多相管流理论与计算ch05 讲稿
- 格式:ppt
- 大小:4.31 MB
- 文档页数:175
多相流领域的数值计算方法及应用随着工业化和科技的不断进步,多相流领域的研究和应用越来越受到重视。
物料在流动过程中会与其他物料或界面发生相互作用,这种复杂的流动状况被称为多相流。
多相流涉及到固体、液体和气体等不同物态的介质,因此其研究和应用需要使用复杂的数值计算方法。
一、多相流的特点多相流的研究和应用过程中涉及到很多行业,比如化工、能源、航空航天等领域。
多相流介质的物理性质不同,具有以下几个特点:1. 相互作用强烈不同相态的物料之间会发生相互作用,例如固体微粒在液体中的漂浮、液滴在气体中的破裂等。
2. 物料运动混乱多相流介质的物料运动速度和方向较难预测,因此多相流的运动模式通常非常复杂。
3. 传递规律复杂多相流介质中不同物料的传递规律复杂,例如液滴的运动、未熔化固体在熔体中的运动等。
4. 可能存在相变多相流介质因为具有不同物态的物料,因此可能存在相变现象,例如气体在液体中的溶解等。
二、多相流的数值计算方法多相流的复杂性使得其研究和应用需要结合各种学科,比如计算流体力学(CFD)、材料科学、传热学等。
在多相流的计算过程中,有两个重要的假设:连续介质假设和相间界面模型。
1. 连续介质假设连续介质假设认为多相流介质可以像单相流一样,被视为连续的流体。
在这种假设下,物理量如质量、动量、能量等可以通过微分方程来描述,以求解其全场的运动学性质。
2. 相间界面模型多相流中不同相态物质的相互作用,使得相界面的存在成为一大难点。
通过相间界面模型对相变的过程和相界面的运动进行数值模拟,从而模拟多相流介质中不同物理量的分布和传递规律。
目前,常见的多相流计算方法包括欧拉方法、拉格朗日方法和欧拉-拉格朗日复合方法。
3. 欧拉方法欧拉方法模拟多相流介质中的物理量在时间和空间上的分布规律。
该方法将不同相态之间的相互作用描述为源项,通过物理量的守恒方程,来求解多相流介质内各物理量的分布规律。
4. 拉格朗日方法拉格朗日方法着重于对多相流介质中物体的运动轨迹进行跟踪和计算。
两相流、多相流两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。
若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。
通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。
气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。
固相通常以颗粒或团块的形式处于两相流中。
两相流的流动形态有多种。
除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。
对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。
两相流研究的一个基本课题是判断流动形态及其相互转变。
流动形态不同,则热量传递和质量传递的机理和影响因素也不同。
例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。
两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。
当分散相液滴或气泡时,有很多特点。
例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。
这些都会影响传质通量,进而影响设备的性能。
两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。
两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。
大量理论工作采用的是两类简化模型:①均相模型。
将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。