八年级下数学第一次月考试题
- 格式:doc
- 大小:91.91 KB
- 文档页数:2
2019-2020学年八年级(下)第一次月考数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.55.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.7.(3分)下列根式中,不能与合并的是()A.B.C.D.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为.15.(4分)若有意义,则a的取值范围为16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:,可使它成为正方形.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=024.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.参考答案一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形【分析】根据平行四边形、菱形、正方形的判定和性质一一判断即可.【解答】解:A.对角线互相平分的四边形是平行四边形,此选项正确;B.对角线互相垂直且平分的四边形是菱形,此选项错误;C.对角线互相垂直的矩形是正方形,此选项正确;D.对角线相等的菱形是正方形,此选项正确.故选:B.2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB=90°,AB∥CD,求出∠OAB=∠DAB﹣∠OAD=35°,由平行线的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,AB∥CD,∴∠OAB=∠DAB﹣∠OAD=90°﹣55°=35°,∠OCD=∠OAB=35°,故选:A.4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.5【分析】作BF⊥DC于F,如图,易得四边形BEDF为矩形,再证明△ABE≌△CBF得到BE=BF,S△ABE=S△CBF,则可判断四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,然后根据正方形的面积公式计算BE的长.【解答】解:作BF⊥DC于F,如图,∵∠CDA=90°,BE⊥AD,BF⊥DF,∴四边形BEDF为矩形,∴∠EBF=90°,即∠EBC+∠CBF=90°,∵∠ABC=90°,即∠EBC+∠ABE=90°,∴∠ABE=∠CBE,在△ABE和△CBF中,∴BE=BF,S△ABE=S△CBF,∴四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,∴BE==4.故选:C.5.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定【分析】作BF⊥AD与F,就可以得出BF∥CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BAF就可以得出AF=CE,进而得出结论.【解答】解:作BF⊥AD与F,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BCE和△BAF中,∴△BCE≌△BAF(ASA),∴CE=F A.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴F A=2,∴AD=8+2=10.故选C.6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.【分析】直接利用二次根式的性质得出a的符号,进而变形得出答案.【解答】解:a=﹣=﹣.故选:B.7.(3分)下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±【分析】首先根据倒数定义可得:(x+1)(x﹣1)=1,再去括号,两边同时开平方即可.【解答】解:由题意得:(x+1)(x﹣1)=1,去括号得:x2﹣1=1,移项得:x2=2,两边直接开平方得:x=±,故选:D.9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为200(1﹣x)元,再经过一次下降后成本变为200(1﹣x)(1﹣x)元,根据两次降低后的成本是162元列方程求解即可.【解答】解:设平均每次降低成本的百分率为x,根据题意得:200(1﹣x)(1﹣x)=162,解得:x=0.1或1.9(不合题意,舍去)即:x=10%故选:B.10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.12.(4分)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为1.【分析】先设x2+y2=t,则方程即可变形为t2+5t﹣6=0,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t,则原方程可化为:t2+5t﹣6=0即(t+6)(t﹣1)=0∴t=﹣6(舍去)或t=1,即x2+y2=1.故答案是:1.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为﹣2018.【分析】利用a是方程3x2+2x﹣1=0的解得到3a2+2a=1,然后利用整体代入的方法计算3a2+2a﹣2019的值.【解答】解:∵a是方程3x2+2x﹣1=0的解,∴3a2+2a﹣1=0,∴3a2+2a=1,∴3a2+2a﹣2019=1﹣2019=﹣2018.故答案为﹣2018.15.(4分)若有意义,则a的取值范围为a≤4且a≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零.【解答】解:依题意得:4﹣a≥0且a+2≠0,解得a≤4且a≠﹣2.故答案是:a≤4且a≠﹣2.16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为32.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=4,∴AB=8,∴菱形ABCD的周长是:4×8=32,故答案为:32.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:∠BAD=90°,可使它成为正方形.【分析】根据正方形的判定即可得结论.【解答】解:因为四边形ABCD是平行四边形,AB=AD,所以▱ABCD是菱形,如果∠BAD=90°,那么四边形ABCD是正方形.故答案为:∠BAD=90°.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).【分析】(1)直接利用二次根式的性质以及负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简,进而结合二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=2﹣3×﹣2﹣1×=2﹣﹣2﹣=﹣2;(2)原式=[3+4×﹣(﹣)]×=(3+2﹣+)×=(2+3)×=6+3.20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10【分析】(1)可用公式法进行求解;(2)观察原方程,方程的左右两边都含有2x﹣5,因此可先移项,然后用提取公因式法进行求解.【解答】解:(1)a=1,b=﹣7,c=﹣1;b2﹣4ac=53;x=;x1=,x2=;(2)原方程可化为:x(2x﹣5)﹣2(2x﹣5)=0;(2x﹣5)(x﹣2)=0,x﹣2=0或2x﹣5=0;解得:x1=2,x2=.四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.【分析】(1)先证四边形DECO是平行四边形,再根据菱形的性质求出∠DOC=90°,即可得出结论;(2)证△AFO≌△EFD(AAS),得OF=DF,由直角三角形的性质得OD=AO=4,则OF=OD=2,再根据勾股定理求出AF即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形DECO是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AO=OC,AC⊥BD,∵四边形DECO是矩形,∴OC=DE=4,∴AO=4,∵DE∥AC,∴∠F AO=∠DEF,在△AFO和△EFD中,,∴△AFO≌△EFD(AAS),∴OF=DF,∵∠ADB=30°,∴OD=AO=4,∴OF=OD=2,∴AF===2.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.【分析】(1)根据题意△=0,构建方程,解方程即可.(2)把m=1代入方程,解方程即可解决问题.【解答】解:(1)四边形ABCD为菱形,则方程有两个相等的实数根,∴△=b2﹣4ac=(﹣m)2﹣4(﹣)=0,即m2﹣2m+1=0,解得m=1,所以当m=1时,四边形ABCD为菱形.(2)把m=1代入原方程得x2﹣x+=0,解得所以菱形的边长为.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.【解答】解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.(2)当x≥2时,原方程可可化为x2+2x﹣4﹣3=0,解得x1=﹣1+(舍去),x2=﹣1﹣(舍去).当x<2时,原方程化为x2﹣2x+4﹣3=0,解得x1=x2=1综上所述,原方程的根是x1=x2=1.24.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为(30﹣3x)m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?【分析】(1)设AB的长为xm,则平行一墙的一边长为(30﹣3x)m,该花圃的面积为x (30﹣x)m2;进而用含x的代数式表示BC即可;(2)令该面积等于63平方米,求出符合题意的x的值,即是所求AB的长.【解答】解:(1)BC的长可用含x的代数式表示为(30﹣3x)m.故答案为:(30﹣3x);(2)依题意有x(30﹣3x)=63.解得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去.故当AB的长是7米时,围成的花圃面积为63平方米.25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.【分析】先分母有理化,然后合并即可.【解答】解:原式=+++…++=.。
河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查适合普查的是( ) A .检测某城市的空气质量B .了解某市居民对废电池的处理情况C .日光灯厂要检测一批灯管的使用寿命D .学校在给学生订做校服前进行的尺寸大小的调查2.下列调查,样本具有代表性的是( )A .了解全校同学对课程的喜欢情况,对某班男同学进行调查B .了解某小区居民的防火意识,对你们班同学进行调查C .了解商场的平均日营业额,选在周末进行调查D .了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查 3.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个4.若点()2,3P m m ++在平面直角坐标系的x 轴上,则点P 的坐标为( ) A .()1,0-B .()0,1C .()1,0D .()0,1-5.为了解某市80000名学生参加初中毕业考试英语成绩情况,从中抽取了2000名考生的英语成绩进行统计分析,在这次调查中,下列说法:①这80000名学生参加初中毕业考试英语成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的是( ) A .①②③④B .②③④C .①④D .①③④6.如果A (1-a ,b +1)关于y 轴的对称点在第三象限,那么点B (1-a ,b )在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图所示的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是( ) A .4:00气温最低 B .6:00气温为24 ℃C .14:00气温最高D .气温是30 ℃的时刻为16:008.已知等腰三角形的周长为24cm ,若底边长为y ,一腰长为x ,则y 与x 之间的函数关系式为( )A .()242012y x x =-<<B .()242612y x x =-<<C .()24012y x x =-<<D .()24612y x x =-<<9.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系10.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d 的关系,试问下面哪个式子能表示这种关系( )A .2b d =B .2b d =C .2d b =D .25b d =+11.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为()2,0,点A 在第一象限内,将OAB V沿直线OA 的方向平移至O A B '''△的位置,此时点A '的横坐标为3,则点B '的坐标为( )A .()3,3B .(C .(D .(12.下列说法正确的个数是( ) (1)若0ab =,则点(),P a b 表示原点(2)点()21,a -在第四象限(3)已知()1,3A -与()1,3B ,则直线AB 平行于y 轴(4)已知()1,3A -,AB y P 轴,且4AB =,则B 点的坐标为()1,1A .0个B .1个C .2个D .3个13.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A .B .C .D .14.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2022次跳动至点2022A 的坐标是( )A .()506,1010-B .()506,1011C .()505,1010-D .()505,1011二、填空题15.某校八年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理,在得到的频数分布表中,各小组频数之和等于.若某一小组的频数为4,则该小组的频率为;若数据在0.95 1.15~这一小组的频率为0.3,则估计该校八年级学生视力在0.95 1.15~这一范围内的人数约为人.16.函数y =x 的取值范围是. 17.小丽家在学校北偏西60︒方向上,距学校4km ,以学校所在位置为坐标原点建立直角坐标系,1km 为一个单位长度,则小丽家所在位置的坐标为.18.如图1,点P 从ABC V 的顶点A 出发,沿A →B →C 匀速运动到点C ,图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC V 的边AB 的长度为.三、解答题19.已知点()24,1P m m +-,试分别根据下列条件,求出点P 的坐标.(1)点P 在过点()2,3A -且与x 轴平行的直线上; (2)点P 到x 轴的距离是1; (3)点P 到x 轴,y 轴的距离相等.20.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表图1 图2根据以上信息完成下列问题:(1)统计表中的m =______,n =______; (2)补全条形统计图;(3)扇形统计图中“B ”类所对应的圆心角是______度;(4)若该校有4000名学生,且正确字数在“A ”类和“B ”类的定为不合格,需要补考,求该校需要参加补考的学生人数.21.如图,在平面直角坐标系xOy 中,ABC V 的三个顶点分别为()3,4A -,()5,1B -,()1,2C -.(1)画出ABC V 关于x 轴对称的111A B C △,并写出点1B 的坐标;(2)画出111A B C △向右平移6个单位长度,再向上平移2个单位长度后的222A B C △,并写出点2B 的坐标; (3)求出ABC V 的面积.22.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题 (1)直接写出图中a ,m 的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.23.深圳市12号地铁线断安段正在施工,现甲乙两工程队共同承包,A B 两地之间的道路.两队分别从,A B 两地相向修建,已知甲队先施工3天,乙队才开始施工,乙队施工几天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的2倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通,甲、乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题.(1)在施工的过程中,甲队在提速后每天修道路米;乙队每天修路 米. (2)乙队共参与施工的天数是 天. (3)求,A B 两地之间的道路长度.24.已知平面直角坐标系内两点A 、B ,点(3,4)A -,点B 与点A 关于y 轴对称. (1)则点B 的坐标为________;(2)动点P 、Q 分别从A 点、B 点同时出发,沿直线AB 向右运动,同向而行,点P 的速度是每秒4个单位长度,点Q 的速度是每秒2个单位长度,设P 、Q 的运动时间为t 秒,用含t 的代数式表示OPQ ∆的面积S ,并写出t 的取值范围; (3)在平面直角坐标系中存在一点(,)M m m -,满足23MOB ABO S S ∆∆≤.求m 的取值范围.。
八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
河北省石家庄市藁城市西关中学2021-2022学年八年级数学下学期第一次月考测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A .7,24,25B .132,142,152C .3,4,5D .4,172,1822.平行四边形具有的性质是()A .四边相等B .对角线相等C .对角线互相平分D .四个角都是直角3.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为()A .3B .4C .5D .64.矩形具有而平行四边形不一定具有的性质是()A .对边相等B .对角相等C .对角线相等D .对角线互相平分5.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结OE.若A 60BC ∠= ,80BAC ∠= ,则1∠的度数为()A .50B .40C .30D .206.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是()A .BE =DFB .AE =CFC .AF //CED .∠BAE =∠DCF7.如图,为测量池塘边A 、B 两点的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE =14m ,则A 、B 间的距离是().A .18mB .24mC .28mD .30m8.四边形ABCD 中,对角线AC ,BD 交于点O ,给出下列四组条件:①AB CD ∥,AD BC ∥;②AB CD ,BAD BCD ∠=∠;③AO CO =,BO DO =;④AB CD ∥,AD BC =.一定能判定四边形ABCD 是平行四边形的条件有()A .1组B .2组C .3组D .4组9在实数范围内有意义,则x 的取值范围是()A .x ≥﹣2B .x >﹣2C .x ≥2D .x ≤210)AB C D11.下列计算正确的是A=B 1==C .(21=D=12.设6a ,小数部分为b ,则(2a b +的值是()A .6B .C .12D .13.2,5,m )A .210m -B .102m-C .10D .414.若三角形的三边分别是a ,b ,c ,且2(40a c -+-=,则这个三角形的周长是()A .5+B .3-C .5D .315.计算202220213)3)的结果是()A 3B .3C .-3D 316.已知1a =,1b ,则b aa b-的值为()A .-B .C .D .-二、填空题17.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .18.如图,已知矩形ABCD 的对角线AC 的长为10cm ,顺次连接各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为______cm .19.在▱ABCD 中,BC 边上的高为4,AB =5,AC =则▱ABCD 的周长等于_____.20.在平面直角坐标系中,已知()0,0A ,()4,0B ,()3,3C ,若以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 的坐标为_____.三、解答题21.计算;(2)-(3)(⨯-(4)22-22.先化简,再求值:2(1)(1)a a ++-,其中a.23.如图所示的一块地,90ADC ∠=︒,12AD =m ,9CD =m ,39AB =m ,36BC =m ,求这块地的面积.24.如图,在ABCDY中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD AF=,求证:四边形ABFC是矩形.25.观察下列各式:11111122=+-=11111236=+-=111113412=+-=请你根据上面三个等式提供的信息,猜想:;(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:_____;(3).26.如图,在平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止运动,同时点Q也停止运动.设运动时间为ts,当t为何值时,以P,D,Q,B为顶点的四边形是平行四边形?参考答案:1.B【分析】利用勾股定理的逆定理分析可得出答案.【详解】A 、72+242=252,故正确;B 、222111(3)(4(5)222+≠,故错误;C 、32+42=52,故正确;D 、42+(7/2)2=(8/2)2,故正确.故选B 2.C【分析】根据平行四边形的性质进行分析即可.【详解】平行四边形的两组对边分别相等,故A 选项错误;平行四边形的对角线互相平分,但不一定相等,故B 选项错误,C 选项正确,平行四边形的两组对角分别相等,故D 选项错误,故选C.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的边、角、对角线具有的性质是解题的关键.3.D【分析】先根据矩形的特点求出BC 的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC 中利用勾股定理即可求出AB 的长.【详解】解:∵四边形ABCD 是矩形,AD =8,∴BC =8,∵△AEF 是△AEB 翻折而成,∴BE =EF =3,AB =AF ,△CEF 是直角三角形,∴CE =8﹣3=5,在Rt △CEF 中,CF ==4,设AB =x ,在Rt △ABC 中,AC 2=AB 2+BC 2,即(x +4)2=x 2+82,解得x =6,故选:D .【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解.4.C【分析】根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.故选C .【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如:矩形的对角线相等;四个角都是直角等.5.B【分析】直接利用三角形内角和定理得出BCA ∠的度数,再利用三角形中位线定理结合平行线的性质得出答案.【详解】ABC 60∠= ,BAC 80∠= ,BCA 180608040∠∴=--= ,▱ABCD 的对角线AC 与BD 相交于点O ,E 是边CD 的中点,EO ∴是DBC 的中位线,EO //BC ∴,1ACB 40 ∠∠∴==,故选B .【点睛】本题主要考查了三角形内角和定理、三角形中位线定理、平行四边形的性质等知识,得出EO 是DBC △的中位线是解题关键.6.B【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B .【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.7.C【详解】解:连接AB ,根据中点可得DE 为△OAB 的中位线,则AB =2DE =28米.故选:C .【点睛】本题考查了三角形中位线的定义和性质.8.C【分析】根据平行四边形的判定逐个判断即可.【详解】解:①AB CD ∥,AD BC ∥,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD 是平行四边形,符合题意;②∵AB CD ,∴∠BAD +∠ADC =180°,∵∠BAD =∠BCD ,∴∠BCD +∠ADC =180°,∴AD BC ∥,∴四边形ABCD 是平行四边形,符合题意;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD 是平行四边形,符合题意;④AB CD ∥,AD BC =不能判定四边形ABCD 是平行四边形,不符合题意,故共有3组,故选:C .【点睛】本题考查平行四边形的判定、平行线的判定与性质,熟练掌握平行四边形的判定方法是解答的关键.9.C【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【详解】解:根据题意得:x ﹣2≥0,解得:x ≥2.故选:C .【点睛】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.10.D【分析】首先把每一项都化为最简二次根式,合并的二次根式.【详解】解:A 3BCD故选:D【点睛】本题主要考查二次根式的化简,同类二次根式,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.11.A【详解】试题分析:A ;故该选项正确;B 、333==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A.考点:二次根式的化简与运算.12.A的整数部分可确定a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<-,∴6的整数部分2a =,∴小数部分624b =-=∴(((22244416106a b =⨯+-=+-=-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.13.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x <<,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.14.D【详解】试题解析:由原式得14a b c ===,,故此三角形的周长为143-+=+,故选D15.D【分析】利用积的乘方的逆运算和平方差公式求解即可.【详解】解:202220213)3)))2021333⎡⎤=+⨯⎣⎦())20211093=-⨯3=,故选:D .【点睛】本题考查二次方根的乘法,积的乘方的逆运算、平方差公式、有理数的乘方,正确求解是解答的关键.16.A【分析】先将待求式整理,再代入求出解即可.【详解】22()()b a b a b a b a a b ab ab-+--==,由1a =+,1b ,得a b +=2b a -=-,1)312ab =+-=-=,所以原式=-.故选:A .【点睛】本题主要考查了分式的化简求值,掌握整体代入思想是解题的关键.17.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC =20dm ,BC =3×3+2×3=15(dm ),在Rt △ABC 中,25AB ==(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.【点睛】本题考查了勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.18.20【分析】根据三角形中位线定理易得四边形EFGH 的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【详解】解:∵H 、G 是AD 与CD 的中点,∴HG 是ACD 的中位线,∴152HG AC ==cm ,同理5EF =cm ,根据矩形的对角线相等,连接BD ,得到:5EH FG ==cm ,∴四边形EFGH 的周长为20cm .故答案是:20.【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.19.20或12##12或20【分析】过点A 作AE ⊥BC 于E ,连接AC ,如图1,勾股定理求出EC ,BE 的长,得到BC 即可求出ABCD Y 的周长;如图2,过点A 作AE ⊥BC ,交BC 的延长线于E ,连接AC ,勾股定理求出EC ,BE 的长,得到BC 即可求出ABCD Y 的周长.【详解】解:过点A 作AE ⊥BC 于E ,连接AC ,如图1,∵在▱ABCD 中,AE=4,AB =5,AC =∴2EC ==,3BE ==,∴BC =2+3=5,∴ABCD Y 的周长=2(AB +BC )=20;如图2,过点A 作AE ⊥BC ,交BC 的延长线于E ,连接AC ,∵在▱ABCD 中,AE=4,AB =5,AC =∴2EC ==,3BE ==,∴BC =BE -EC =3-2=1,∴ABCD Y 的周长=2(AB +BC )=12;故答案为:20或12.【点睛】此题考查了平行四边形的性质,勾股定理,正确掌握勾股定理的计算方法是解题的关键,注意应根据平行四边形的形状分类讨论.20.()7,3或()1,3-或()1,3-【分析】分三种情况:①AB 为对角线,②BC 为对角线,③AC 为对角线,利用点坐标的平移变换规律和平行四边形的性质即可得.【详解】解:如图,①当AB 为对角线时,()0,0A ,()3,3C ,∴先将点C 向左平移3个单位长度,再向下平移3个单位长度可得到点A ,以A 、B 、C 、D 为顶点的四边形是平行四边形,∴先将点B 向左平移3个单位长度,再向下平移3个单位长度可得到点D ,()4,0B ,()43,03D ∴--,即()1,3D -;②当BC 为对角线时,同理可得:()7,3D ;③当AC 为对角线时,同理可得:()1,3D -;综上所述,点D 的坐标是()7,3或()1,3-或()1,3-.故答案为:()7,3或()1,3-或()1,3-.【点睛】本题考查了平行四边形的性质、点坐标的平移变换规律,正确分三种情况讨论是解题关键.21.(2)-(3)6(4)【分析】(1)先化为最简二次根式,再利用二次根式加减法的运算法则求解;(2)先化为最简二次根式,再利用二次根式乘除法的运算法则求解;(3)根据平方差公式进行计算求解;(4)根据根据平方差公式进行计算求解.【详解】(1-3⎛= ⎝==+;(2)解:-32=-⨯==-(3)解:(-⨯--(=-((22=-+1824=-+6=;(4)解:22+-(525===【点睛】本题主要考查了二次根式的加减法,乘除法,利用二次根式的性质化简,理解相关知识是解答关键.22.21a a +-,1+【分析】根据二次根式的性质、平方差公式化简原式,再代值求解即可.【详解】解:∵a =∴20a -<,∴2(1)(1)a a ++-=()2221a a --+-=2221a a -++-=21a a +-,当a =原式=21=21=1【点睛】本题考查二次根式的化简求值,涉及到平方差公式、算术平方根的非负性,熟练掌2a =-.23.这块地的面积为216cm 2【分析】连接AC ,运用勾股定理得AC =15,运用勾股定理的逆定理得三角形ACB 是直角三角形,90ACB ∠=︒,用三角形ACB 的面积减去三角形ACD 的面积即可得.【详解】解:如图所示,连接AC ,由题意得,三角形ADC 是直角三角形,在Rt ACD 中,根据勾股定理得,15AC ==,∵222AC BC AB +=,222153639+=∴三角形ACB 是直角三角形,90ACB ∠=︒,∴这块地的面积:2111291536216(cm )22ACD ADC S S -=⨯⨯-⨯⨯=△△.【点睛】本题考查了勾股定理及其逆定理,解题的关键是掌握这些知识点.24.见解析【分析】根据平行四边形的性质和E 为BC 的中点,易得()ABE FCE AAS △△≌,得到BC CF =,AE FE =,结合AB CD 得到四边形ABFC 是平行四边形,再利用AD AF =,AD BC =得到AF BC =,最后利用矩形的判定定理判定即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD ,AD BC =,D ABC ∠=∠,∴ABE FCE ∠=∠,BAE CFE ∠=∠.∵E 为BC 的中点,∴BE CE =.在ABE 和FCE △中BAE CFE ABE FCE BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE FCE AAS △△≌,∴AB CF =,AE FE =.∵AB CD ,延长交DC 的延长线于点F ,∴AB CF ,∴四边形ABFC 是平行四边形.∵AD AF =,AD BC =,∴AF BC =.∴四边形ABFC 是矩形.【点睛】本题主要考查了平行四边形的判定和性质,全等三角形的判定和性质,矩形的判定,得到()ABE FCE AAS △△≌是解答关键.25.(1)111114520+-=;()1111111n n n n =+-=+++111117856=+-=.【分析】(1)根据已知算式得出规律,再根据求出的规律进行计算即可;(2)根据已知算式得出规律即可;(3【详解】(1111114520+-=(2()1111111n n n n =+-=+++(3111117856==+-=【点睛】本题考查了二次根式的性质与化简,数字的变化类等知识点,解题的关键是能根据已知算式得出规律.26.当运动时间为0秒或4秒或203秒或8秒时,以P 、D 、Q 、B 四点组成的四边形为平行四边形【分析】由四边形ABCD 为平行四边形可得出PD ∥BQ ,结合平行四边形的判定定理可得出当PD =BQ 时以P 、D 、Q 、B 四点组成的四边形为平行四边形,分四种情况考虑,在每种情况中由PD =BQ 即可列出关于t 的一元一次方程,解之即可得出结论.【详解】解:∵四边形ABCD 为平行四边形,∴PD ∥BQ .若要以P 、D 、Q 、B 四点组成的四边形为平行四边形,则PD =BQ .设运动时间为t .当0≤t ≤52时,AP =t ,PD =10﹣t ,CQ =4t ,BQ =10﹣4t ,∴10﹣t =10﹣4t ,3t =0,∴t =0;当52<t ≤5时,AP =t ,PD =10﹣t ,BQ =4t ﹣10,∴10﹣t =4t ﹣10,解得:t =4;当5<t ≤152时,AP =t ,PD =10﹣t ,CQ =4t ﹣20,BQ =30﹣4t ,∴10﹣t =30﹣4t ,解得:t=20 3;当152<t≤10时,AP=t,PD=10﹣t,BQ=4t﹣30,∴10﹣t=4t﹣30,解得:t=8.综上所述:当运动时间为0秒或4秒或203秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.【点睛】本题考查了平行四边形的判定与性质以及一元一次方程的应用,分四种情况列出关于t的一元一次方程是解题的关键.。
八年级数学第一次月度检测模拟试卷第Ⅰ卷(选择题)一、选择题:本题共5小题,每小题3分,共15分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列四个图案中,既是轴对称图形又是中心对称图形的图案是( )A. B. C. D.【答案】B【解析】【分析】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握中心对称图形的定义和轴对称图形的定义,进行判断,即可.【详解】中心对称图形的定义:旋转后能够与原图形完全重合,∴A 、是中心对称图形,不是轴对称图形,不符合题意;B 、即是中心对称图形也是轴对称图形,符合题意;C 、即不是中心对称图形也不是轴对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .2. 为了解某地一天内的气温变化情况,比较适合使用的统计图是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图【答案】B【解析】【分析】根据题意中的“变化情况”直接选择折线统计图.【详解】为了解某地一天内的气温变化情况,180应选择的统计图是折线统计图,故选:B .【点睛】本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.3. □ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A. BE =DFB. AE =CFC. AF //CED. ∠BAE =∠DCF 【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B 、如图所示,AE =CF ,不能得到四边形AECF 是平行四边形,故符合题意;C 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,∵AF //CE ,∴∠FAO =∠ECO ,又∵∠AOF =∠COE ,∴△AOF ≌△COE,∴AF =CE ,∴四边形AECF 是平行四边形,故不符合题意;D 、如图,∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD ,∴∠ABE =∠CDF ,又∵∠BAE =∠DCF ,∴△ABE ≌△CDF ,∴AE =CF ,∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE //CF ,∴四边形AECF 是平行四边形,故不符合题意,故选B .【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4. 在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为( )A. 60,1B. 60,60C. 1,60D. 1,1【答案】A【解析】【分析】本题是频数与频率基础应用题,难度一般,主要考查学生对频数与频率的定义的理解和运用能力. 根据频数与频率的定义即可得到结果.【详解】解:在对个数据进行整理的频率分布表中,各组的频数之和等于,频率之和等于1,故选A .5. 如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB,则旋的6060转角的度数为( )A. 30°B. 40°C. 50°D. 65°【答案】C【解析】【分析】根据两直线平行,内错角相等可得∠ACC ′=∠CAB ,根据旋转的性质可得AC ′=AC ,然后利用等腰三角形两底角相等求∠CAC ′,再根据∠CAC ′、∠BAB ′都是旋转角解答.【详解】解:∵CC ′∥AB ,∴∠ACC ′=∠CAB =65°,∵△ABC 绕点A 旋转得到△AB ′C ′,∴AC =AC ′,∴∠CAC ′=180°-2∠ACC ′=180°-2×65°=50°,∴∠CAC ′=∠BAB ′=50°故选:C .【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.二、填空题:本题共10小题,每小题3分,共30分6. 函数x 的取值范围是__________.【答案】x ≥-2且x ≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得解得x ≥-2且x ≠1故答案为:x ≥-2且x ≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.y =2010x x +≥⎧⎨-≠⎩7. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率是________.【答案】【解析】【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【详解】解:∵有两个红球和一个黄球,共3个球,∴从中任意取出一个是黄球的概率是;故答案为.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.8. “校园安全”受到全社会的广泛关注,某校对400名学生和家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的统计图(不完整),根据统计图中的信息,若全校有2050名学生,请你估计对校园安全知识达到“非常了解”和“基本了解”的学生有______人.【答案】1350【解析】【分析】本题考查的是条形统计图运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 求得调查的学生总数,则可得对“校园安全”知识达到“非常了解”和“基本了解”所占的比例,利用求得的比例乘以2050即可得到.【详解】解:∵调查的家长的总人数是:(人)∴调查的学生的总人数是:(人)对“校园安全“知识达到“非常了解”和“基本了解”的学生是(人),全校2050学生中达到“非常了解”和“基本了解”的学生人数为:(人).故答案为:.9. 在中,,则的度数为______.【答案】##135度1313138377314195+++=400195205-=2055416135--=13520501350205´=1350ABCD Y :A B ∠∠=3:1C ∠135︒【解析】【分析】本题考查平行四边形的知识,根据平行四边形的性质,则,则,再根据,求出,;最后根据平行四边形的性质,即可.【详解】∵四边形是平行四边形,∴,,∴,∵,∴,,∴.故答案为:.10. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x - 6上时,线段BC 扫过的面积为_______【答案】16【解析】【分析】根据题意,线段扫过的面积应为一平行四边形的面积,其高是的长,底是点平移的路程.求当点落在直线上时的横坐标即可.【详解】解:如图所示.AD BC ∥180A B ∠+∠=︒:A B ∠∠=3:1A ∠B ∠ABCD AD BC ∥A C ∠=∠180A B ∠+∠=︒:A B ∠∠=3:1135A ∠=︒45B ∠=︒135C ∠=︒135︒BC AC C C 26y x =-点、的坐标分别为、,.,,∴由勾股定理可得:..点在直线上,,解得.即...即线段扫过的面积为16.故选:C .【点睛】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段扫过的面积应为一平行四边形的面积.11. 如图,将绕点顺时针旋转后得到,点与点是对应点,点与点是对应点.如果,那么______°.【答案】【解析】A B (1,0)(4,0)3AB ∴=90CAB ∠=︒ 5BC =4AC =4A C ∴''= C '26y x =-264x ∴-=5x =5OA '=514CC ∴'=-=4416BCC B S ''∴=⨯= BC BC ABC A 80︒ADE V B D C E 35EAB ∠=︒DAC ∠=125【分析】本题考查旋转的性质,解题的关键是掌握:旋转变换只改变图形的位置不改变图形的形状与大小.据此解答即可.【详解】解:∵将绕点顺时针旋转后得到,∴,∵,∴,∴.故答案为:.12. 在平行四边形中,,已知,,将沿翻折至,使点落在平行四边形所在的平面内,连接.若是直角三角形,则的长为______.【答案】或【解析】【分析】根据平行四边形中,,要使是直角三角形,则,,画出图形,分类讨论,即可.【详解】当,,延长交于点,∵四边形是平行四边形,∴,,∴,∵沿翻折至,∴,,∴,,∴,在中,,设,∴,ABC A 80︒ADE V 80CAE ∠=︒35∠=︒BAE 803545EAD CAB CAE BAE ∠=∠=∠-∠=︒-︒=︒453545125DAC CAB BAE DAE ∠=∠+∠+∠=︒+︒+︒=︒125ABCD AB BC <30B ∠=︒AB =ABC AC AB C 'V B 'ABCD B D 'AB D 'V BC 23AB BC <AB C 'V 90B AD '∠=︒90AB D '∠=︒①90B AD '∠=︒AB BC <B A 'BC G ABCD AD BC ∥AD BC =90B AD B GC ''∠=∠=︒ABC AC AB C 'V AB AB '==30B AB C '∠=∠=︒BC B C'=12AG AB ==2B C GC '=B G AB AG ''=+==Rt B GC ' 222B C B G CG ''=+GC x =2B C x '=∴,解得:,∴,∴;当时,设交于点,∵四边形是平行四边形,∴,,∵沿翻折至,∴,,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∵,,∴,()2222x x =+32x =3B C '=3BC =②90AB D '∠=︒AD B C 'O ABCD AD BC ∥AD BC =ABC AC AB C 'V BC B C '=2BCA ∠=∠AD BC B C '==AD BC ∥1BCA ∠=∠12BCA ∠=∠=∠AO CO =DO B O '=3=4∠∠AOC DOB '∠=∠1234∠=∠=∠=∠'∥AC B D 90B AC BAC '∠=∠=︒30B ∠=︒AB =12AC BC =设,∴,∴,∴解得:,∴.综上所述,当的长为或时,是直角三角形.【点睛】本题考查平行四边形、直角三角形的知识,解题的关键是掌握平行四边形的性质,直角三角形的性质,等腰三角形的性质,直角三角形中,所对的直角边是斜边的一半,即可.13. 如图,平行四边形,点F 是上的一点,连接平分,交于点E ,且点E 是的中点,连接,已知,则__.【答案】4【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.延长交于点,判定,即可得出,再根据三线合一即可得到即可解答.详解】解:如图,延长交于点,【AC x =2BC x =222BC AC AB =+()2222x x =+1x =2BC =BC 23AB D 'V 30︒ABCD BC 60AF FAD AE ∠=︒,,FAD ∠CD CD EF 53AD CF ==,EF =AE BC ,G ADE GCE △≌△5CG AD AE GE ===,FE AG ⊥AE BC ,G∵点是的中点,∴,∵平行四边形中,,∴,∵,∴,∴,∵平分,,∴,∴,∵是的中点,∴,∴中,,故答案为:.14. 在平面直角坐标系中,一次函数的图像过和两点,该一次函数的表达式为______;若该一次函数的图像过点,则的值为______.【答案】① ②. 【解析】【分析】本题考查待定系数法求一次函数解析式,一次函数图像上点的坐标特征,分别将点和点的坐标代入得到关于、的二元一次方程组,求解即可;将点代入所求得的一次函数表达式即可得到的值.掌握待定系数法确定一次函数解析式是解题的关键.【详解】解:∵一次函数的图像过和两点,.E CD DE CE =ABCD AD BC ∥D ECG ∠=∠AED GEC ∠=∠()ASA ADE GCE ≌5CG AD AE GE ===,AE FAD ∠AD BC ∥1302FAE DAE G DAF ∠=∠=∠=∠=︒358AF GF ==+=E AG FE AG ⊥Rt AEF 142EF AF ==4xOy ()0y kx b k =+≠()0,5A ()1,2B -(),11C m m 35y x =+2A B ()0y kx b k =+≠k b (),11C m m ()0y kx b k =+≠()0,5A ()1,2B -∴,解得:,该一次函数的表达式为,∵该一次函数的图像过点,∴,解得:.故答案为:;.15. 如图,E 为外一点,且,,若,则的度数为______.【答案】##度【解析】【分析】根据四边形内角和求出度数,再借助平行四边形的性质可知即可得到结果.【详解】解:在四边形中,,,所以.四边形是平行四边形,.故答案为:.【点睛】本题主要考查了平行四边形的性质、四边形内角和,解题的关键是掌握特殊四边形的角度问题,一般借助旋转转化角,进行间接求解.三、解答题:本题共10小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. 某同学在解关于的分式方程,去分母时,由于常数漏乘了公分母,最后解得,试求的值,并求出该分式方程正确的解.【答案】,52b k b =⎧⎨-+=⎩35k b =⎧⎨=⎩35y x =+(),11C m 1135m =+2m =35y x =+2ABCD Y EB BC ⊥ED CD ⊥65E ∠=︒A ∠115︒115360︒C ∠A C ∠=∠BCDE 65E ∠=︒90EBC EDC ∠=∠=︒360659090115C ∠=︒-︒-︒-︒=︒ ABCD 115A C ∴∠=∠=︒115︒360︒x 3622x m x x -+=--6=1x -m 2m =177x =【解析】【分析】本题考查分式方程,根据题意,按照该同学的解法解这个分式方程,将解代入,求出的值.再将值代入原方程,求出其正确的解即可.求出的值、掌握解分式方程的步骤是求解题的关键.【详解】解:由题意得,是该同学去分母后得到的整式方程的解,∴,解得:,∴.方程两边同乘以,得:,解得:,检验:当时,代入得:,∴是该分式方程正确的解.17. 先化简,再求值:(1),其中;(2),其中.【答案】(1), (2),【解析】【分析】本题考查分式的化简求值:(1)先根据分式的加法法则,进行化简,再代值计算即可;(2)先根据分式的加法法则,进行化简,再根据,得到,代入计算即可.【小问1详解】解:=1x -m m m =1x -36x m -+=36x m -+=2m =32622x x x -+=--()2x -()3622x x -+-=177x =177x =()2x -1732077-=≠177x =221211a a a a a -+-+-2a =2224224n m mn m n n m n m +++--15m n =11a a +-322n m n m +-11915m n =5n m =221211a a a a a -+-+-,当时,原式;【小问2详解】,,,原式.18. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-3,2),B (-1,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180,画出旋转后对应的△A 1B 1C ;(2)平移△ABC ,若A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.()()21111a a a a -=+--111a a a =+--11a a +=-2a =21321+==-2224224n m mn m n n m n m +++--()()()()()()()()2224222222n n m m n m mnn m n m n m n m n m n m -+=+++-+-+-()()22422422n mn mn m mn n m n m -+++=+-()()()2222n m n m n m +=+-22n m n m+=- 15m n =5n m ∴=∴1010119m m m m +=-=︒【答案】(1)答案见解析;(2)答案见解析;(3)(-1,0).【解析】【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0).【点睛】本题考查作图﹣旋转变换,作图﹣平移变换.19. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生4000人,试估计该校选择文明宣传的学生人数.【答案】(1);(2)15人,见解析;(3)1520人【解析】【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A ,B ,C 三个班选择环境保护的学生人数即可得出D班选择环境97.2保护的学生人数,进而补全折线图;(3)先求出四个班中选择文明宣传的百分比,用4000乘以样本中选择文明宣传的学生所占的百分比即可.【详解】解:(1)由折线图可得选择交通监督的各班学生总数为12+15+13+14=54人,在四个班人数的百分比为54÷200×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数=;(2)由扇形统计图中选择环境保护的占30%,∴选择环境保护的学生人数为200×30%=60人,∴D 班选择环境保护的学生人数为60-15-14-16=15(人),补全折线统计图如图;(3)四个班中选择文明宣传的学生人数所占百分比为1-30%-5%-27%=38%,该校4000人选择文明宣传的学生人数为:(人).【点睛】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20. 已知,按要求完成下列尺规作图(不写作法,保留作图痕迹).(1)如图①,B ,C 分别在射线、上,求作;(2)如图②,点是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点.【答案】(1)见解析(2)见解析【解析】36027%97.2⨯= 400038%1520⨯=MAN ∠AM AN ABDC O MAN ∠PQ AM AN PQ【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.(1)分别以、点为圆心,以、为半径画弧,两弧相交于点,则四边形满足条件;(2)连接,以点O 为圆心,为半径画弧,交延长线于点G ,再作,交于,连接并延长交于,则满足条件.【小问1详解】解:如图①,平行四边形为所作;∵,∴四边形为平行四边形;【小问2详解】图②,为所作.∵,,,∴,∴,即点是的中点.21. 2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?【答案】(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解析】【分析】(1)设未知量为x ,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.-B C AC AB D ABDC AO AO AO PGA OAN ∠=∠GP AM P PO AN Q PQ ABDC ,AB CD AC BD ==ABDC PQ POG QOA ∠=∠OA OP =PGA OAN ∠=∠()ASA OPG OQA ≌OP OQ =O PQ(2)设未知量为y ,根据题意列出一元一次不等式,解不等式可得出结论.【详解】(1)设该商家购进第一批纪念衫单价是x 元,则第二批纪念衫单价是(x +5)元,由题意,可得:,解得:x =30,检验:当x =30时,x (x +5)≠0,∴原方程的解是x =30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a 元,由题意,可得:40×(a ﹣30)+(80﹣20)×(a ﹣35)+20×(0.8a ﹣35)≥640,化简,得:116a ≥4640解得:a ≥40,答:每件纪念衫的标价至少是40元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.22. 如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且BE =DF ,(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的性质可得AB =CD ,AB ∥CD ,然后可证明∠ABE =∠CDF ,再利用SAS 来判定△ABE ≌△DCF ,从而得出AE =CF .(2)首先根据全等三角形的性质可得∠AEB =∠CFD ,根据等角的补角相等可得∠AEF =∠CFE ,然后证明AE ∥CF ,从而可得四边形AECF 是平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.1200280025x x ⨯=+∴∠ABE =∠CDF .在△ABE 和△CDF 中,,∴△ABE ≌△DCF (SAS ).∴AE =CF .(2)∵△ABE ≌△DCF ,∴∠AEB =∠CFD ,∴∠AEF =∠CFE ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.【点睛】此题考查了平行四边形的判定与性质,解题的关键是掌握平行四边形的判定方法与性质.23. 如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF ,根据平行四边形的性质得AB=DC .利用“SSS”得△ABF ≌△DCE .(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C ,从而得到一个直角,问题得证.【详解】(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF ,∴BF=CE .∵四边形ABCD 是平行四边形,∴AB=DC.AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.24. 如图,已知,点 D 在 y 轴的负半轴上,若将沿直线折叠,点 B 恰好落在 x 轴正半轴上的点 C 处.(1)求直线的表达式;(2)求 C 、D 坐标;(3)在直线上是否存在一点 P ,使得 ? 若存在,直接写出点 P 的坐标;若不存在,请 说明理由.【答案】(1) (2), (3)存在,或【解析】【分析】本题考查的是一次函数综合运用,涉及到图形折叠、面积的计算等,(1)将点A 、B 的坐标代入一次函数表达式,即可得到直线的表达式;(2)由题意得:,故点,设点D 的坐标为,根据,即可得到m 的值;(3)由是的()()3004A B ,,,DAB AD AB DA 10PAB S = 443y x =-+()80C ,()06D -,()14-,()54,y kx b =+AB 5AC AB ==()80C ,()0m ,CD BD =,即可求解.【小问1详解】解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;【小问2详解】解:,,由题意得: ,,,故点,设点D 的坐标为:,,解得:,故点;【小问3详解】解:存在,理由如下:PAB BDP BDA S S S =- y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD = 4m\=-6m =-()06D -,设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,即点P 的坐标为:或.25. 如图1,在ABC 中,BD 是AC 边上的中线,将DBA 绕点D 顺时针旋转α(0°<α<180°) 得到DEA (如图2),我们称DEA 为DBC 的“旋补三角形”.DEA 的边EA 上的中线DF 叫做DBC 的“旋补中线”.AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S \=´´= 10PAB S = DA (),26P a a -13102PAB BDP BDA S S S BD a \=-=´´-= 1a =()14-,()54,(1)在图2,图3,图4中,DEA 为DBC 的“旋补三角形”,DF 是DBC 的“旋补中线”.①如图2,∠BDE +∠CDA = °;②如图3,当DBC 为等边三角形时,DF 与BC 的数量关系为DF = BC ;③如图4,当∠BDC =90°时,BC =4时,则DF 长为 ;(2)在图2中,当DBC 为任意三角形时,猜想DF 与BC 的关系,并给出证明.(3)如图5,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =DA =6,BE ⊥AD ,E 为垂足.在线段BE 上是否存在点P ,使PDC 是PAB 的“旋补三角形”?若存在,请作出点P ,不需证明,简要说明你的作图过程.【答案】(1)①180;②;③2(2);证明见解析 (3)存在.见解析【解析】【分析】(1)①依据,可得;②当为等边三角形时,可得是等腰三角形,,,再根据,即可得到中,,进而得出;③当时,时,易得,即可得到中,;(2)延长至,使得,连接,,判定四边形是平行四边形,进而得到,再判定,即可得到,进而得出;(3)延长,,交于点,作线段的垂直平分线,交于,交于,连接、、,由定义知当,且时,是的“旋补三角形”,据此进行证明即可.【小问1详解】解:①∵∠ADE +∠BDC =180°,1212DF BC =180ADE BDC ∠+∠=︒180BDE CDA ∠+∠=︒DBC ∆ADE ∆120ADE ∠=︒30E ∠=︒DF AE ⊥Rt DEF ∆12DF DE =12DF BC ==90BDC ∠︒4BC =ADE CDB ∆∆≌Rt ADE ∆122DF AE ==DF G FG DF =EG AG AGED BDC DEG ∠=∠DGE CDB SAS ∆∆≌()BC DG =1122DF DG BC ==AD BC F BC PG BE P BC G PA PD PC PA PD PB PC ==,180DPA CPB ∠+∠=︒PDC ∆PAB ∆∴∠BDE +∠CDA =180°,故答案为:180;②当△DBC 为等边三角形时,BC =DB =DE =DC =DA ,∠BDC =60°,∴△ADE 是等腰三角形,∠ADE =120°,∠E =30°,又∵DF 是△ADE 的中线,∴DF ⊥AE ,∴Rt △DEF 中,DF =DE ,∴DF =BC ,故答案为:;③∵BD 是AC 边上的中线,∴,∵∠BDC =90°,∴ ,在△ADE 和△CDB 中,,∴△ADE ≌△CDB ,∴AE =BC =4,∴Rt △ADE 中,DF =AE =2,故答案为:2;【小问2详解】猜想:DF =AE .证明:如图2,延长DF 至G ,使得FG =DF ,连接EG ,AG ,121212AD CD =90EDA BDC ∠=∠=︒AD CD EDA BDC DE BD =⎧⎪∠=∠⎨⎪=⎩1212∵EF =FA ,FG =DF ,∴四边形AGED 是平行四边形,∴,GE =AD =CD ,∴∠GED +∠ADE =180°,又∵∠BDC +∠ADE =180°,∴∠BDC =∠DEG ,在△GED 和△CDB 中,,∴△DGE ≌△CDB (SAS ),∴BC =DG ,∴DF=DG =BC ;【小问3详解】存在.理由:如图5,延长AD ,BC ,交于点F ,作线段BC 的垂直平分线PG ,交BE 于P ,交BC 于G ,连接PA 、PD 、PC ,由定义知当PA =PD ,PB =PC ,且∠DPA +∠CPB =180°时,△PDC 是△PAB 的“旋补三角形”,∵∠ADC =150°,EG DA ∥DE BD GED CDB GE CD =⎧⎪∠=∠⎨⎪=⎩1212∴∠FDC =30°,在Rt △DCF 中,∵CD =DCF =90°,∠FDC =30°,∴CF =2,DF =4,∠F =60°,在Rt △BEF 中,∵∠BEF =90°,BF =14,∠FBE =30°,∴EF =BF =7,∴DE =EF −DF =3,∵AD =6,∴AE =DE ,又∵BE ⊥AD ,∴PA =PD ,PB =PC ,在Rt △BPG 中,∵BG =BC =6,∠PBG =30°,∴PG =∴PG =CD ,又∵,∠PGC =90°,∴四边形CDPG 是矩形,∴∠DPG =90°,∴∠DPE +∠BPG =90°,∴2∠DPE +2∠BPG =90°,即∠DPA +∠BPC =180°,∴△PDC 是△PAB 的“旋补三角形”.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、含30°角直角三角形的性质、等边三角形的判定和性质、矩形的判定和性质等知识的综合运用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.1212CD PG ∥。
2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。
7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。
八(下)第一次月考数学试题
姓名: 得分:
一、填空题(每小题3分,共36分)
1、计算:()=⎪
⎭
⎫ ⎝⎛+--1
311 .
2、当x 时,分式
3
1
3+-x x 有意义; 3、1纳米=0.000000001米,则2纳米用科学记数法表示为 米.
4、分式4
22-x x
,23-x x 的最简公分母是 。
5、计算3
22
32)
()
2(b a c ab ---÷的结果是_________.
6、填入适当的整式:
()
2a b ab
a b
+=
7、化简:
969
22++-x x x =________. 8、计算:x x 1-÷⎪⎭⎫
⎝
⎛-x 11= 。
9、如果分式
1
21
+-x x 的值为-1,则x 的值是 ; 10、在下列三个不为零的式子 44,2,42
22+---x x x x x 中,任选两个你喜欢
的式子组成一个分式是 ,把这个分式化简所得的结果是 .
11、已知3
1
=b a ,分式b a b a 52-+的值为 ;
12、当x 时,分式
21
x x +的值为0;
二、选择题(每小题3分,共24分)
13. 在式子
a
1
,1-x ,m 3,3b ,b a c -,()y x +43,5122++x x ,n
m n
m +-中,
分式的个数是( )
A 、6
B 、5
C 、4
D 、3
14、若把分式x y
xy +中的,x y 都扩大3倍,那么分式的值( )
A. 缩小3倍
B. 扩大3倍
C.不变 D .缩小9倍 15、下列计算错误的是( )
A 、2
5
3
--=⋅a a
a B 、3
2
6
a a a =÷ C 、3
3
3
23a a a -=- D 、()
12
10
=+-
16、化简x y x x 1⋅÷的结果是( ) A 1 B xy C x y D y
x 17、下列公式中是最简分式的是( )
A .2
1227b a B .2
2()a b b a -- C .22x y x y ++ D .22x y x y -- 18、化简x
y y x y x ---2
2的结果是( ) A .y x -- B. x y - C. y x - D. y x +
19、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。
A 、b a 1
1+
B 、
ab 1 C 、
b a +1
D 、b
a a
b +
20、分式方程12
1
2x x =
--( ). A 无解 B 有解x=1 C 有解x=2 D 有解x=0
三、解答题(共40分)
21、计算(每小题4分,共16分)
(1)2
2111a a a a a ++--- (2)b
a
b a b a +-+++13121
⑶
x
x x x x +-⋅-+3
2
236
61 ⑷ 423--x x ÷⎪⎭⎫
⎝
⎛--+252x x
22、解方程:(每小题5分,共10分) (1)
x
x 527=
- (2) x x x -=+--21221
23、先化简代数式1121112-÷⎪⎭
⎫
⎝⎛+-+-+a a a a a a ,求:当 a =2时代数式值.(7分)
24、某校师生去离校10km 的千果园参观,张老师带领服务组与师生队伍同时出发,服务
组的行进速度是师生队伍的2倍,以便提前20分钟到达做好准备,求服务组与师生队伍的行进速度。
(7分)
25、附加题(10分)
观察下列等式:
111122=-⨯,1112323=-⨯,111
3434
=-⨯, 将以上三个等式两边分别相加得:
1111111113111223342233444
++=-+-+-=-=⨯⨯⨯. (1)直接写出下列各式的计算结果:
111
1
122334
(1)
n n ++++
=⨯⨯⨯+ .
(2)猜想并写出:)
2(1
+n n = .
(3)探究并解方程:
18
23)9)(6(1)6)(3(1)3(1+=
+++++++x x x x x x x。