自由基引发剂
- 格式:doc
- 大小:24.50 KB
- 文档页数:7
自由基引发剂种类自由基引发剂是一类可以进行自由基反应的化学物质,广泛应用于各个领域的化学反应中。
自由基反应是一种具有高度活性的反应,常用于聚合反应、氧化反应和裂解反应等。
在这篇文章中,我将为大家介绍一些常见的自由基引发剂及其应用。
1.高氯酸钾(KClO3)高氯酸钾是一种常用的自由基引发剂,可以被热分解产生含氧自由基。
它广泛应用于高分子聚合反应,特别是有机合成中的聚合反应。
同时,高氯酸钾还可以被用作含氧物种的源,如制取高纯度的氧气。
2.过硫酸铵((NH4)2S2O8)和过硫酸钾(K2S2O8)过硫酸铵和过硫酸钾是常见的自由基引发剂,它们在水中可以分解产生硫酸根离子和硫酸根自由基。
它们广泛应用于聚合反应、氧化反应和聚合物的合成等领域。
此外,过硫酸铵还可以作为硫酸根自由基的源,用于制备芳香化合物。
3.叔丁基过氧化物(TBHP)叔丁基过氧化物是一种常用的有机自由基引发剂,它在热或光的作用下可以解离产生叔丁基自由基。
叔丁基自由基广泛应用于合成有机化合物、有机合成反应和聚合反应中。
此外,叔丁基过氧化物还可以用于高分子材料的氧化和修饰。
4.过氧化苯甲酰(PhCOOOH)过氧化苯甲酰是一种常用的有机自由基引发剂,它在反应中可以产生苯甲酰自由基。
过氧化苯甲酰广泛应用于氧化反应、聚合反应和有机合成中的自由基反应。
此外,过氧化苯甲酰还可以被用作氧化剂,用于有机化学合成反应中的氧化步骤。
以上仅是一小部分常用的自由基引发剂,实际上还有很多其他种类的自由基引发剂,如过氧化叔丁酮、过碳酸钠等。
不同的自由基引发剂适用于不同的反应体系和反应条件。
在选择自由基引发剂时,需要考虑反应的需要和引发剂的特性,以确保反应的高效进行。
总之,自由基引发剂在化学反应中具有重要的作用,广泛应用于聚合反应、氧化反应和有机合成等领域。
选择适当的自由基引发剂可以提高反应的选择性和效率,促进化学反应的发展。
引发剂介绍简介:自由基引发剂,简称引发剂。
指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。
引发剂一般是带有弱键、易分解成活性种的化合物,其中共价键有均裂和异裂两种形式,又称启动剂。
引发剂能引发单体进行聚合反应的物质。
不饱和单体聚合活性中心有自由基型、阴离子型、阳离子型和配位化合物等,目前在胶黏剂工业中应用最多的是自由基型,它表现出独特的化学活性,在热或光的作用下发生共价键均裂而生成两个自由基,能够引发聚合反应。
引发剂在胶黏剂和密封剂的研究和生产中作用很大,丙烯酸酯溶剂聚合制备压敏胶,醋酸乙烯溶剂聚合制造建筑胶和建筑密封胶,合成苯丙乳液、乙丙乳液、VAE乳液、丁苯胶乳、氯丁胶乳、白乳胶等,接枝氯丁胶黏剂,不饱和聚酯树脂交联固化,厌氧胶固化,快固丙烯酸酯结构胶黏剂固化等都必须使用引发剂。
引发剂可以直接影响聚合反应过程能否顺利进行,也会影响聚合反应速率,还会影响产品的储存期。
分类:Ø 偶氮类引发剂偶氮化合物是分子结构中含有偶氮基—N=N—并与两个烷基(R,R')相连的化合物。
通式为R—N=N—R',它可在光和热作用下分解而放出氮气、同时生成自由基。
因此它是一类重要的聚合引发剂和发泡剂。
许多偶氮化合物还是某些染料的中间体。
一般可由重氮盐和酚或芳香胺偶合而制得。
常用的有油溶性的偶氮二异丁腈、偶氮二异庚腈和偶氮二异丁酸二甲酯引发剂等,带羧基、磺酸基等亲水基团的偶氮化合物适用于水溶液聚合,水溶性的有偶氮二异丁基脒盐酸盐(V-50引发剂),适用于中温引发分解反应。
1. 偶氮二异丁腈(ABIN)物化性质:①白色柱状结晶,不溶于水,溶于有机溶剂,室温下比较稳定,可在纯粹状态贮存;②在80-90 ℃急剧分解,100 ℃有爆炸着火的危险;③有一定的毒性,属于溶剂型引发剂;特点:分解均匀,只产生一种自由基,无其它副反应,分解速率较低,属于低活性引发剂。
偶氮二异丁腈的分子式
偶氮二异丁腈的分子式是C8H12N4。
偶氮二异丁腈是一种常用的自由基引发剂,不溶于水,溶于甲醇、乙醇、丙酮、乙醚、甲苯等有机溶剂和乙烯基单体。
偶氮二异丁腈呈白色柱状结晶或白色粉末状结晶状。
一、主要用途
1、偶氮二异丁腈可以作为固体火箭发动机推进剂的重要成分之一,用于提供大量的推力。
2、偶氮二异丁腈可应用于制备火药,尤其是高能量密度的火药。
3、偶氮二异丁腈可用于有机合成反应的起始剂,催化剂和材料合成的中间体。
二、危险性
升温时,分解。
生成四甲基琥珀腈和氰化物有毒烟雾。
震动,摩擦或冲击时,可能发生爆炸性分解。
加热时可能发生爆炸。
与醇类,氧化剂,酮类,如丙酮,醛类和烃类,如庚烷急剧地发生反应。
产生着火和爆炸的危险。
三、注意事项
1、偶氮二异丁腈是一种爆炸性物质,对于防爆和防火安全措施需要严格遵守。
在储存和运输时,要防止与其他易燃物、活性物质或强酸等接触。
2、在接触偶氮二异丁腈时要穿戴适当的个人防护装备。
3、不要将偶氮二异丁腈与其他物质共存于同一容器中,以防止意外发生。
自由基聚合常用的引发剂
自由基聚合是一种重要的聚合反应,它可以制备出各种高分子材料。
在自由基聚合过程中,引发剂是必不可少的一部分。
引发剂能够产生自由基,使得单体之间的反应发生。
目前常用的引发剂有以下几种:
1. 过氧化苯甲酰(BPO)
BPO是一种常用的引发剂,它能够产生两个自由基,可以促进单体分子之间的反应。
BPO是一种稳定的化合物,但在高温下会分解产生自由基。
2. 过氧化叔丁酰(TBPO)
TBPO是一种比BPO更稳定的引发剂,它的热稳定性更高,在高温下分解产生自由基。
3. 二异丙基过氧化物(Di-tert-butyl peroxide,DTBP)
DTBP是一种低温引发剂,需要加热才能分解产生自由基。
它的热稳定性很高,在室温下几乎不分解。
4. 高锰酸钾(KMnO4)
KMnO4是一种通过氧化还原反应产生自由基的引发剂。
它的优点是无毒、易得、价格低廉。
5. 过硫酸铵(APS)
APS是一种低温引发剂,需要加热才能分解产生自由基。
它的优点是无毒、热稳定性好。
在选择引发剂时,需要考虑反应的温度、反应速率、产物的性质
等因素。
不同的引发剂适用于不同的反应条件,选择合适的引发剂可以提高反应效率和产物品质。
一、试剂的分类与试剂的酸碱性1、自由(游离)基引发剂在自由基反应中能够产生自由基的试剂叫自由基引发剂(free radical initiator),产生自由基的过程叫链引发。
如:Cl2、Br2是自由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮二异丁氰、过硫酸铵等也是常用的自由基引发剂。
少量的自由基引发剂就可引发反应,使反应进行下去。
NBS试剂,邻苯二甲酰亚胺溴。
2、亲电试剂对电子具有亲合力的试剂就叫亲电试剂(electrophilic reagent)。
亲电试剂一般都是带正电荷的试剂或具有空的p轨道或d轨道,能够接受电子对的中性分子,如:H+、Cl+、Br+、RCH2+、CH3CO+、NO2+、+SO3H、SO3、BF3、AlCl3等,都是亲电试剂。
在反应过程中,能够接受电子对试剂,就是路易斯酸(Lewis acid),因此,路易斯酸就是亲电试剂或亲电试剂的催化剂。
3、亲核试剂对带正电荷或部分正电荷的碳原子具有亲合力的试剂叫亲核试剂(nucleophilic reagent)。
亲核试剂一般是带负电荷的试剂或是带有未共用电子对的中性分子,如:OH-、HS-、CN-、NH2-、RCH2-、RO-、RS-、PhO-、RCOO -、X-、H2O、ROH、ROR、NH3、RNH2等,都是亲核试剂。
在反应过程中,能够给出电子对试剂,就是路易斯碱(Lewis base),因此,路易斯碱也是亲核试剂。
4、离去基团易接受电子,承受电荷能力强的基团是好的离去基团。
离去基团能力比较:—OT f>-OTs>I->H2O=Br ->Cl ->F ->HO -。
5、试剂的分类标准在离子型反应中,亲电试剂和亲核试剂是一对对立的矛盾。
如:CH3ONa + CH3Br →CH3OCH3 + NaBr的反应中,Na+和+CH3是亲电试剂,而CH3O-和Br-是亲核试剂。
这个反应究竟是亲反应还是亲核反应呢?一般规定,是以在反应是最先与碳原子形成共价键的试剂为判断标准。
自由基(ⅱ)型光引发剂引言:自由基(ⅱ)型光引发剂是一类广泛应用于光化学反应中的物质。
它能够在光照的条件下产生高活性的自由基,从而引发和促进多种化学反应。
本文将介绍自由基(ⅱ)型光引发剂的基本概念、工作原理以及应用领域。
一、自由基(ⅱ)型光引发剂的定义自由基(ⅱ)型光引发剂是指在受到光照后能够产生自由基的一类物质。
它通常由一个光敏基团和一个活性自由基基团组成。
光敏基团能够吸收特定波长的光能,而活性自由基基团则能够在光照后产生高度活跃的自由基。
二、自由基(ⅱ)型光引发剂的工作原理自由基(ⅱ)型光引发剂的工作原理可以分为三个步骤:吸收光能、电荷转移和活性自由基生成。
1. 吸收光能:自由基(ⅱ)型光引发剂中的光敏基团能够吸收光能,使其处于激发态。
2. 电荷转移:在激发态下,光敏基团与活性自由基基团之间发生电荷转移。
这一步骤需要一定的能量差,通常来自于光能的吸收。
3. 活性自由基生成:经过电荷转移后,光敏基团变为还原态,而活性自由基基团则转变为高活性的自由基。
这些活性自由基能够引发和促进多种化学反应。
三、自由基(ⅱ)型光引发剂的应用领域自由基(ⅱ)型光引发剂在许多领域中都有重要的应用,下面将介绍其中几个典型的应用领域。
1. 光聚合反应:自由基(ⅱ)型光引发剂能够引发光聚合反应,使得单体分子在光照下发生聚合。
这种反应广泛应用于合成高分子材料、涂料和胶粘剂等领域。
2. 光氧化反应:自由基(ⅱ)型光引发剂能够与氧气发生反应,产生活性氧自由基。
这些活性氧自由基具有较高的氧化能力,可用于有机合成、环境净化和医药领域。
3. 光降解反应:自由基(ⅱ)型光引发剂能够引发物质的光降解反应。
这种反应常用于有机废水的处理和光敏材料的制备。
4. 光解聚合反应:自由基(ⅱ)型光引发剂还可用于引发光解聚合反应,可以在无溶剂、低温和短时间下制备高分子材料。
结论:自由基(ⅱ)型光引发剂作为一类重要的光化学物质,在许多化学反应中发挥着重要作用。
自由基型光引发剂
【最新版】
目录
1.光引发剂的简介
2.自由基型光引发剂的结构和原理
3.自由基型光引发剂的应用
4.自由基型光引发剂的研究进展
5.结论
正文
光引发剂是一种在光照条件下产生自由基的化合物,能够引发光聚合反应。
在光聚合反应中,光引发剂吸收光能,产生活性自由基,然后这些活性自由基会引发单体聚合,形成高分子聚合物。
自由基型光引发剂是光引发剂的一种,它的分子结构中包含有自由基基团。
这种光引发剂在光照条件下可以产生自由基,并且这些自由基具有很高的活性,可以引发单体聚合。
自由基型光引发剂的结构通常由一个含氮的五元杂环和两个苯环组成,这种结构使得光引发剂具有很好的刚性平面结构和富电子性质。
由于五元环中 n 原子的参与,电子离域范围从单个苯环扩大到整个刚性平面上,增强了染料在可见光区域的吸收。
自由基型光引发剂主要应用于光固化体系中,例如混配丙烯酸酯或甲基丙烯酸酯的低聚物。
在紫外光的照射下,自由基型光引发剂产生自由基,这些自由基会引发低聚物的聚合反应,形成高分子聚合物。
近年来,自由基型光引发剂的研究取得了很大的进展。
例如,研究人员通过碳碳双键连接推电子的咔唑结构和拉电子的巴比妥酸/硫代巴比妥酸,增强了光引发剂的性能。
此外,研究人员还开发出了一些新型的自由基型光引发剂,这些光引发剂具有更高的光引发效率和更好的稳定性。
总之,自由基型光引发剂是一种重要的光引发剂,它具有很高的光引发效率和很好的稳定性。
光引发剂主要有自由基光引发剂和阳离子光引发剂两大类。
1.自由基光引发剂按结构特点,自由基光引剂可大致分为羰基化合物类、染料类、金属有机类、含卤化合物、偶氮化合物及过氧化合物。
按光引发剂产生活性自由基的作用机理的不同,自由基光引发剂又可分为裂解型自由基光引发剂和夺氢型自由基光引发剂两种。
(1)裂解型自由基光引发剂裂解型自由基光引发剂主要有苯偶姻及其衍生物、苯偶酰衍生物、二烷氧基苯乙酮、α-羟烷基苯酮、α-胺烷基苯酮、酰基膦氧化物。
①苯偶姻及其衍生物:苯偶姻(Benzoin)结构:R=H,—CH3,—C2H5,—CH(CH3)2,—CH3CH(CH3)2,—C4H9苯偶姻(R=H)俗名安息香,又称安息香醚类光引发剂,其引发速度快,成本较低,但热稳定性差,易发生暗聚合,易黄变。
②苯偶酰衍生物:苯偶酰(Benzil)又称联苯甲酰、二苯基乙二酮,可光解产生两个苯甲酰自由基,但效率太低,溶解性不好,一般不作光引发剂使用。
就是最常见的光引发剂Irgacure651,简称651。
有很高的光引发活性,广泛应用于各种光固化涂料、油墨中。
热稳定性优良,合成容易,价格较低,但易黄变,不能在清漆中使用。
③二烷氧基苯乙酮:α,α′-乙氧基苯乙酮(DEAP)结构:R= —C2H5,—CH(CH3)2,—CH(CH3)CH2CH3,—CH2CH(CH3)2DEAP活泼性高,不易黄变,但热稳定性差,价格相对较高,DEAP主要用于各种清漆,也可与ITX等配合用于光固化色漆或油墨中。
④α-羟烷基苯酮α-羟烷基苯酮类光引发剂是目前应用开发最成功的一类光引发剂。
常见的有:Darocure 1173(HMPP)Darocure 2959(HHMP)Darocure 184(HCPK)稳定性非常优良,有良好的耐黄变性,是耐黄变性要求高的光固化清漆的主引发剂,也可与其他光引发剂配合用于光固化色漆中。
其缺点是光解产物中有苯甲醛,有不良气味。
⑤α-胺烷基苯酮α-胺烷基苯酮是一类反应活性很高的光引发剂,常见的有:Irgacure907(MMMP)Irgacure369(BDMB)α-胺烷基苯酮类光引发剂引发活性高,常与硫杂蒽酮类光引发剂配合使用。
自由基聚合引发剂(initiators for free radical polymerization)简称引发剂。
指一类容易受热分解成自由基(即初级自由基)的化合物,可用于引发烯类、双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。
由两种或多种引发剂组成的引发体系称复合引发体系;而由两个可以发生氧化还原反应产生自由基的引发剂组成的体系则称氧化还原引发体系。
后者可在较低的温度下引发,聚合属于氧化还原聚合。
有些不能用作热引发剂的化合物,经紫外线照射后,能分解成自由基而引发单体聚合者,称为光敏引发剂,简称光敏剂,这类聚合属于光聚合。
键断裂能量不超过25~40 千卡/摩尔的化合物,适合于作引发剂,破坏这些键需要加热到50~150℃,这也是一般烯类自由基聚合的温度范围。
目前工业上常用于自由基聚合的引发剂有过氧化物、偶氮化合物等。
由于过氧化物遇热、碰撞等会发生爆炸,使用时要特别注意。
市售的过氧化物一般是用溶剂稀释的,固体过氧化物则用水润湿或用邻苯二甲酸酯调成糊状物。
引发剂的分类可以按照引发剂的分解方式将引发剂分为热分解型和氧化还原分解型两类;也可以按照其溶解性能分为水溶性引发剂(如无机类的过硫酸盐、过氧化氢等)和油溶性(溶于单体或有机溶剂)的有机类引发剂;或者按照引发剂的使用温度范围,分为:①高温(100℃以上)类,如烷基过氧化物、烷基过氧化氢物、过氧化酯等;②中温(40~100℃)类,如偶氮二异丁腈、过氧化二酰、过硫酸盐等;③较低温(0~40℃)类,如氧化还原引发体系。
因此应根据聚合反应的温度要求来选择引发剂。
如果高温引发剂用在中温范围聚合,则分解速率过低,而使聚合时间延长;如果中温引发剂用于高温范围聚合,则分解速率过快,引发剂过早消耗,在低聚合转化率阶段就停止反应。
引发剂是乳液聚合的重要组分之一,其种类和用量等影响产品的性能质量。
常用的引发剂有自由基聚合引发剂、阳离子聚合引发剂、阴离子聚合引发剂和配位聚合引发剂。
乳液聚合中常用的为自由基聚合引发剂,它可分为不同种类。
1乳液聚合引发剂的种类1. 1偶氮类引发剂偶氮类引发剂是指分子中含有偶氮基的一类化合物,有偶氮二异丁睛引发剂和偶氮二异庚睛引发剂。
偶氮二异丁睛是常用的引发剂,一般在45 9C-- 65℃使用,热分解只产生一种自由基,该引发剂分解为一级反应,比较稳定。
一般在低于80℃条件下使用较好,因为超过80℃就会激烈分解。
偶氮类化合物作引发剂与过氧化物相比有很多优点,它氧化能力小,在50℃一80℃能以适宜的速度分解,其分解速度受溶剂影响较小,无诱导分解,碰撞时也不会爆炸,产品易提纯,价格便宜。
1. 2有机过氧类引发剂有机过氧化物分子中存在过氧弱键,可理解为过氧化氢的衍生物。
其中一个氢原子被取代的称氢过氧化物,两个氢被取代的称过氧化物。
该类引发剂按结构与性能特点常分成以下几类。
1. 2. 1氢过氧化物引发剂常见的有异丙苯过氧化氢、叔丁基过氧化氢两种,过氧化氢是过氧化物的母体。
过氧化物分解后,形成两个氢自由基。
该类过氧化物活化能都很高,可用于高温体系中,一般很少单独使用,可与还原剂配合使用构成氧化一还原引发体系,用于室温或低温聚合体系,该类引发剂可按不同方式分解。
1.2.2过氧化二酰类二酰基过氧化物分解时,一般按两步进行,首先分解成酰氧白由基,若单独存在则引发反应,若不单独存在则进一步分解,生成稳定的碳自由基。
苯甲酰(BPO)是常见的过氧化引发剂,分子中0-0键的电子云密度大而相互排斥,容易断裂,一般在60- 80℃分解。
它第一步均裂成苯甲酰自由基,第二步分解成苯自由基,并放出CO2,但分解不完全。
二酰基过氧化物引发剂活性较高,活性与其结构关系很大。
芳酰类比较稳定,酯酰类活性较大,其a一H越少活性越大,不对称二酰过氧化物的活性更高,一般不单独使用。
1.2.3其它过氧类包括过氧化二烷类和过氧化二碳酸酯类等。
过氧化二烷类有过氧化二异丙苯和过氧化二叔丁基,活性比氢过氧化物高,属低偏中活性引发剂。
过氧化二碳酸酯类过氧化物是一类高活性过氧化物,稳定性差,该类过氧化物的特点是烃基结构对其活性影响较小,并存在溶剂效应。
1. 3氧化一还原引发剂氧化一还原组分是由组成它的氧化剂和还原剂之间发生氧化还原反应而产生能引发的自由基,这类引发剂称为氧化一还原体系。
该类引发剂特点是活化能较低,可在低温下引发聚合,而有较快的聚合速率。
这类引发剂包括水溶性引发剂和油溶性引发剂。
1. 3. 1水溶性引发剂这类引发剂体系的氧化剂有过氧化氢、过硫酸盐、氢过氧化物等,还原剂有硫酸亚铁,亚硫酸钠等无机物和醇、胺、草酸和葡萄糖过氧化氢等有机化合物。
过氧化氢、过硫酸盐、氢过氧化物与亚铁盐组成氧化一还原体系后,活化能减小,可在较低的温度下引发聚合。
高锰酸钾或草酸不能单独做引发剂,但两者混合后可作为引发剂。
1.3.2油溶性氧化一还原引发剂这类引发剂的氧化剂有氢过氧化物、过氧化二烷基、过氧化二酰基等,用做还原剂的有叔胺、环烷酸盐、硫醇及有机金属化合物等,其中过氧化苯甲酰是常用的引发剂。
近年来出现了一些锌、硼、铝等有机化合物与氧配合组成的低氧化一还原引发体系,另外还有过渡金属碳基化合物和鳌合物用作引发剂。
2乳液聚合引发剂的选择乳液聚合引发剂选择是很复杂的,需要从多方面考虑。
选择引发剂时可从以下几个方面考虑。
2. 1溶解性溶解性是选择引发剂的一个很重要条件,引发剂要求与聚合物有较好的相溶性。
在乳液聚合中,应选择过硫酸盐类水溶性较好的引发剂。
当乳液聚合需要用氧化还原引发剂时,氧化剂可以是水溶性的也可以是油溶性的,但还原剂一般是水溶性的。
对于溶于水的单体宜选用水溶性引发剂。
2. 2根据聚合温度选择复合引发剂根据聚合温度选择活性或半衰期的引发剂,使自由基形成速率和聚合速率适中。
引发剂分解活化能过高或半衰期过长,则分解速率过低,将使聚合时间延长;但活化能过低,半衰期过短,则引发过快,难于控温,有可能引起爆聚,将使聚合时间延长或引发剂过早分解结束,在转化率很低时就停止聚合。
所以一般应选择半衰期与聚合时间同数量级或相当的引发剂。
通常选择复合引发剂可使反应在较均匀的速度下进行。
2. 3根据pH值选择引发剂在乳液聚合中采用氧化还原引发剂时应根据反应介质的PH值来选择合适的引发剂二因为pH值能影响氧化还原的电位,从而影响氧化还原的速率。
有些氧化还原引发剂只有在一定的pH值范围内才能起引发剂的作用,超过这一范围就无引发作用。
另外,引发剂应与聚合物体系的其它组分无副作用。
3引发剂对乳液聚合的影响3. 1引发剂种类影响乳液聚合引发剂一般多为水溶性氧化还原引发剂,它们的引发效率和半衰期都不一样。
不同引发剂对乳液聚合有不同的影响。
如过氧酸盐一硫醇引发剂中硫醇的加人对苯乙烯一丁二烯乳液聚合反应有显著的促进作用,微量的硫醇可以大大加速聚合反应过程。
过硫酸盐一亚硫酸盐氧化还原引发体系在工业上用于丙烯睛等单体的乳液聚合。
该引发剂体系氧化还原反应将生成硫酸根离子自由基和亚硫酸根离子自由基,当自由基副反应大于自由基的生成反应时,则硫酸根离子自由基占主导地位,反之亚硫酸根离子引发剂占主导地位。
有人研究发现引发剂能影响粒子表面极性,改变聚合物/水相界面引力,从而影响聚合物粒子形态。
SharonLee等用两步法合成了RMMA/ PS核壳乳胶,从热力学角度讲,在亲水/疏水聚合物中是很难形成核壳结构的。
在两阶段乳液聚合中,若第一阶段生成的聚合物比第二阶段聚合物亲水性更强,则很难形成核一壳结构。
如果对体系中的相迁移加以限制,则仍可得到核一壳结构。
聚合反应速率将会影响到单体分配,共聚物组成和相对分子质量决定共聚物产量。
有人认为所用引发剂种类可能直接影响共聚物组成。
MASAYUSHI等用过硫酸钾一硫代硫酸钠一硫酸铜为引发剂,进行丙烯酸乙酷和甲基丙烯酸甲酯的合成研究时,发现不添加Cu2+仅用通常的氧化还原引发剂,得不到粒径小于80nm的乳液,但添加微量的Cu2+时,粒径显著变小,在乳化剂为3%(质量分数)以上时,得到粒径80nm以下的微粒子乳液,且粒径随引发剂浓度的增大而增大。
如果采用过硫酸盐硫酸亚铁氧化还原体系将第二阶段的聚合温度降低至室温,保持适当的引发速率,可得到PMMA/ PS核一壳结构。
3. 2引发剂用量的影响引发剂的用量不仅影响反应速率和分子量,对粒度分布也有很大影响。
Chen& Lee认为,引发剂浓度对乳液聚合体系影响较大. Aslnazova等:研究了不同引发剂,发现具有表面活性作用的引发剂引发效率高,且粒子成核机理主要是胶束机理,粒子长大过程发生在胶粒中,而且粒子稳定性好,导致聚合反应持续时间长,分子量高. 引发剂用量不同对乳液聚合有不同的影响。
引发剂用量过低,则单体的转化率就低;用量增大,引发剂浓度增加,初期形成自由基数目增多,粒子碰撞几率增多,导致粒径变大,转化率增大但增大到一定的时候,用量再增大,转化率变化不大,当引发剂用量过大时,容易使乳液聚合过程的稳定性降低,主要是因为过量的引发剂和乳化剂起到了电解质的作用,另一方面,随引发剂用量增加,聚合物的分子量迅速下降,因此我们可通过引发剂的用量来调节分子量。
引发剂浓度增大时,自由基增长速率增大,会造成反应物体系中瞬时颗粒过于集中,从而引起集聚,稳定性变差,终止速率亦增大,故使聚合物的平均分子量降低。
引发剂用量过低会造成分子量变大,体系粘度增高。
一般来讲,适宜的引发剂量为单体总量的0.1%一0.8%(质量分数)。
管蓉等研究发现当引发剂用量为0. 2%一0. 4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且乳液的稳定性好。
3. 3引发剂加入方式的影响对于相同的引发剂,加料方式不同,其结果也不一样。
以过硫酸铵为引发剂,比较其加人方式对单体转化率的影响,结果表明:引发剂分两次加人可以得到较高的转化率。
在一次加入时由于引发剂消耗,反应后期单体不能够完全反应,转化率低;引发剂加人到预乳化液时,单体反应比较完全,因此转化率高;在第二种方法的基础上再补加一次引发剂,使未反应的剩余单体进行反应,转化率进一步提高。
3. 4其它影响因素另外,引发剂分解的速率随温度升高而增加,一般情况下半衰期随温度升高而变短,因此温度控制对乳液聚合很重要。
在酸性条件下,引发剂的热分解速率随着离子强度的增大而减小。
如APS在水中热分解时会产生少量 HS04-,该离子进一步电离成H+和SO2-4离子,因而随着聚合反应的进行,体系pH值降低,pH值的改变又会影响到乳化剂的乳化效果和引发剂的引发效率,从而对胶粒大小及分布产生影响。
4结语引发剂对乳液聚合的影响是复杂的,其作用也是很大的。
在实际过程中应考虑乳液聚合引发剂的影响,根据不同的乳液聚合选择不同的引发剂。