高中数学人教B版选修2-2同步练习: 2.2 第2课时反证法
- 格式:doc
- 大小:87.00 KB
- 文档页数:6
反证法[基础训练A 组]一、选择题1.数列2,5,11,20,,47,x …中的x 等于( )A .28B .32C .33D .272.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2- 3.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2; ③ED FE +;④FA ED -2中,与AC 等价的有( )A .1个B .2个C .3个D .4个4.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值5.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a <C .5481a a a a +>+D .5481a a a a =6. 若234342423log [log (log )]log [log (log )]log [log (log )]0x x x ===,则x y z ++=( )A .123B .105C .89D .587.函数x y 1=在点4=x 处的导数是 ( )A .81B .81-C .161D .161- 二、填空题 1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
2.已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。
3.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________。
4.若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________≈=m5.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
课堂探究探究一 用反证法证明否定性命题所谓否定性命题,就是指所证问题的结论中含有“不”、“不是”、“不存在”、“不相等”、“不可能”等词语的命题,这类问题的结论的反面比较具体,适合用反证法进行证明.【典型例题1】 (1)若数列{a n }的通项公式为a n =1n(n ∈N +),求证{a n }中任意连续的三项都不可能构成等差数列.(2)已知a 是整数,且a 2+2a 是奇数,求证:a 不是偶数.思路分析:两个命题均是否定性命题,可用反证法证明.证明:(1)假设{a n }中存在连续的三项构成等差数列.设这连续三项为a k ,a k +1,a k +2(k ∈N +),则2a k +1=a k +a k +2,即2k +1=1k +1k +2, 所以2k +1=2k +2k 2+2k. 所以2k 2+4k =2k 2+4k +2,即0=2,这显然是矛盾的.因此假设不成立,即{a n }中任意连续三项不可能构成等差数列.(2)假设a 是偶数,不妨设a =2k (k ∈Z ),于是a 2+2a =(2k )2+2·2k =4k 2+4k =4(k 2-k ),由于k ∈Z ,所以k 2+k ∈Z .因此4(k 2+k )是偶数,即a 2+2a 是偶数.这与已知a 2+2a 是奇数相矛盾,故假设不成立,即a 不是偶数.探究二 用反证法证明唯一性命题1.结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题,由于反设结论易于导出矛盾,所以用反证法证其唯一性简单明了.2.用反证法证明问题时,若结论的反面呈现多样性,必须罗列出各种可能的情况,缺少任何一种情况时,反证都是不完全的.3.证明“有且只有”的问题,需要证明两个命题,即存在性和唯一性.【典型例题2】 (1)求证:经过平面α外一点M ,只能作一条直线与该平面垂直.(2)若函数f (x )在区间上的图象连续不断开,且f (a )<0,f (b )>0,且f (x )在上单调递增,求证:f (x )在(a ,b )内有且只有一个零点.思路分析:对于(1)可假设能作两条直线与该平面垂直,然后根据空间中有关定理推出矛盾;对于(2),应先由函数零点存在性判定定理判定函数在(a ,b )内有零点,再用反证法证明零点唯一.证明:(1)假设经过平面α外一点M ,能作两条直线a ,b 都与该平面垂直.那么由线面垂直的性质可知a ∥b ,且a ,b 在同一平面内,这与a ,b 相交(均过点M )矛盾,因此假设不成立,即经过平面α外一点M ,只能作一条直线与该平面垂直.(2)由于f (x )在上的图象连续不断开,且f (a )<0,f (b )>0,即f (a )·f (b )<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,m ∈(a ,b ),则f (m )=0,假设f (x )在(a ,b )内还存在另一个零点n ,则f (n )=0,且n ≠m .若n >m ,则f (n )>f (m ),即0>0,矛盾;若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.探究三 用反证法证明至少、至多命题1.当命题出现“至多”“至少”等词语时,适合用反证法.2.常见的“结论词”与“反设词”至少有一个不大于14.思路分析:本题中“至少有一个”的否定是“一个也没有”,然后由假设入手,应用均值不等式证明.证明:方法1:假设(1-a )b >14,(1-b )c >14,(1-c )a >14. ∵a ,b ,c 都是小于1的正数, ∴(1-a )b >12,(1-b )c >12,(1-c )a >12, ∴(1-a )b +(1-b )c +(1-c )a >32. 又∵(1-a )b +(1-b )c +(1-c )a≤(1-a )+b 2+(1-b )+c 2+(1-c )+a 2=3-(a +b +c )+(a +b +c )2=32, 与上式矛盾.∴假设不成立,即原命题成立.方法2:假设三式同时大于14, 即(1-a )b >14,(1-b )c >14,(1-c )a >14, 三式相乘,得(1-a )a ·(1-b )b ·(1-c )c >164. 又(1-a )a ≤⎝ ⎛⎭⎪⎫1-a +a 22=14. 同理,(1-b )b ≤14,(1-c )c ≤14. 以上三式相乘得(1-a )a (1-b )b (1-c )c ≤164, 这与(1-a )a (1-b )b (1-c )c >164矛盾,故结论得证. 探究四 易错辨析易错点:运用反证法,结论否定不当而出错【典型例题4】 用反证法证明命题“a ,b 为整数,若ab 不是偶数,则a ,b 都不是偶数”时,应假设________.错解:a,b不都是偶数.错因分析:a,b不都是偶数包括的情况有:(1)a是偶数,b是奇数;(2)a是奇数;b是偶数;(3)a,b都不是偶数.显然,否定的结论并不是结论的对立面,所以不正确,题目中“a,b都不是偶数”指“a,b都是奇数”.正解:“a,b都是偶数”或“a,b不都是奇数”.。
【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。
其次章 2.2第2课时一、选择题1.反证法是导学号 96660885 ()A.从结论的反面动身,推出冲突的证法B.对其否命题的证明C.对其逆命题的证明D.分析法的证明方法[答案] A[解析]反证法是先否定结论,在此基础上,运用演绎推理,导出冲突,从而确定结论的真实性.2.(2021~2022学年度河南新野高二阶段测试)用反证法证明“a+b+c>3,则a、b、c中至少有一个大于1”时,“假设”应为导学号 96660886 ()A.假设a、b、c中至少有一个小于1B.假设a、b、c中都小于等于1C.假设a、b、c至少有两个大于1D.假设a、b、c都小于1[答案] B[解析]“至少有一个”的反面是“一个也没有”,故“a、b、c中至少有一个大于1”的反面是“a、b、c中都小于等于1.”3.应用反证法推出冲突的推导过程中要把下列哪些作为条件使用导学号 96660887 ()①结论相反推断,即假设;②原命题的条件;③公理、定理、定义等;④原结论.A.①②B.①②④C.①②③D.②③[答案] C[解析]由反证法的定义可知为①②③.4.“M不是N的子集”的充分必要条件是导学号 96660888 ()A.若x∈M则x∉NB.若x∈N则x∈MC.存在x1∈M⇒x1∈N,又存在x2∈M⇒x2∉ND.存在x0∈M⇒x0∉N[答案] D[解析]按定义,若M是N的子集,则集合M的任一个元素都是集合N的元素.所以,要使M不是N 的子集,只需存在x0∈M但x0∉N.选D.5.用反证法证明命题:“设a、b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是导学号 96660889 ()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根[答案] A[解析]“至少有一个”的反面是“一个也没有”,故选A.6.用反证法证明命题“a、b∈N,ab可被5整除,那么a、b中至少有一个是5的倍数”时,反设正确的是导学号 96660890 ()A.a、b都是5的倍数B.a、b都不是5的倍数C.a不是5的倍数D.a、b中有一个是5的倍数[答案] B[解析]“至少有一个”的反面为“一个也没有”,即“都不是”.二、填空题7.“任何三角形的外角都至少有两个钝角”的否定应是________.导学号 96660891[答案]存在一个三角形,其外角最多有一个钝角[解析]“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.8.设正实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.导学号 96660892[答案]13[解析]假设a、b、c都小于13,则a+b+c<1,“假设错误,故a、b、c中至少有一个数不小于13.”三、解答题9.证明:对于直线l:y=kx+1.不存在这样的实数k,使得l与双曲线C:3x2-y2=1的交点A、B关于直线y=ax(a为常数)对称.导学号 96660893[解析]假设存在实数k,使得A、B关于直线y=ax对称,设A(x1,y1)、B(x2,y2),则有(1)直线l:y=kx+1与直线y=ax垂直;(2)点A、B在直线l:y=kx+1上;(3)直线AB的中点(x1+x22,y1+y22)在直线y=ax上,所以⎩⎨⎧ka =-1, ①y 1+y 2=k (x 1+x 2)+2, ②y 1+y 22=a x 1+x22. ③由⎩⎪⎨⎪⎧y =kx +1,y 2=3x 2-1得(3-k 2)x 2-2kx -2=0. ④ 由②③得a (x 1+x 2)=k (x 1+x 2)+2, ⑤ 由④知x 1+x 2=2k 3-k 2,代入⑤整理得ak =3.这与①冲突.所以假设不成立,故不存在实数k ,使得A 、B 关于直线y =ax 对称.一、选择题1.设a 、b ∈(0,+∞),则a +1b ,b +1a 导学号 96660894( )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于2[答案] D[解析] 假设a +1b <2,b +1a <2,则(a +1b )+(b +1a )<4①.又a 、b ∈(0,+∞),所以a +1b +b +1a =(a +1a )+(b +1b )≥2+2=4,这与①式相冲突,故假设不成立,即a +1b ,b +1a至少有一个不小于2.2.已知x >0,y >0,x +y ≤4,则有导学号 96660895 ( ) A.1x +y ≤14 B.1x +1y ≥1 C.xy ≥2 D.1xy≥1 [答案] B[解析] 由x >0,y >0,x +y ≤4得1x +y ≥14,A 错;x +y ≥2xy ,∴xy ≤2,C 错;xy ≤4,∴1xy ≥14,D 错.3.已知数列{a n }、{b n }的通项公式分别为:a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项的个数是导学号 96660896 ( )A .0个B .1个C .2个D .无穷多个[答案] A[解析] 假设存在序号和数值均相等的两项,即存在n ,使得a n =b n ,但若a >b ,n ∈N *,恒有a ·n >b ·n ,从而an +2>bn +1恒成立.∴不存在n ,使得a n =b n .故应选A.4.假如两个数之和为正数,则这两个数导学号 96660897 ( ) A .一个是正数,一个是负数 B .两个都是正数 C .至少有一个是正数 D .两个都是负数[答案] C[解析] 假设两个都是负数,其和必为负数. 二、填空题5.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP .用反证法证明时的假设为___________________________.导学号 96660898[答案] ∠BAP =∠CAP 或∠BAP >∠CAP[解析] 反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP . 6.设a 、b 是两个实数,给出下列条件: 导学号 96660899①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2.其中能推出“a 、b 中至少有一个大于1”的条件是________(填序号).[答案] ③[解析] 若a =12,b =23,则a +b >1,但a <1,b <1,故①不能推出.若a =b =1,则a +b =2,故②推不出. 若a =-2,b =-3,则a 2+b 2>2,故④推不出. 对于③即a +b >2,则a ,b 中至少有一个大于1. 反证法:假设a ≤1且b ≤1. 则a +b ≤2与a +b >2冲突.因此假设不成立,故a ,b 中至少有一个大于1. 三、解答题7.已知:非实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不行能成等差数列.导学号 96660900[证明] 假设1a ,1b ,1c 成等差数列.则2b =1a +1c.∴2ac =bc +ab ①又a ,b ,c 成等差数列,∴2b =a +c ② ∴把②代入①得2ac =b (a +c )=b ·2b ∴b 2=ac .③由②平方4b 2=(a +c )2.把③代入4ac =(a +c )2,∴(a -c )2=0.∴a =c . 代入②得b =a ,∴a =b =c . ∴公差为0,这与已知冲突. ∴1a ,1b ,1c不行能成等差数列. 8.已知a 、b 、c 、d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a 、b 、c 、d 中至少有一个是负数.[证明] 假设a 、b 、c 、d 都是非负数. ∵a +b =c +d =1,∴(a +b )(c +d )=1. 又(a +b )(c +d )=ac +bd +ad +bc >ac +bd . ∴ac +bd <1.这与已知ac +bd >1冲突, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知函数f (x )=a x +x -2x +1(a >1),用反证法证明方程f (x )=0没有负数根.[证明] 假设存在x 0<0(x 0≠-1),满足f (x 0)=0. 则ax 0=-x 0-2x 0+1,且0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2,这与假设x 0<0相冲突,故方程f (x )=0没有负数根.。
第二章 2.2 第2课时一、选择题1.设a 、b 、c 都是正数,则三个数a +1b 、b +1c 、c +1a ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2[答案] C[解析] a +1b +b +1c +c +1a =a +1a +b +1b +c +1c ≥2+2+2=6.故选C.2.异面直线在同一个平面的射影不可能是( ) A .两条平行直线 B .两条相交直线 C .一点与一直线 D .同一条直线 [答案] D[解析] 举反例的方法如图正方体ABCD -A 1B 1C 1D 1中A 1A 与B 1C 1是两条异面直线,它们在平面ABCD 内的射影分别是点A 和直线BC ,故排除C ;BA 1与B 1C 1是两条异面直线,它们在平面ABCD 内的射影分别是直线AB 和BC ,故排除B ;BA 1与C 1D 1是两条异面直线,它们在平面ABCD 内的射影分别是直线AB 和CD ,故排除A.故选D.3.已知x 、y ∈R ,且x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值34,而无最大值B .最小值1,而无最大值C .最小值12和最大值1D .最大值1和最小值34[答案] D[解析] 设x =cos α,y =sin α,则(1-xy )(1+xy ) =(1-sin αcos α)(1+sin αcos α)=1-sin 2αcos 2α =1-14sin 22α∈[34,1].4.(2014·微山一中高二期中)用反证法证明命题“如果a >b >0,那么a 2>b 2”时,假设的内容应是( )A .a 2=b 2B .a 2<b 2C .a 2≤b 2D .a 2<b 2,且a 2=b 2[答案] C5.(2013·浙江余姚中学高二期中)用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a 、b 、c 中至少有一个是偶数”时,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个是偶数 [答案] B[解析] “至少有一个”的对立面是“一个都没有”. 6.“M 不是N 的子集”的充分必要条件是( ) A .若x ∈M 则x ∉N B .若x ∈N 则x ∈MC .存在x 1∈M ⇒x 1∈N ,又存在x 2∈M ⇒x 2∉ND .存在x 0∈M ⇒x 0∉N [答案] D[解析] 按定义,若M 是N 的子集,则集合M 的任一个元素都是集合N 的元素.所以,要使M 不是N 的子集,只需存在x 0∈M 但x 0∉N .选D.7.设a 、b 、c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P 、Q 、R 同时大于零”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] 首先若P 、Q 、R 同时大于零,则必有PQR >0成立.其次,若PQR >0,且P 、Q 、R 不都大于0,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,∴b <0与b ∈R +矛盾,故P 、Q 、R 都大于0.故选C.8.(2013·华池一中高二期中)用反证法证明某命题时,对其结论:“自然数a 、b 、c 中恰有一个偶数”正确的反设为( )A .a 、b 、c 都是奇数B .a 、b 、c 都是偶数C .a 、b 、c 中至少有两个偶数D .a 、b 、c 中至少有两个偶数或都是奇数 [答案] D[解析] “自然数a 、b 、c 中恰有一个偶数”即a 、b 、c 中有两奇一偶,故其反面应为都是奇数或两偶一奇或都是偶数,故选D.二、填空题9.设f (x )=x 2+ax +b ,求证:|f (1)|、|f (2)|、|f (3)|中至少有一个不小于12.用反证法证明此题时应假设____________________.[答案] |f (1)|、|f (2)|、|f (3)|都小于1210.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是1,2,…,7的一个排列. 求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数. 证明:反设p 为奇数,则________均为奇数.①因奇数个奇数之和为奇数,故有奇数=________________________________ ② =________________________________③ =0.[答案] ①a 1-1,a 2-2,...,a 7-7 ②(a 1-1)+(a 2-2)+...+(a 7-7) ③(a 1+a 2+...+a 7)-(1+2+3+ (7)11.设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于________. [答案] 13[解析] 假设a 、b 、c 都小于13,则a +b +c <1.故a 、b 、c 中至少有一个数不小于13.三、解答题12.设a ,b ,c 均为奇数,求证:方程ax 2+bx +c =0无整数根.[证明] 假设方程有整数根x =x 0,x 0∈Z ,则ax 20+bx 0+c =0,c =-(ax 20+bx 0). ①若x 0为偶数,则ax 20与bx 0均为偶数,所以ax 20+bx 0为偶数,从而c 为偶数,与题设矛盾.②若x 0为奇数,则ax 20、bx 0均为奇数,所以ax 20+bx 0为偶数,从而c 为偶数,与题设矛盾.综上所述,方程ax 2+bx +c =0没有整数根.一、选择题1.实数a ,b ,c 不全为0的含义是( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0 [答案] D[解析] “不全为0”即“至少有一个不为0”.2.(2014·山东理,4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 [答案] A[解析] 本题考查命题的非的写法. 至少有一个实根的否定为:没有实根. 反证法的假设为原命题的否定. 3.已知x >0,y >0,x +y ≤4,则有( ) A.1x +y ≤14 B .1x +1y ≥1C.xy ≥2 D .1xy≥1[答案] B[解析] 由x >0,y >0,x +y ≤4得1x +y ≥14,A 错;x +y ≥2xy ,∴xy ≤2,C 错;xy ≤4,∴1xy ≥14,D 错. 4.已知数列{a n },{b n }的通项公式分别为:a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项的个数是( )A .0个B .1个C .2个D .无穷多个[答案] A[解析] 假设存在序号和数值均相等的两项,即存在n ∈N *,使得a n =b n ,但若a >b ,n ∈N *,恒有a ·n >b ·n ,从而an +2>bn +1恒成立.∴不存在n ∈N *,使得a n =b n .故应选A.二、填空题5.“任何三角形的外角都至少有两个钝角”的否定应是________. [答案] 存在一个三角形,其外角至多有一个钝角6.用反证法证明命题“如果AB ∥CD ,AB ∥EF ,那么CD ∥EF ”,证明的第一个步骤是________.[答案] 假设CD 与EF 不平行7.用反证法证明命题:“a ,b ∈N ,ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为__________________.[答案] 假设a 、b 都不能被5整除 三、解答题8.若x >0,y >0,且x +y >2,求证1+x y <2和1+y x <2中至少有一个成立.[解析] 假设都不成立,即有1+x y ≥2且1+yx≥2. ∵x >0,y >0,∴1+x ≥2y 且1+y ≥2x , ∴2+(x +y )≥2(x +y ),∴x +y ≤2,这与已知条件x +y >2矛盾. ∴假设不成立,原命题成立, 即1+x y <2和1+yx<2中至少有一个成立. 9.求证:当x 2+bx +c 2=0有两个不相等的非零实数根时,bc ≠0. [证明] 假设bc =0.(1)若b =0,c =0,方程变为x 2=0;则x 1=x 2=0是方程x 2+bx +c 2=0的两根,这与方程有两个不相等的实数根矛盾.(2)若b =0,c ≠0,方程变为x 2+c 2=0;但c ≠0,此时方程无解,与x 2+bx +c 2=0有两个不相等的非零实数根矛盾.(3)若b ≠0,c =0,方程变为x 2+bx =0,方程的根为x 1=0,x 2=-b ,这与方程有两个非零实根矛盾.综上所述,可知bc ≠0.10.已知:非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a 、1b 、1c 不可能成等差数列.[解析] 假设1a ,1b ,1c 成等差数列.则2b =1a +1c .∴2ac =bc +ab① 又a ,b ,c 成等差数列,∴2b =a +c②∴把②代入①得2ac =b (a +c )=b ·2b ∴b 2=ac .③由②平方4b 2=(a +c )2. 把③代入4ac =(a +c )2, ∴(a -c )2=0.∴a =c . 代入②得b =a ,∴a =b =c . ∴公差为0,这与已知矛盾. ∴1a ,1b ,1c 不可能成等差数列.。