一)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.A .{-2,-1,0,1,2}B .{0,1,2}C .{-2,-1,1,2}D .{1,2}1.(5分)已知集合A ={x |y =lgx },B ={-2,-1,0,1,2},那么A ∩B 等于( )A .1B .2C .2D .42.(5分)已知复数z =1−i 1+i,则|z |=( )√A .y =±12x B .y =±2x C .y =±22x D .y =±2x3.(5分)双曲线2x 2-y 2=1的渐近线方程是( )√√A .甲检测点的平均检测人数多于乙检测点的平均检测人数B .甲检测点的数据极差大于乙检测点的数据极差C .甲检测点数据的中位数大于乙检测点数据的中位数D .甲检测点数据的方差大于乙检测点数据的方差4.(5分)最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是( )A .25B .32C .3D .55.(5分)已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,侧棱长为4,则异面直线AC 与DC 1所成角的正切值为( )√√√A .π6B .π3C .2π3D .5π66.(5分)已知向量m ,n 满足(2m −3n )⊥n ,且|m |=3|n |,则m ,n 夹角为( )→→→→→→√→→→A .−43B .43C .−247D .2477.(5分)已知α∈(0,π),sinα−cosα=15,则tan 2α=( )二、填空题,本题共4小题,每小题5分,共20分.A .[12,34]B .[34,32]C .[1,2]D .[32,2]8.(5分)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上,且直线PA 2斜率取值范围是[−1,−12],那么直线PA 1斜率取值范围是( )A .①②B .①③C .①④D .①②③9.(5分)已知等差数列{a n }满足a 4+a 7=0,a 5+a 8=-4,则下列命题:①{a n }是递减数列;②使S n >0成立的n 的最大值是9;③当n =5时,S n 取得最大值;④a 6=0,其中正确的是( )A .(0,2]B .(0,4]C .[2,+∞)D .[4,+∞)10.(5分)已知直线y =mx +n (m ≥0,n >0)与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .3B .4C .5D .611.(5分)11+2+13+4+15+6+⋯+199+100的整数部分是( )√√√√√√√√A .2B .4C .6D .812.(5分)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)满足f (x )+f (2−x )=2,g (x )=x x −1,若函数y =f (x )与y =g (x )的图像恰有四个交点,则这四个交点的横坐标之和为( )13.(5分)若(x 2-1x )6的展开式中的常数项是 .√14.(5分)命题“∃x ∈R ,ax 2-2ax +1≤0”为假命题,则实数a 的取值范围是 .15.(5分)七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有 种.16.(5分)在棱长为1的正方体ABCD -B 1C 1D 1中,M 是侧面BB 1C 1C 内一点(含边界)则下列命题中正确的是(把所有正确命题的序号填写在横线上) .①使AM =2的点M 有且只有2个;②满足AM ⊥B 1C 的点M 的轨迹是一条线段;√三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请先涂题号.[选修4-4:坐标系与参数方程][选修4-5:不等式选讲](本小题满分0分)③满足AM ∥平面A 1C 1D 的点M 有无穷多个;④不存在点M 使四面体MAA 1D 是鳖臑(四个面都是直角三角形的四面体).17.(12分)已知向量m =(3sinx ,cosx ),n =(cosx ,−cosx ),定义函数f (x )=m ⋅n −12.(1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=0,且AB =3,CD 是△ABC 的边AB 上的高,求CD 长的最大值.√18.(12分)如图在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知PA =AB =2,AD =5,AC =1,E 是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.√19.(12分)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.20.(12分)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果),已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X 的分布列及期望.21.(12分)已知函数f (x )=m (x +1)e x (m >0),g (x )=2lnx +x +1.(1)求曲线y =g (x )在点(1,g (1))处的切线方程;(2)若函数y =f (x )的图像与y =g (x )的图像最多有一个公共点,求实数m 的取值范围.22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为V Y Y Y W Y Y Y X x =t +2t ,y =t −2t(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)求曲线C 1的任意一点到曲线C 2距离的最小值.23.已知a>b>c>0,求证:(1)1a−b +1b−c≥4a−c;(2)a2a b2b c2c>a b+c b c+a c a+b.。
浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。
参考答案2023年普通高等学校招生全国统一考试考前模拟试卷数学(一)1.D 【解析】B ={x |x 2=4}={-2,2},由题可知,UA )∩B ={2}.故选D.2.C 【解析】∵z =(4-i )(2i-1)=8i -4+i +2=-2+9i ,故z =-2-9i ,∴z 的共轭复数在复平面内对应的点为(-2,-9),位于第三象限.故选C .3.B 【解析】|a +b |=a 2+b 2+2a·b 姨=|a |2+|b |2+2a ·b 姨=10姨,|b |=12+12姨=2姨,∴a ·b =2,∴a 在b 上的投影向量为a·b |b |·b |b |=b =(1,1),故选B .4.D 【解析】由题意可知,该事件的概率为12·C 22C 28+12·C 22C 23=12×128+12×13=31168,故选D.5.B 【解析】由题意可知,结果只需精确到0.001即可,令x=0.5,取前6项可得,e 姨=+∞n=0移0.5nn !≈5n=0移0.5nn !=0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649,∴e 姨的近似值为1.649,故选B.6.A 【解析】设f (x )=sin x-x ,x ∈0,仔22',则f ′(x )=cos x -1<0,∴f (x )在0,仔222上单调递减,∴f (x )<f (0)=0,∴当x ∈0,仔222时,sin x-x <0,即sin x<x .a =sin 20°=sin 仔9<仔9=b ,c=12ln e 姨=14<仔9=b ,c =12ln e 姨=14<6姨-2姨4=sin 15°<sin 20°=a ,∴c<a<b ,故选A .7.B 【解析】由题意可知,设底面圆的半径为R ,则S=仔R 2=16仔,解得R =4.∵由直三棱柱的定义可知,要使能截得直三棱柱体积最大,只需要圆的内接三角形面积最大即可,S =12ab sin C =12·2R sin A ·2R sin B ·sin C=2R 2sin A ·sin B ·sin C ≤2R 2sin A+sin B+sin C 3223≤2R 2·sin A+B+C 3223=2R 2·sin 仔3223=33姨4R 2.当且仅当sin A=sin B=sin C ,即A=B=C =仔3时,等号成立,∴三角形是正三角形时,圆的内接三角形面积最大,V=Sh =33姨4×42×6=723姨.∴能截得直三棱柱体积最大为723姨.故选B .8.D 【解析】g (x +1)为偶函数,则g (x )关于x =1对称,即g (x )=g (2-x ),即(x-1)f (x )=(1-x )f (2-x ),即f (x )+f (2-x )=0,∴f (x )关于(1,0)对称,又f (x )是定义域为R 的偶函数,∴f (x )=-f (2-x )=-f (x -2),∴f (x -4)=f [(x -2)-2]=-f (x -2)=-[-f (x )]=f (x ),即f (x -4)=f (x ),∴f (x )周期为4,∴f (5.5)=f (1.5)=f (-2.5)=f (2.5)=2,∴g (-0.5)=g (2.5)=1.5f (2.5)=3.故选D.9.ABD 【解析】∵sin 兹+cos 兹=15①,∴(sin 兹+cos 兹)2=sin 2兹+2sin 兹cos 兹+cos 2兹=125,∴2sin 兹cos 兹=-2425.又兹∈(0,仔),∴sin 兹>0,∴cos 兹<0,即兹∈仔2,22仔,故A 正确;(sin 兹-cos 兹)2=1-2sin 兹cos 兹=4925,∴sin 兹-cos 兹=75②,故D 正确;由①②,得sin 兹=45,cos 兹=-35,故B 正确;tan 兹=sin 兹cos 兹=-43,故C 错误.故选ABD .10.BCD 【解析】如图1,当P 为BC 1的中点时,OP ∥DC 1∥AB 1,故A 不正确;∵如图2,A 1C 奂平面AA 1C 1C ,O ∈平面AA 1C 1C ,O 埸A 1C ,P 埸平面AA 1C 1C ,∴直线A 1C 与直线OP 一定是异面直线,故B 正确;∵如图2,A 1A 奂平面AA 1C 1C ,O ∈平面AA 1C 1C ,O 埸A 1A ,P 埸平面AA 1C 1C ,∴直线A 1A 与直线OP 一定是异面直线,故C 正确;∵如图3,AD 1奂平面AD 1C ,O ∈平面AD 1C ,O 埸AD 1,P 埸平面AD 1C ,∴直线AD 1与直线OP 一定是异面直线,故D 正确.故选BCD.11.BD 【解析】如图所示,当直线l 的倾斜角越小时,△PQA 1的周长越大,故A 不正确;△PF 1Q 的周长为|PF 1|+|QF 1|+|PQ |=4a +|PF 2|+|QF 2|+|PQ |=4a +2|PQ |,∴△PF 1Q 的周长与2|P P /Q |之差为4a ,故B 正确;设P (x ,y ),则tan 琢=|y |a+x,tan 琢=-|y |x-a,由tan 琢tan 茁=a-x a+x不是常量,故C 不正确;由tan 琢·tan 茁=|y |a+x ·|y |a-x =y 2a 2-x 2=x 2a 2-221b 2a 2-x 2=-b 2a 2为常量,故D 正确.故选BD .12.AD 【解析】令x 1=x 2=1得,f (1)=f (1)+f (1),f (1)=0,故A 正确;再令x 1=x 2=-1得,f (1)=f (-1)+f (-1)=0,f (-1)=0,故B 错;令x 1=-1,x 2=x ,则f (-x )=x 2f (-1)+f (x )=f (x ),f (x )是偶函数,故C 错;令x 1=x ,x 2=1x,则f (1)=1x2f (x )+x 2f 1x 22,∴f (x )=-x 4f 1x 22,当0<x <1时,1x>1,f 1x 22>0,∴f (x )<0,故D 正确.故选AD .13.0.3【解析】由P (X ≥90)=0.5知,滋=90,∵P (X ≤70)=P (X ≥110)=0.2,∴P (70≤X ≤90)=1-2×0.22=0.3.故答案为0.3.14.45姨5≤r ≤13姨【解析】当A ,B 两点都在圆内时,则4+9<r 2,4+1<r 22,解得r >13姨,直线AB 的方程为y -3x +2=1-32+2,即x +2y -4=0,原点到直线AB 的距离为|-4|1+4姨=45姨5,又k OA =-32,k OB =12,k AB =-12,参考答案第1页共28页参考答案第2页共28页A 1B 1C 1D 1OPDABC A 1B 1C 1D 1OPDABC A 1B 1C 1D 1OPDABC 图1图2图3第10题答图xy OAB 第14题答图xy OF 1F 2P 2Q 2QPA 1A 2第11题答图37∴原点与线段AB 上的点所在直线的斜率的范围为-32,12!",∵圆C :x 2+y 2=r 2(r >0)与线段AB (包含端点)有公共点,∴45姨5≤r ≤13姨.故答案为45姨5≤r ≤13姨.15.4【解析】由题意得,ab (a +3b )=3a+b ,∴a +3b =3a+b ab =3b +1a ,∴(a +3b )2=3b +1a a &(a +3b )=10+3a b +3b a ≥10+23a b ·3b a姨=16(当且仅当a=b=1时取等号).∵a +3b ≥4,∴a +3b 的最小值为4.答案为4.16.6e e 2-1,+a &∞【解析】∵f (x 0)+3e x<0,即3ln x 0-kx 0+k x 0+3e x 0<0.当x 0=1时,3e <0显然不成立,即在x 0=1时不满足原式;当x 0∈(1,e ]时,整理得x 0ln x 0+e x 02-1<k 3.令g (x )=x ln x +e x 2-1,x ∈(1,e ],则g ′(x )=(x 2-2e x -1)-(x 2+1)ln x (x 2-1)2,∵当x ∈(1,e ]时,(x 2+1)ln x >0,x 2-2e x -1=(x -e )2-e 2-1<0,则g ′(x )<0,当x ∈(1,e ]时恒成立,∴g (x )在(1,e ]上单调递减,则g (x )≥g (e )=2e e 2-1,则2e e 2-1<k 3,即k >6e e 2-1.综上所述,数k 的取值范围为6e e 2-1,+a &∞.故答案为6ee 2-1,+a &∞.17.【解析】(1)∵a 1+2a 2+…+na n =2n ,∴当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1),两式相减得na n =2,a n =2n ,又n =1时,a 1=2,也符合.∴a n =2n.(2)由(1)知,1a n =n 2,∵对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m 2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=3322+982a &2=825.18.【解析】(1)由题得a-b=a sin A-c sin C sin B ,∴a-b=a 2b -c 2b,∴ab-b 2=a 2-c 2,∴ab=a 2+b 2-c 2,∴ab =2ab cos C ,∴cos C=12.∵0<C <仔,∴C =仔3.(2)由正弦定理得c sin C =2R =4,则c =4sin C=4sin 仔3=23姨,由余弦定理得c 2=12=a 2+b 2-2ab cos C ≥2ab-ab=ab ,即ab ≤12(当且仅当a=b 时取等号),故S =12ab sin C ≤12×12×3姨2=33姨(当且仅当a=b 时取等号).即△ABC 面积S 的最大值为33姨.19.【解析】(1)由题意得,(0.002+0.006+0.008+a+b+0.008+0.002+0.002)×20=1,110+0.5-(0.002+0.006+0.008)×2020a×20=1255,,,+,,,-,解得a =0.012,b =0.010,∴滋=(60×0.002+80×0.006+100×0.008+120×0.012+140×0.01+160×0.008+180×0.002+200×0.002)×20=125.6.(2)某职工日行步数w =157(百步),着=157-125.6125.6×100=25,∴职工获得三次抽奖机会,设职工中奖次数为X ,在方案甲下X~B 3,13a &,E (X)=1.在方案乙下E (X )=1.8,∴更喜欢方案乙.20.【解析】(1)在直三棱柱ABC 鄄A 1B 1C 1中,A 1A ⊥平面ABC ,AB 奂平面ABC ,∴A 1A ⊥AB ,又AB ⊥AC ,A 1A ∩AC=A ,A 1A ,AC 奂平面ACC 1A 1,∴AB ⊥平面ACC 1A 1,又A 1M 奂平面ACC 1A 1,∴A 1M ⊥AB ,又在矩形ACC 1A 1中,AA 1=4,A 1M=AM =22姨,即A 1M 2+AM 2=A 1A 2,∴A 1M ⊥AM ,∵AB ∩AM=A ,AB ,AM 奂平面ABM ,∴A 1M ⊥平面ABM.(2)取AC 的中点为N ,连接BN ,∴BN ⊥AC ,又平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ,BN 奂平面ABC ,∴BN ⊥平面ACC 1A 1,取A 1C 1的中点N 1,连接NN 1,同理可得NN 1⊥平面ABC ,如图建立空间直角坐标系,则B (3姨,0,0),C (0,1,0),A 1(0,-1,4),M (0,1,2),设P (0,t ,3-t ),t ∈[-1,1],则B B 2P =(-3姨,t ,3-t ),易知平面ABC 的法向量为n =(0,0,1),设BP 与平面ABC 所成角为兹,设t-1=姿∈[-2,0],∴sin 兹=3-t 3+t 2+(3-t )2姨=(3-t )22t 2-6t +12姨=2姨2·1-3(t-1)t 2-3t +6姨=2姨2·1-3姿姿2-姿+4姨.当姿=0时,sin 兹=2姨2,当姿∈[-2,0)时,sin 兹=2姨2·1-3姿-1+4姿姨,∵y=x +4x 在[-2,0)上单调递减,∴sin 兹关于姿单调递减,故sin 兹∈2姨2,25姨5"a .综上可得sin 兹∈2姨2,25姨5!".21.【解析】(1)由题意知,|22姨-x |=2姨·(x -2姨)2+y 2姨,两边平方,整理即得x 2+2y 2=4,∴曲线C 的方程为x 24+y 22=1.(2)设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),当x 20=43时,y 20=43,则不妨设点M 23姨3,23姨3a &,则点A 23姨3,-23姨3a &或A -23姨3,23姨3a &,此时O B 2M ·O B 2A =0,则OM ⊥OA ;当x 20≠43时,设直线MA :y=kx+m ,MA 1B 1C 1PAB C xyz NN 1第20题答图参考答案第3页共28页参考答案第4页共28页38由直线MA 与圆O :x 2+y 2=43相切,可得|m |1+k 2姨=23姨,即3m 2=4(1+k 2),联立y=kx+m ,x 2+2y 2=44,可得(2k 2+1)x 2+4kmx +2m 2-4=0,Δ=16k 2m 2-4(2k 2+1)(2m 2-4)=8(4k 2+2-m 2)=163(4k 2+1)>0,由韦达定理可得x 0+x 1=-4km 2k 2+1,x 1x 2=2m 2-42k 2+1,则O O $M ·O O $A =x 0x 1+y 0y 1=x 0x 0+(kx 0+m )(kx 1+m )=(1+k 2)x 0x 1+km (x 0+x 1)+m 2=(1+k 2)(2m 2-4)-4k 2m 2+m 2(1+2k 2)1+2k 2=3m 2-4(1+k 2)1+2k 2=0,∴OM ⊥OA ,同理可得OM ⊥OB.选①,由OM ⊥OA 及OP ⊥AM 可得Rt △MOP ∽Rt △AOP ,则|PM ||OP |=|OP ||PA |,∴|PM |·|PA |=|OP |2=43.选②,由OM ⊥OA 及OM ⊥OB 可得,A ,O ,B 三点共线,则|OA |=|OB |,又|MA |2=|OA |2+|OM |2=|OB |2+|OM |2=|MB |2,因此,|MA |=|MB |.22.【解析】(1)根据题意得,f (x )的定义域为(0,+∞),∴f ′(x )=e x -1-1x -e +12,又f ″(x )=e x -1+1x2>0,∴f ′(x )在(0,+∞)上单调递增,易知f ′(2)=e -12-e +12=0,∴当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,∴函数f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)∵a >0,f (x )的定义域为(0,+∞),∴f ′(x )=e x -1-1x-a ,∴f ″(x )=e x -1+1x2>0,∴f ′(x )在(0,+∞)上单调递增,设h (x )=e x-x -1,则h ′(x )=e x -1,当x >0时,h ′(x )>0,∴h (x )单调递增,当x <0时,h ′(x )<0,∴h (x )单调递减,∴h (x )≥h (0)=0,∴e x -x-1≥0,即e x ≥x+1,∴f ′(1+a )=e a -11+a -a >a +1-11+a -a =1-11+a>0,又f ′(1)=-a <0,∴存在唯一的t 0∈(1,1+a ),使得f ′(t 0)=0,即e t 0-1 -1t 0-a =0,当x ∈(0,t 0)时,f ′(t 0)<0,f (x )单调递减,当x ∈(t 0,+∞)时,f ′(t 0)>0,f (x )单调递增,∴f (x )min =f (t 0),又e x ≥x +1,∴x ≥ln (x +1),∴x -1≥ln x ,当x =1时,等号成立,则x >ln x ,∴f (x )=e x -1-ln x -ax >e x -1-x-ax =e x -1-(a +1)x ,即f (x )>e x -1-(a +1)x ,又e x≥x +1,∴e x -1≥x ,∴ex 2-1≥x 2,∴e x -2≥x 24,又e x -1>e x -2,∴e x -1>x 24,∴f (x )>e x -1-(a+1)x >x 24-(a +1)x ,即f (x )>x 24-(a +1)x ,∴f [4(a+1)]>16(a +1)24-(a +1)×4(a +1)=0,当x $0时,f (x )>0,若函数f (x )有唯一零点x 0,则f (t 0)=0,∴x 0=t 0,即e x 0-1 =1x 0+a ,∴f (x 0)=1x 0+a -ln x 0-ax 0=0,设u (x 0)=1x 0+a -ln x 0-ax 0,∴u ′(x 0)=-1x 20-1x 0-a <0,∴u (x 0)在(1,+∞)单调递减,∴u (1)=1>0,u (2)=12-ln 2-a <0,∴1<x 0<2.2023年普通高等学校招生全国统一考试考前模拟试卷数学(二)1.C 【解析】由题意可得,z=4+3i i =(4+3i )i i 2=4i -3-1=3-4i.故选C.2.C 【解析】解不等式x 2-x -6≤0得,-2≤x ≤3,即A ={x |-2≤x ≤3},解不等式x -1<0得x <1,则B ={x |x <1},UB )={x |x ≥-2}.故选C .3.A 【解析】∵O ,A ,B 三点共线,则O O $A ∥O O $B ,∴埚姿∈R ,O O $B =姿O O $A ,即x m +n =姿(5m -3n ).整理得,(5姿-x )m =(3姿+1)n.又∵向量m ,n 不共线,则5姿-x =3姿+1=0,则x =-53.故选A .4.B 【解析】log 9a 1+log 9a 2+…+log 9a 10=log 9[(a 1a 10)·(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)]=log 995=5,故选B .5.A 【解析】sin 2琢+仔660=sin 2琢+仔363-仔223=-cos 2琢+仔333=2sin 2琢+仔363-1=2×89-1=79.故选A .6.C 【解析】小明从中随机夹了3个饺子共有C 310=10×9×83×2×1=120种;如果是1个麸子、1个钱币饺子、1个糖饺子,共有5×3×2=30种;如果是1个麸子、2个钱币饺子,共有C 15C 23=15种;如果是2个麸子、1个钱币饺子,共有C 25C 13=30种.由古典概型的概率公式得,小明夹到的饺子中,既有麸子饺子又有钱币饺子的概率是P =30+15+30120=58.故选C .7.D 【解析】由题可得AB =8,∵AP=BP ,∴S △ABP =12×8×4=16,∵PC ⊥平面ABP ,且PC =4,∴V C 鄄ABP =13×16×4=643,∵AP=BP =42姨,∴AC=BC =43姨,∴S △ABC =12×8×48-16姨=162姨,设点P 到平面ABC 的距离为d ,则V P 鄄ABC =13×162姨d =643,解得d =22姨.故选D.8.C 【解析】a 1a =b 1b 两边同取自然对数得ln a a =ln b b,设f (x )=ln x x,由f ′(x )=1-ln x x2,令f ′(x )>0,解得0<x <e ,令f ′(x )<0,解得e <x ,∴f (x )在区间(0,e )上单调递增,在区间(e ,+∞)上单调递减,∴f (x )在x =e 处取得最大值f (e )=1e,在区间(0,e )上函数f (x )有唯一的零点x =1,在区间(e ,+∞)上函数f (x )>0,又∵a>b >0且f (a )=f (b )>0,∴1<b<e ,a >e.故选C.9.ABD 【解析】如图,∵正四棱柱ABCD 鄄A 1B 1C 1D 1的底面边长为2,∴B 1D 1=22姨,又侧棱AA 1=1,∴DB 1=(22姨)2+12姨=3,则P 与B 1重合时PD =3,此时P 点唯一,故A 正确;∵PD =3姨∈(1,3),DD 1=1,则PD 1=2姨,即点P 的轨迹是一段圆弧,故B 正确;连接DA 1,DC 1,可得平面A 1DC 1∥平面ACB 1,则当P 为A 1C 1中点时,DP 有最小值为(2姨)2+12姨=3姨,故C 错误;平面BDP 即为平面BDD 1B 1,平面BDP 截正四棱柱ABCD 鄄A 1B 1C 1D 1的外接球所得平面图形为外接球的大圆,其半径为1222+22+12姨=32,面积为9仔4,故D 正确.故选ABD .10.BD 【解析】∵f (x )=tan x-cos x ,∴f (0)=-1,f (仔)=1,f (0)≠f (仔),故A 错误;参考答案第5页共28页参考答案第6页共28页PABC第7题答图DABCA 1B 1C 1D 1P122第9题答图39。
小升初数学模拟试卷(一)
一、填空。
1、篮球个数是足球的125%,篮球比足球多()%,足球个数是篮球的()%,足球个数比篮球少()%。
2、排球个数比篮球多18%,排球个数相当于篮球的()%。
3、足球个数比篮球少20%。
排球个数比篮球多18%,()球个数最多,()球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。
苹果树占总棵数的()%,其余的果树占总棵数的()%。
5、女生人数占全班的百分之几 = ()÷ ()
杨树的棵数比柏树多百分之几 =()÷ ()实际节约了百分之几 = ()÷ ()比计划超产了百分之几 = ()÷ ()
6、20的40%是(),36的10%是(),50千克的60%是()千克,800米的25%是()米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是()元。
二、解决实际问题
1、白兔有25只,灰兔有30只。
灰兔比白兔多百分之几?
2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。
实际比计划多生产了百分之几?
3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?
4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。
比计划超产百分之几?
5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。
一共要缴纳多少万元的增值税?
6、爸爸买了一辆价值12万元的家用轿车。
按规定需缴纳10%的车辆购置税。
爸爸买这辆车共需花多少钱?
小升初数学模拟试卷(一)答案
一、填空。
1、篮球个数是足球的125%,篮球比足球多( 25 )%,足球个数是篮球的( 80 )%,足球个数比篮球少( 20 )%。
2、排球个数比篮球多18%,排球个数相当于篮球的( 118 )%。
3、足球个数比篮球少20%。
排球个数比篮球多18%,(排)球个数最多,(足)球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。
苹果树占总棵数的( 60 )%,其余的果树占总棵数的( 40 )%。
5、女生人数占全班的百分之几 = (女生人数)÷ (全班人数)
杨树的棵数比柏树多百分之几 =(杨树比柏树多的棵数)÷ (柏树棵数)
实际节约了百分之几 = (节约的数量)÷ (计划数量)
比计划超产了百分之几 = (超产产量)÷ (计划产量)
6、20的40%是( 8 ),36的10%是( 3.6 ),50千克的60%是( 30 )千克,800米的25%是( 200 )米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( 1.2a)元。
二、解决实际问题
1、白兔有25只,灰兔有30只。
灰兔比白兔多百分之几?
(30 - 25)÷ 25 = 20 %
2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。
实际比计划多生产了百分之几?
(480 - 450)÷ 450 ≈ 6.7%
3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?
10 ÷ 80 = 12.5 %
4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。
比计划超产百分之几?
500 ÷ (5000 – 500)≈ 11.1%
5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。
一共要缴纳多少万元的增值税?
900 × 17% = 153(万元)
6、爸爸买了一辆价值12万元的家用轿车。
按规定需缴纳10%的车辆购置税。
爸爸买这辆车共需花多少钱?
方法1:12 ×10% + 12 = 1.2 + 12 = 13.2(万元)
方法2:12 ×(1 + 10%) = 12 ×1.1 = 13.2(万元)。