数学建模定义
- 格式:doc
- 大小:2.51 MB
- 文档页数:11
什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。
数学建模可以帮助我们更好地理解、分析、解决实际问题。
它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。
数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。
在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。
2. 建立模型。
在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。
模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。
3. 求解模型。
在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。
4. 验证模型。
在这个阶段,我们需要根据模型的求解结果,进行模型的验证。
验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。
5. 应用模型。
在这个阶段,我们需要将模型的结果应用于实际问题的解决中。
根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。
数学建模具有广泛的应用领域和重要性。
在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。
在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。
在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。
在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。
总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。
数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一、建立数学模型的要求:1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
什么是数学建模人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。
数学模型不过是更抽象些的模型。
简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段,是对现实世界的一特定现象,为了某特定目的,根据特有的内在规律,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
数学建模是使用数学模型解决实际问题,数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
我校数学建模发展史以成就展自从人类进入文明社会,就与数学建立了千丝万缕的联系。
一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。
例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。
模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。
――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。
―――适用于卫星的发射。
二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。
上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
高中数学建模数学建模是一种应用数学的方法,将现实生活中复杂的问题抽象出来,通过数学模型进行描述和分析,从而得出有意义的结论。
高中数学建模作为一门新兴的学科,对于培养学生的科学研究能力、数学思维能力和实践能力具有重要意义。
数学建模是基于现实问题的,其解决的问题一般都具有一定的实际意义。
比如,对于一个小区内的固定几个出入口,如何设置监控,使得不漏视任何一个入口又不重复监控。
将其抽象为图论问题,通过建立模型,可以找到最优的监控方案。
再比如,中学生压力较大,家长、老师常常采取各种方式来化解其压力,但效果不一。
通过调查分析得知其压力来源,进而将其建立为多目标规划模型,通过寻找优化方案,使得中学生的压力得到有效缓解。
数学建模通常涉及的领域很广泛,如生命科学、环境科学、经济管理等。
我们以经典的废水处理问题为例,探讨数学建模在实际问题中的应用。
我们知道,废水处理的过程通常包括初次处理、二次处理和消毒三个阶段。
为了达到国家相关标准,处理过程必须满足一定的效果,且造价较低。
而初次处理过程又分为化学、物理和生物等方法,每个方法的设备和工艺各有不同,其处理效果和完全去除率差异较大。
采用数学建模,我们可以将处理过程的影响因素进行抽象,建立相应的数学模型,对不同处理方案进行比较,找出效果最优、成本最低的处理方案。
常见的数学建模方法包括可视化、统计分析、最优化方法等。
其中最优化在数学建模中的应用尤为广泛,它的核心思想是通过寻找最大或最小值,来寻找最优解。
而为了使最优化方法更加有效地应用于实际问题中,我们必须借助计算机的高效性能来进行求解。
总之,高中数学建模是一门具有实际意义的学科,为学生提供了锻炼科学研究能力、数学思维能力和实践能力的机会。
在学习过程中,我们应注重对实际问题的挖掘、模型建立和求解方法的掌握。
只有不断提高自己的数学建模能力,才能更好地为现实生活中的问题提供解决方案。
什么是数学建模
人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。
数学模型不过是更抽象些的模型。
简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律
等工作的基础上,用数学的符号和语言,把它
表述为数学式子,也就是数学模型,然后用通
过计算得到的模型结果来解释实际问题,并接
受实际的检验。
这个建立数学模型的全过程就
称为数学建模。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段,是对现实世界的一特定现象,为了某特定目的,根据特有的内在规律,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
数学建模是使用数学模型解决实际问题,数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
我校数学建模发展史以成就展
自从人类进入文明社会,就与数学建立了千丝万缕的联系。
马克思曾经讲过:“一门学科只有运用了数学,才算真正发展了。
”当该社会的飞速发展当然也少不了数学的巨大贡献。
.然而数学教育在相当程度上却没能跟上科技,经济和社会的迅速发展变化.数学建模的迅速发展,特别是大学生数学建模竞赛的成功举办,为完成迫切而又艰巨的任务创造了有利的条件.1985 年举办了美国大学生首届数学建模竞赛( Mathematical Competition in Modeling ) ,1988 年后改称为Mathematical Contest in Modeling ,均缩写为MCM ,以后每年举办一次,它吸引了世界上许多国家和地区的大学生参加.自1989 年以来,我国学生还积极参加美国大学生数学建模竞赛,近年来我国参赛队数接近于其总数的三分之一,而且还取得了很好的成绩,充分展示出我国大学生的智慧和创造性.
我国的大学生数学建模竞赛是从1992 年开始的,由中国工业与应用数学学会举办.这一新生事物从一开始就受到广大师生的欢迎和各级教育部门的关心与重视.并从1994 年起改由教育部高教司和中国工业与应用数学学会联合举办,并成立了全国组委会来具体组织竞赛.在教育部的领导下参赛队数每年以约30 %的速度递增.越来越多的学生要求参赛,越来越多的教师和教育部门领导认识到这是一项培养具有高素质和创新能力人才的课外活动.大学生数学建模竞赛对于推动大学教育改革产生了积极的作用.
江西科技师范学院在参加了数学建模竞赛,并在近几年取得了优异的成绩。
就已2009年的为例。
一、2009年全国大学生数学建模竞赛概况
1.1 大赛简介
1.2 大赛成果
2009年与2008年获奖情况比较:
2009年我校共组织15支参赛队共45人参加竞赛,经过激烈角逐,最终获得全省一等奖4个、全省二等奖2个、全省三等奖4个和5个优秀奖;同时我校还荣获大会组织奖。
具体内容如下:
2009全国大学生数学建模竞赛(江西赛区)比赛结果情况汇总
2009 2008
二、组织实施过程
2.1 组织机构概况
2.2 组织实施进程
三、图片集锦
3.1 师生风采
3.2 精彩比赛
3.3 数学建模协会
数学建模协会的成立标志着我们学校对数学建模的重视力度又上了一个新的台阶,同时也充分肯定了过去我们在数学建模大赛中取得的成就,我们在必将会在建模协会的引领下在数学建模大赛中取得更优异的成绩。
3.4 硬件设备
在09年取得的成绩的基础之上学校正积极以本次大赛经历为基础,建立数学建模协会、数学建模竞赛基地和网站,让我校的每位大学生都能充分实现资源共享。