最新初二数学分式化简求值练习题及答案优秀名师资料
- 格式:doc
- 大小:40.00 KB
- 文档页数:25
【专题】分式化简求值(50题)一、解答题1.先化简,再求值:(1−1a 1)÷aa 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4aa 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a=π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3.5.先化简,再求值:a−1a 22a 1÷a−1a 1−1a−1,其中6.÷(3a 1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+),其中x =−2.8.先化简,再求值:)÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x2−xx2−6x9,其中x=2.10.先化简再求值:−1x)÷1x1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(xx−1−1),其中x=-212.2xx2x2−1,其中x=3.13.先化简,再代入求值:x2x−2·(4x+x−4),其中x2−2x−2=014.先化简,再求值:(1+1x−2)÷x−1x2−2x+4,其中x=6.15.÷a2−aba−2a b,其中a=2,b=﹣1.16.先化简,再求值:(xx1+1x−1)÷1x2−1,其中x是6的平方根.17.先化简,再求值:+1)÷−2x ,其中x =4.18.先化简,再求值:(1x 1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值:÷(x +2﹣5x−2 ),其中x = −12 .20.先化简,再求值:(2m 2−4m 2−1)其中m =(12)−1+(3.14−π)0.21.先化简 1a 1÷a a 22a 1 ,然后在0,1,-1中挑选一个合适的数代入求值. 22.÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 22a 1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a 2)2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.÷(1−3x 1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a 1 ÷(a ﹣1﹣ 2a−1a 1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值 30.先化简,再求值: −a−1a 2−4a 4)÷a−4a ,其中a 满足 a 2−4a +1=0 . 31.先化简,再求值:(1−2x−1)÷,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a 2)÷,其中a = 2−1+(π−2022)0 . 33.先化简,再求值 : (1−1a 1)÷aa 2−1 并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值: mm 2−9÷[(m +3)0+3m−3] ,其中 m =−2 . 35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简:÷ ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值. 37.先化简:x−3x 2−1⋅−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(aa2+9−4aa2−4)÷a−3a−2,其中a是已知两边分别为2和3的三角形的第三边长,且a是整数.39.先化简,再求值:+1−aa2−4a4)÷a−4a,并从0<a<4中选取合适的整数代入求值.40.先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab b2+ab−a),其中a=−2,b=13.41.先化简,再求值:(1+1x2)÷ x2−9x−3,其中x=﹣2.42.先化简x2−2xx2−4÷(x−2−2x−4x2),然后从-2,2,5中选取一个的合适的数作为x的值代入求值.43.先化简,再求值:(2a−4aa−2)÷a−4a2−4a4,其中a与2,3构成△ABC的三边长,且a为整数.44.有一道题:“先化简,再求值:(x−2x 2+4xx 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:÷−2x x 为不等式组2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a 1−a−1)÷,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值. 47.先化简,再求值: ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解. 48.先化简分式:(1﹣ xx−1 )÷ ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2x −1)÷x 2−1x 22x 1 ,其中x 的值从不等式组 −x ≤12x−1<4 的整数解中选取.50.有这样一道题:先化简再求值,÷x−1x2x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。
分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a++-+,其中1a =.3、先化简,再求值:22(1)2()11x x x x x+÷---,其中x =4、先化简,再求值:211(1)x x x -+÷,其中12x =5先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.6、先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.7、先化简,再求值:2222211221a a a a a a a a -+--÷+++,其中2a =a .8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +÷--,其中x =2.10、先化简,再求值:231839x x ---,其中3x =。
11、先化简242()222x x x x x++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:21(2)1x x x x---,其中x =2.13、先化简,再求值:211()1211x x x x x x++÷--+-,其中x =14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x xx x x--÷+--,其中x =.17、先化简。
八年级数学下册《分式的化简求值》举一反三练习1.先化简,再求值:(x 2−4x 2−4x+4−1x−2)⋅x 2−2x x+1,其中x =5.2.先化简,再求值:(1−2x−1)÷x 2−6x+9x 2−1,并从1,2,3中选取一个合适的数作为x 的值代入求值.3.先化简再求值:x 2−4x 2+4x+4÷(2x−4x+2−x +2),其中x 可在﹣2,0,3三个数中任选一个合适的数.4.先化简,再求值(3m+2−1)÷m 2−2m+1m+2,从﹣2,﹣1,0,1中选取一个你喜欢的数代入求值.5.先化简(a 2−2a+1a 2−a +a 2−4a 2+2a )÷(2a−3a+1),然后再从﹣3、﹣2、﹣1、0、1选择一个合适的数作为a 的值,代入后再求值.6.先化简,再求值:(a ﹣1−3a+1)÷a 2−4a+4a+1,请在−√2<a <√5的范围内选择一个合适的整数代入求值.7.先化简,再求值:x 4−y 4x 2−2xy+y 2⋅x−y x 2+y 2,其中x =42,y =58.8.有这样一道题“计算x 2−2x+1x 2−1÷x−1x 2+x−x 的值,其中x =2020”.甲同学把条件“x =2020”错抄成“x =2002”,但他的计算结果也是正确的,你说这是怎么回事?试一试,你就会有收获.9.先化简:2x x+1−2x+6x 2−1÷x+3x 2−2x+1,并在x =﹣3,﹣1,0,1中选一个合适的值代入求值.10.先化简,再求值:x−32x−4÷(5x−2−x ﹣2),其中x =﹣111.先化简代数式(1−3a+2)÷a 2−2a+1a 2−4,再从﹣2≤a ≤2中选一个恰当的整数作为a 的值代入求值.12.先化简,再求值:(2−x x−1)•x−1x 2−4x+4,请在﹣1,0,1,2中选一个数代入求值.13.先化简再求值:(m+3m 2−3m −m−1m 2−6m+9)÷m−9m ,其中m 满足(m ﹣9)(m +1)=0.14.先化简,再求值:(3x x−2+x 2−x )÷xx 2−4,其中x =3.15.先化简,再求值:x−4x 2−4x+4÷(x ﹣1−6x−2),x 是一个你认为适当的整数.16.先化简,再求值:(m +2+3m−2)⋅m−2m−1,其中m =3.17.先化简再求值:(2x x−2+x x+2)÷xx 2−4,在x =±2、0、±1中选择一个你喜欢的数,求原式的值.18.先化简,再求值:(x 2−3x−1−1x−1)•x−1x−2−(x +3)0,其中x =﹣1.19.先化简,再代入求值:x −x+1x−1÷x 2−1x 2−2x+1,其中x =2021.20.先化简,再求值(1−1m+2)÷m 2+2m+1m 2−4,其中m 2=1.21.先化简,再求值:a−1a 2−4÷(1−3a+2),再从﹣2,﹣1,0,1,2选择一个你喜欢的数代入求值.22.先化简,再求值:(2a−1−1a )÷(a 2+aa 2−2a+1),其中a 2+a ﹣1=0.23.先化简,再求值:(3x+4x 2−1−2x−1)÷x+2x 2−2x+1,其中x =﹣3.24.先化简2a+2a−1÷(a +1)+a 2−1a 2−2a+1,然后a 在﹣1,1,2三个数中任选一个合适的数代入求值.25.先化简,后求值:(3x x−1−x x+1)•x2−1x ,其中x =﹣2.26.先化简,再求值:(x−1x −x−2x+1)÷2x2−xx2+2x+1,其中x满足x=﹣3.27.先化简,再求值:m−4m2−9⋅(1+14m−7m2−8m+16)÷1m−3,其中m=5.28.先化简,再求值:x−2x2+2x+1÷(x−3xx+1),其中x=﹣2.29.先化简,再求值xx2+2x+1÷(1−1x+1),其中x=3.30.先化简代数式a2−2a+1a2−4÷(1−3a+2),再选择一个你喜欢的数代入求值.八年级数学下册《分式的化简求值》举一反三练习答案1.先化简,再求值:(x 2−4x 2−4x+4−1x−2)⋅x 2−2x x+1,其中x =5. 【解答】解:原式=[(x+2)(x−2)(x−2)2−1x−2]•x(x−2)x+1 =(x+2x−2−1x−2)•x(x−2)x+1 =x+1x−2•x(x−2)x+1=x ,当x =5时,原式=5. 2.先化简,再求值:(1−2x−1)÷x 2−6x+9x 2−1,并从1,2,3中选取一个合适的数作为x 的值代入求值. 【解答】解:(1−2x−1)÷x 2−6x+9x 2−1 =x−1−2x−1⋅(x+1)(x−1)(x−3)2 =x−31⋅x+1(x−3)2 =x+1x−3,∵(x +1)(x ﹣1)≠0,x ﹣3≠0,∴x ≠±1,3,∴x =2,当x =2时,原式=2+12−3=−3.3.先化简再求值:x 2−4x 2+4x+4÷(2x−4x+2−x +2),其中x 可在﹣2,0,3三个数中任选一个合适的数.【解答】解:x 2−4x 2+4x+4÷(2x−4x+2−x +2)=(x+2)(x−2)(x+2)2÷2x−4−(x−2)(x+2)x+2=x−2x+2⋅x+22x−4−x 2+4=x−2x(2−x)=−1x ,∵x (2﹣x )≠0,x +2≠0,∴x ≠0,±2,∴x =3,当x =3时,原式=−13.4.先化简,再求值(3m+2−1)÷m 2−2m+1m+2,从﹣2,﹣1,0,1中选取一个你喜欢的数代入求值. 【解答】解:原式=3−(m+2)m+2•m+2(m−1)2 =3−m−2m+2•m+2(m−1)2=1−m m+2•m+2(m−1)2=−1m−1,∵当m =﹣2,1分式无意义,∴当m =0时,原式=−10−1=1.5.先化简(a 2−2a+1a 2−a +a 2−4a 2+2a )÷(2a−3a+1),然后再从﹣3、﹣2、﹣1、0、1选择一个合适的数作为a 的值,代入后再求值.【解答】解:(a 2−2a+1a 2−a +a 2−4a 2+2a )÷(2a−3a+1) =[(a−1)2a(a−1)+(a+2)(a−2)a(a+2)]⋅a+12a−3 =(a−1a +a−2a )⋅a+12a−3 =2a−3a ⋅a+12a−3 =a+1a ,∵a (a ﹣1)≠0,a +2≠0,2a ﹣3≠0,a +1≠0,∴a ≠±1,0,﹣2,32,∴a =﹣3,当a =﹣3时,原式=−3+1−3=23.6.先化简,再求值:(a ﹣1−3a+1)÷a 2−4a+4a+1,请在−√2<a <√5的范围内选择一个合适的整数代入求值.【解答】解:原式=[(a+1)(a−1)a+1−3a+1]÷(a−2)2a+1 =(a+2)(a−2)a+1⋅a+1(a−2)2 =a+2a−2,∵−√2<a <√5,且a 为整数,∴a =﹣1,0,1,2,又∵分母不能为0,∴a =0或1,当a =0时,原式=﹣1.7.先化简,再求值:x 4−y 4x 2−2xy+y 2⋅x−y x 2+y 2,其中x =42,y =58.【解答】解:原式=(x 2+y 2)(x+y)(x−y)(x−y)2•x−yx 2+y 2=x +y , 当x =42,y =58时,原式=100.8.有这样一道题“计算x 2−2x+1x 2−1÷x−1x 2+x −x 的值,其中x =2020”.甲同学把条件“x =2020”错抄成“x =2002”,但他的计算结果也是正确的,你说这是怎么回事?试一试,你就会有收获.【解答】解:原式=(x−1)2(x−1)(x+1)•x(x+1)x−1−x =x ﹣x=0,∵化简后结果不含字母x ,∴甲同学把条件“x =2020”错抄成“x =2002”,但他的计算结果也是正确的.9.先化简:2x x+1−2x+6x 2−1÷x+3x 2−2x+1,并在x =﹣3,﹣1,0,1中选一个合适的值代入求值.【解答】解:原式=2x x+1−2(x+3)(x+1)(x−1)⋅(x−1)2x+3=2x x+1−2x−2x+1=2x+1, ∵x =﹣3或±1时,原式无意义,∴取x =0时,原式=2. 10.先化简,再求值:x−32x−4÷(5x−2−x ﹣2),其中x =﹣1【解答】解:原式=x−32(x−2)÷5−(x+2)(x−2)x−2=x−32(x−2)•x−2(3+x)(3−x)=−12(x+3),当x =﹣1时,原式=−12(x+3)=−14. 11.先化简代数式(1−3a+2)÷a 2−2a+1a 2−4,再从﹣2≤a ≤2中选一个恰当的整数作为a 的值代入求值. 【解答】解:原式=a+2−3a+2÷a 2−2a+1a 2−4=a−1a+2•(a+2)(a−2)(a−1)2=a−2a−1,当a =0时,原式=0−20−1=2.12.先化简,再求值:(2−x x−1)•x−1x 2−4x+4,请在﹣1,0,1,2中选一个数代入求值.【解答】解:原式=(2x−2x−1−x x−1)•x−1(x−2)2=x−2x−1•x−1(x−2)2=1x−2,∵x ≠1且x ≠2,∴取x =0,当x =0时,原式=10−2=−12.13.先化简再求值:(m+3m 2−3m −m−1m 2−6m+9)÷m−9m ,其中m 满足(m ﹣9)(m +1)=0.【解答】解:(m+3m 2−3m −m−1m 2−6m+9)÷m−9m=[m+3m(m−3)−m−1(m−3)2]•m m−9=(m+3)(m−3)−m(m−1)m(m−3)2•m m−9=m−9m(m−3)2•m m−9=1(m−3)2,∵m 满足(m ﹣9)(m +1)=0, ∴m ﹣9=0或m +1=0,∴m =9或﹣1,∵m (m ﹣3)≠0,m ﹣9≠0,m ≠0, ∴m 不能为0,3,9,∴m 只能为﹣1,当m =﹣1时,原式=1(−1−3)2=116.14.先化简,再求值:(3x x−2+x 2−x )÷xx 2−4,其中x =3.【解答】解:原式=(3x x−2−x x−2)•(x+2)(x−2)x=2x x−2•(x+2)(x−2)x=2(x +2)=2x +4,当x =3时,原式=2×3+4=10.15.先化简,再求值:x−4x 2−4x+4÷(x ﹣1−6x−2),x 是一个你认为适当的整数.【解答】解:原式=x−4(x−2)2÷x 2−3x+2−6x−2=x−4(x−2)2⋅x−2(x+1)(x−4)=1(x−2)(x+1),当x =0时,原式=1−2×1=−12.16.先化简,再求值:(m +2+3m−2)⋅m−2m−1,其中m =3.【解答】解:(m +2+3m−2)⋅m−2m−1=(m+2)(m−2)+3m−2•m−2m−1=m 2−1m−2•m−2m−1=(m+1)(m−1)m−2•m−2m−1=m +1,当m =3时,原式=3+1=4.17.先化简再求值:(2x x−2+x x+2)÷xx 2−4,在x =±2、0、±1中选择一个你喜欢的数,求原式的值.【解答】解:原式=2x(x+2)+x(x−2)(x+2)(x−2)÷xx 2−4=3x 2+2x (x+2)(x−2)÷xx 2−4=x(3x+2)(x+2)(x−2)×(x+2)(x−2)x=3x +2∵x ≠±2、0,∴当x =1时,原式=3+2=5;或当x =﹣1时,原式=﹣3+2=﹣1.18.先化简,再求值:(x 2−3x−1−1x−1)•x−1x−2−(x +3)0,其中x =﹣1.【解答】解:(x 2−3x−1−1x−1)•x−1x−2−(x +3)0=x 2−4x−1⋅x−1x−2−1=(x+2)(x−2)x−2−1=x +2﹣1=x +1,当x =﹣1时,原式=﹣1+1=0.19.先化简,再代入求值:x −x+1x−1÷x 2−1x 2−2x+1,其中x =2021.【解答】解:原式=x −x+1x−1×(x−1)2(x+1)(x−1)=x −x+1x−1×x−1x+1=x ﹣1,当x =2021时,原式=2021﹣1=2020.20.先化简,再求值(1−1m+2)÷m 2+2m+1m 2−4,其中m 2=1.【解答】解:(1−1m+2)÷m 2+2m+1m 2−4=m+2−1m+2⋅(m+2)(m−2)(m+1)2=m+11⋅m−2(m+1)2=m−2m+1,∵m 2=1,m +1≠0,(m +2)(m ﹣2)≠0,∴m =1,当m =1时,原式=1−21+1=−12. 21.先化简,再求值:a−1a 2−4÷(1−3a+2),再从﹣2,﹣1,0,1,2选择一个你喜欢的数代入求值. 【解答】解:原式=a−1(a+2)(a−2)÷a+2−3a+2=a−1(a+2)(a−2)•a+2a−1=1a−2,当a =﹣2,1,2时,原式没有意义;当a =0时,原式=−12;当a =﹣1时,原式=−13.22.先化简,再求值:(2a−1−1a )÷(a 2+a a 2−2a+1),其中a 2+a ﹣1=0.【解答】解:原式=[2a a(a−1)−a−1a(a−1)]÷a(a+1)(a−1)2=a+1a(a−1)•(a−1)2a(a+1)=a−1a 2,当a 2+a ﹣1=0时,a 2=1﹣a ,则原式=a−11−a =−1.23.先化简,再求值:(3x+4x 2−1−2x−1)÷x+2x 2−2x+1,其中x =﹣3.【解答】解:原式=[3x+4−2(x−1)(x+1)(x−1)]•(x−1)2x+2=x+2(x+1)(x−1)•(x−1)2x+2=x−1x+1,当x =﹣3时,原式=−3−1−3+1=2.24.先化简2a+2a−1÷(a +1)+a 2−1a 2−2a+1,然后a 在﹣1,1,2三个数中任选一个合适的数代入求值.【解答】解:2a+2a−1÷(a +1)+a 2−1a 2−2a+1=2(a+1)a−1•1a+1+(a+1)(a−1)(a−1)2=2a−1+a+1a−1=a+3a−1∵a ≠1且a ≠﹣1,∴当a =2时,原式=2+32−1=5.25.先化简,后求值:(3x x−1−x x+1)•x 2−1x ,其中x =﹣2.【解答】解:当x =﹣2时,原式=2x 2+4x x 2−1•x 2−1x=2x +4=﹣4+4=026.先化简,再求值:(x−1x −x−2x+1)÷2x 2−xx 2+2x+1,其中x 满足x =﹣3.【解答】解:原式=(x+1)(x−1)−x(x−2)x(x+1)•(x+1)2x(2x−1)=2x−1x(x+1)•(x+1)2x(2x−1)=x+1x 2,当x =﹣3时,原式=−3+19=−29.27.先化简,再求值:m−4m 2−9⋅(1+14m−7m 2−8m+16)÷1m−3,其中m =5.【解答】解:原式=m−4(m+3)(m−3)⋅(m+3)2(m−4)2÷1m−3=m+3(m−3)(m−4)⋅m−31=m+3m−4;当m =5时,原式=8.28.先化简,再求值:x−2x 2+2x+1÷(x −3x x+1),其中x =﹣2.【解答】解:x−2x 2+2x+1÷(x −3x x+1)=x−2(x+1)2÷x(x+1)−3x x+1=x−2(x+1)2⋅x+1x 2+x−3x=x−2x+1⋅1x(x−2) =1x(x+1),当x =﹣2时,原式=1−2×(−2+1)=12.29.先化简,再求值x x 2+2x+1÷(1−1x+1),其中x =3.【解答】解:x x 2+2x+1÷(1−1x+1)=x (x+1)2÷x+1−1x+1 =x (x+1)2⋅x+1x =1x+1,当x =3时,原式=13+1=14.30.先化简代数式a 2−2a+1a 2−4÷(1−3a+2),再选择一个你喜欢的数代入求值.【解答】解:原式=(a−1)2(a+2)(a−2)÷a+2−3a+2=(a−1)2(a+2)(a−2)•a+2a−1 =a−1a−2,当a =0时,原式=12.。
分式的化简求值练习50题(1-缶)亠諾齐I,其中X2耳X),其中X1 X 1 X-,再从-1、0、1三个数中,选择一个你认为合适的数作为X19、先化简,再求值:1)壬,其中X=2.X 110、先化简,再求值: 光,其中X皿3。
1先化简, 再求值:2、先化简, 再求值:2川 1 、a 2a 1 甘由a1.3、先化简, 再求值:4、先化简, 再求值:(1丄)X—,其中X 1X 25先化简,再求值(2X 1 X 2 2X X 甘由-- ----- ) --- ----- ,其中X满足2x -X—6、先化简(1宀)代入求值. X2 4X 4X2 1,然后从一2< x< 2的范围内选取一个合适的整数作为X的值7、先化简,再求值:2a~2 ~a 2a豊OH1,其中a^2a.8先化简(丄X 1 的值代入求值.m宁,再从2,- 2, 1,0,- 1中选择一个合适的数进行计算.12、先化简,再求值:2),其中x=2. x 1 x13、先化简,再求值: (U JL,其中x 1 x 2x 1 x 114、先化简(亠丄x 5 5 意的x的值代入求值. 然后从不等组x2x21233的解集中,选一个你认为符合题15、先化简, 再求值:a2 4~2a 6a 9皂2,其中2a 616、先化简, 再求值: 汁其中x17、先化简。
再求值:2a 1 a2 a21—2a_1 -J—其中a2 5 /、丨Qa a a 118、先化简, 再求值:2- 1 、X 2x 1 甘由U (1 ---- ) 一2----- ,其中x= —5.x 2 x 4219.先化简再计算:辛」(x红」),其中x是一元二次方程X22x 2 0的正数根.x x x20、化简,求值:2m 2m 1 , d m 1、甘由匚2 (m 1) -- 其中m=V3 m 1 m 12 11先化简(代231、先化简,再求值:a 1无a2 1,其中a 血1 .221、已知x 、y 满足方程组x y 3,先将旦化简,再求值。
初中数学分式的化简求值专项训练题W (附答案详解)1•计算:个合适的X值代入求值.5.先化简,再求值:z7-~4^~4÷(--/H-1),其中Z,7=√2-2.m -1 7/7-14 16先化简’再求值:L一三’其中心•7.先化简再求值:(a-卫匸匕)÷伫二伫,其中a=l+√2 * b=l - √2 • a a8.先化简,再求值:(1 + —,其中。
=一3・。
一2 Cr -43x9∙(I)≡ □τE对一112・先化简,再求值:疋一1一口厂TT齐0其中"满足*6=0(1) 4√6-3∙l+√8 ÷2y∕2Z⑵宀’心字求泻的值.2.先化简,再求值:(x+2--^―X — 2m— 3 3・(1)先化简,再求值° r ;・3nΓ + 6〃?4γ +1⑵解方程:—÷i-7=ι匚其中x=3+√3・< + 35-m÷2)t其中m是方程x2+3x-l=0的根; m + 24先化简’再求值:⅛÷^2- A-2 )÷-,其中一2<x≤2,且X为整数,请你选一(2)先化简3x u'^1,再取一个适当的数代入求值•10・先化简, 再求值:亠L —其中V 对一2Λ +1 Xi 1 + X 211・先化简, 再求值:x2一2x1Xr- -1 i(2)先化简,再求值:( 一?—一丄)÷ 丄,其中X=-I. Λ'-2Λ + 1 X x-115.已知F-3Λ∙-3 = O,那么请化简代数式(―-—)÷ lr ~A '并求值.X x + 1 f +2Λ + 1已知X-------------------- = — 1 , ( 1)求兀2 -------------- 7的值;XΛΓ18∙先化简式子:≡÷ (^- ⅛λ再从3' 2'。
三个数中选一个恰当的数作为"的值代入求值.19. 先化简,再求值:x + 4 x-1 X 2 -1 x + 1 XX 2+ Ix20. (1) 2X 2-(Λ∙ + 2)(X -2)-(-1)°(X ^2)'1. (2)先化简,再求值:—-∕~λ^÷∆l±∑,其中x = 2.x + 1 J Γ-6X + 9 X - 3α — 2 9Λ -1 \21. 先化简,再求值: j÷「1-斗 ,其中a 是方程χ2-χ=2019的解./ 一 1 α +1 丿 2 Y 1—22. 先化简,再求值:-一,其中X= √2 - 1.2—1 x-1/牙 _] Or λ 123. 先化简:-一 + = ÷丁再从1中选一个合适的X 的值代入求值・< X +1 X —1丿 X —124. 计算:Cr -4Cr -4t∕ + 4 2(I)/+2α + l= (" + I)?2y X 4xyx + 2y 2y-x 4),一疋Z、 x+ y",.f U->[χ-2-y-2)÷(w)∖其中 χ = r ∖y = -3L(2)求疋-丄的值.X17.先化简,再求值:-y ÷IX+y 丿-(x-2y)(x+y),其中χ = -l, y = 2.16. (1)已知 αb = 12(d>0e>0),求其中x = √2-L(2)先化简再求值:已知X= →½14.先化简,再求值:的值;25.先化简(1・一 )J 厂-6"_9,然后a在.2, 0, 2, 3中选择一个合适的数代入。
专项24 分式化简求值(四大类型)【典例1】(2021秋•北碚区校级期中)先化简再求值:÷(x﹣1+),其中x=2.【答案】x=2时,原式=1【解答】解:原式=÷=÷=•=,当x=2时,原式=1【变式1】(2021秋•雨花区校级月考)先化简,再求值:,其中a=2022.【答案】﹣.【解答】解:原式=()÷=()×==﹣.当a=2022时,原式=﹣=﹣.【典例2】(2021•射阳县二模)先化简,再求值:()÷,其中x从1,2,3中取一个你认为合适的数代入求值.【答案】1【解答】解:原式=[]===,∵x(x+1)(x﹣1)≠0,∴x≠0且x≠±1,∴x可以取2或3,当x=2时,原式=,当x=3时,原式==1.【变式2】(2022•南京模拟)先化简,再求值:,然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【解答】解:==x2+2,∵分式有意义,∴x≠﹣1且x≠1,当x=0时,原式=2,当x=2时,原式=6.【典例3】(2021•潍城区二模)先化简,再求值:(﹣)÷(x+2﹣),其中x是不等式组的整数解.【答案】2【解答】解:原式=[+]÷[﹣]=(+)÷(﹣)=÷=•=,由,解得:﹣1<x≤2,∵x是整数,∴x=0,1,2,由分式有意义的条件可知:x不能取0,1,故x=2,∴原式==2.【变式3】(2021•苍溪县模拟)先化简:,再从不等式组的解集中取一个合适的整数值代入求值.【答案】1【解答】解:原式===2(x+1)﹣(x﹣1)=2x+2﹣x+1=x+3.解不等式组,得﹣3<x≤1.由分式有意义的条件可知:x不能取﹣1,0,1,且x是整数,∴x=﹣2.当x=﹣2时,原式=1.【典例4】(2021秋•兴宁区校级月考)先化简,再求值:,其中a满足a2+2a﹣3=0.【答案】6【解答】解:原式=•=•=•=2a(a+2)=2(a2+2a),∵a满足a2+2a﹣3=0,∴a2+2a=3,当a2+2a=3时,原式=2×3=6.【变式4】(2021秋•沭阳县校级月考)先化简,再求值:(﹣)÷,其中x2﹣x﹣6=0.【答案】﹣.【解答】解:原式=[﹣]÷=•=•=•=,∵x2﹣x﹣6=0,∴x=3或x=﹣2,由分式有意义的条件可知:x不能取﹣2,故x=3,∴原式==﹣.1.(2022•丰顺县校级开学)先化简,再求值:,其中x=2.【解答】解:原式=•=,当x=2时,原式==.2.(2022•牟平区校级开学)化简求值:,再从﹣1≤x<2中选一个整数值,对式子进行代入求值.【解答】解:原式=÷=•=﹣,∵﹣1≤x<2且x为整数,∴x=﹣1,0,1,2,当x=1时,原式没有意义,舍去;当x=﹣1时,原式=;当x=0时,原式=1;当x=2时,原式=﹣.3.(2022春•涟源市校级期末)先化简,再求值:,然后从﹣1,1,2是选一个合适的代入求值.【解答】解:原式====.∵x≠±1,∴x=2.当x=2时,原式=.4.(2022秋•房山区期中)已知:x2﹣3x=4,求代数式的值.【解答】解:∵x2﹣3x=4,∴x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,解得x1=﹣1(不合题意舍去),x2=4,∴=+﹣=++1=++1=++1=.5.(2022秋•岳阳县期中)先化简,再求值已知a2+3a﹣1=0,求的值.【解答】解:=﹣===,∵a2+3a﹣1=0,∴a2+3a=1,∴原式==1.6.(2022秋•北碚区校级期中)先化简,再求值:,其中a.b满足.【解答】解:=[﹣]•=()•=•=,∵.∴a﹣=0,b+1=0,解得a=,b=﹣1,当a=,b=﹣1时,原式==﹣.7.(2022秋•丰城市期中)化简:(﹣x﹣1)÷,并从不等式组的解集中选择一个合适的整数解代入求值.【解答】解:原式=•=•=•=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∵,∴﹣1<x≤2,由分式有意义的条件可知:x不能取1和2,故x=0,原式=0+0+2=2.8.(2022秋•随县月考)先化简、再求值:(1﹣)÷﹣,其中x2+2x﹣13=0.【解答】解:原式=•﹣=﹣=﹣=,∵x2+2x﹣13=0,∴x2+2x=13,∴原式=.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题01运算能力课之分式的化简求值综合专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.(2021·山西八年级期末)先化简:221a a +-÷(a +1)+22121a a a --+,然后让a 在-1、1、5三个数中选一个合适的数代入求值.【答案】31a a +-;当a =5时,原式值为2【分析】先化除法为乘法,然后利用提取公因式、完全平方公式、平方差公式进行因式分解,通过约分对已知分式进行化简,最后代入求值.【详解】解:原式()()()()221111213111111a a a a a a a a a a a ++-++=´+=+=-+----由题意可知:21010210a a a a -¹ìï+¹íï-+¹î解得a ≠±1. 所以当a =5时,原式=5325-1+=.【点睛】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.2.(2021·辽宁阜新市·八年级期末)(1)因式分解:22()9()a x y b y x -+-.(2)解不等式组10213(1)x x x ì-<ïíï-£+î.(3)先化简,再求值:2244111x x x x x x -+æö+¸ç÷---èø,其中5x =.【答案】(1)()(3)(3)x y a b a b --+;(2)22x -£<;(3)11,23x -【分析】(1)先提公因式,再用公式法因式分解;(2)分别解不等式①②,再求不等式组的解集;(3)先化简分式,再将x 的值代入求解【详解】(1)原式()2222()9()()9a x y b x y x y a b =---=--()(3)(3)x y a b a b =--+(2)10213(1)x x x ì-<ïíï-£+î①②由①得,2x <,由②得,2x ³-,∴原不等式组解集为22x -£<.(3)原式2211(2)x x x x --æö=´ç÷--èø2(2)(1)1(2)x x x x ----=´--12x =-当5x =时,原式11523==-.【点睛】本题考查了多项式的因式分解,解一元一次不等式组,分式的化简求值,熟练运用以上知识是解题的关键.3.(2021·甘肃)先化简,再求值:22242244x x x x x -æö-¸ç÷--+èø,请在2-、0、2中选择一个适合的x 的值,代入求值.【答案】42x -+;-2【分析】把括号内通分,把除法转化为乘法约分化简,然后取一个使原分式有意义的数代入计算.【详解】解:原式2224244224x x x x x x x --+æö=-×ç÷---èø2242(2)2(2)(2)x x x x x x ---æö=×ç÷-+-èø24(2)(2)(2)(2)x x x x --=×-+-42x =-+,∵当x =2或-2时原分式无意义,∴x =0,∴原式4202=-=-+.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.4.(2021·安徽七年级期末)先化简,再求值:25(3)(222x x x x +--¸++,其中x =4.【答案】33x x -+,17【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出答案即可.【详解】解:25(3)(222x x x x +--¸++=2(2)(2)522(3)x x x x x -+-+++g 2292=2(3)x x x x -+++g ()()2332=2(3)x x x x x +-+++g 3=3x x -+,当x =4时,原式=4343-+=17.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则,正确进行化简是解题关键.5.(2021·安徽七年级期末)先化简,再求值:21(1)11x x x x --¸++,其中x 是16的算术平方根.【答案】11x --,1-3.【分析】先求出x 的值,再运用分式的四则混合运算法则进行化简,将x 的值代入计算即可.【详解】解:4,∴x =4.21(1)11x x x x --¸++=111()11(1)x x x x x x ++-×++-=11(1)x x x x x +-×+-=11x --.当x =4时,原式=11x --=11413-=--.【点睛】本题主要考查了算术平方根、分式的化简求值,正确的运用分式的四则混合运算法则进行化简是解答本题的关键.6.(2021·安徽七年级期末)观察以下等式:①111112212-==´;②111123623-==´;③1111341234-==´…,按以上规律解决下列问题:(1)第⑤个等式是 .(2)探究:111122334++´´´…+1(1)n n ´+= (用含的等式表示);(3)计算:若111133557++´´´+…1(21)(21)n n -´+=1633,求n 的值.【答案】(1)1115656-=´;(2)1n n +;(3)16【分析】(1)根据规律写出第5个等式即可;(2)根据规律裂项相消即可;(3)根据(2)的规律整理出n 的方程,解出n 值即可.【详解】解:(1)根据规律可知,第⑤个等式是1115656-=´故答案为:1115656-=´;(2)由规律可得,()1111111111111223341223341n n n n ++=-+-+-++-´´´´++L L 111n =-+1nn =+故答案为:1n n +;(3)∵11111323æö=-ç÷´èø,111135235æö=-ç÷´èø,111157257æö=-ç÷´èø∴可以得到()()1111212122121n n n n æö=-ç÷-´+-+èø∴()()11111335572121n n ++´´´-´+1111111112335572121n n æö=-+-+-++-ç÷-+èøL 111221n æö=-ç÷+èø21n n =+∵()()111116133557212133n n ++=´´´-´+∴162133n n =+解得n =16,经检验n =16,是该分式方程的解,故n 的值为16.【点睛】本题主要考查了数字的变化规律,利用规律化简分式是解题的关键.7.(2021·山东八年级期末)先化简再求值:2222a b ab b b a ab æö+--¸ç÷èø,已知4a b =-.【答案】2a b -,-2【分析】先将括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把4a b =-代入计算即可就求出值.【详解】解:原式222=()22()a b ab ab a a b a b +-×-2()2a b a a a b-=×-2a b -=. ∵4a b =-,∴a -b =-4.∴原式=-2.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解题的关键.8.(2021·无锡市天一实验学校八年级期中)先化简再求值:23331111x x x x x -¸--++,其中2x =-.【答案】()11x x +,12【分析】先把除法化为乘法,再进行约分,然后算分式的减法,再代入求值,即可求解.【详解】解:原式=()3(1)111(1)31x x x x x x -+×-+-+=111x x -+=()()111x x x x x x +-++=()11x x +,当x =-2时,原式=()1221-´-+=12.【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分是解题的关键.9.(2021·安徽)先化简,再求值(1﹣22221m m m +++)÷(11m -),其中m =2.【答案】1m m +,23【分析】根据分式的混合运算法则把原式化简,把m 的值代入计算即可.【详解】解:22211121m m m m +æöæö-¸-ç÷ç÷++èøèø222122121m m m m m m m æö++---æö=¸ç÷ç÷++èøèø221121m m m m m æö--=¸ç÷++èø()()()21111m m mm m +-=-+g 1mm =+把2m =代入上式中原式221213m m ===++【点睛】本题考查分式的化简求值.注意运算顺序和约分法则.还需注意分式的分母不能为0.10.(2021·云南)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一 填空 在以上化简步骤中,其中有一步是根据分式的基本性质:“分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变,”对分式进行通分.这是第__________步;任务二 订正 请写出该分式化简的正确过程;任务三 求值 当114x -æö=ç÷èø时,求该分式的值.【答案】任务一:三;任务二:见解析;任务三:12-【分析】任务一:根据分式的基本性质即可判断;任务二:依据分式的加减运算法则计算可得;任务三:将x 的值化简代入计算即可.【详解】解:任务一:以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质,故答案为:三;任务二:解:原式2(3)(3)21(3)2(3)x x x x x +-+=-++32132(3)x x x x -+=-++2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+ 26212(3)x x x ---=+ 726x =-+.任务三:解:当11()44x -==时,原式71=2462=--´+.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.11.(2021·苏州市景范中学校九年级二模)先化简,再求值:2222(1)32111x x x x x x x x ++-¸--+--,其中1x =+.【答案】31x -【分析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】解:原式=22(1)(1)3(1)(1)(1)1x x x x x x x x ++-¸--+--=22(1)(1)(1)3(1)(1)1x x x x x x x x ++--´--+-=311x x x x ----=31x x x -+-=31x -;当1x =时,原式=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.(2021·山东)化简和化简求值(1)21(11a a a a+¸--;(2)先化简2221(21)11x x x x x x -+¸++-+,再从-1,0,1中选择合适的x 值代入求值.【答案】(1)a -(2)11x -;当0x =时,原式1=-【分析】(1)先将括号里通分计算,再算除法;(2)先运用通分法则计算括号内部分,然后将除法转换为乘法计算化简后,挑一个使分式有意义的值代入计算即可.【详解】解:(1)原式11=(+)11(1)a a a a a a -¸---1(1)1a a a ´--=a =-;(2)原式2221(1)()11(1)(1)x x x x x x x -+=-+++-g 1111x x x +=+-g ,11x =-,由分式可知:1x ¹±,当0x =时,原式1=-.【点睛】本题主要考查分式的化简求值以及分式有意义的条件,熟练掌握分式的混合运算法则是解答本题的关键.13.(2021·江苏八年级期末)化简或解方程:(1)化简:21442a a a+--;(2)先化简再求值:222()111a a a a a ++¸+--,其中a 1.(3)解分式方程:11322x x x -=---.【答案】(1)124a +;(2)31a +;(3)原方程无解.【分析】(1)先把分式的分母分解因式,再通分,最后根据同分母的分式相加的法则求出答案即可;(2)先算括号内的加法,把除法变成乘法,算乘法,最后代入求出答案即可;(3)方程两边都乘以x ﹣2得出方程1=x ﹣1﹣3(x ﹣2),求出方程的解,再进行检验即可.【详解】解:(1)解:原式=()()()12222a a a a -+--,=()()()22222a a a a -++-,=()()2222a a a -+-,=()122a +,=124a +;(2)222()111a a a a a ++¸+--解:原式=()()221111a a a a a a éù+-+×êú++-êúëû,=()()()()()21211111a a a a a a a a éù-+-+×êú+-+-êúëû,=()()3111a a a a a -×+-,=31a + ,当a 1- (3)11322x x x -=---,解:方程两边都乘以x ﹣2,得1=x ﹣1﹣3(x ﹣2),解得:x =2,检验:当x =2时,x ﹣2=0,所以x =2是增根,即原方程无解.【点睛】本题主要考查分式化简求值和解分式方程,解决本题的关键是要熟练掌握分式化简求值和解分式方程的方法.14.(2021·湖北八年级期末)先化简,再求值:2222b b a a b a b ab bæö-¸ç÷--+èø,其中a =,b1.【答案】2,3b a b-【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:2222b b a a b a b ab bæö-¸ç÷--+èø=()()()()2b a b b b a b a b a b a +-+´+-=ab a b b a -´=2b a b-当a时,3===.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键,代值计算要仔细.15.(2021·福建莆田二中)先化简,再求值:(1﹣2a a a +)÷22121a a a -++,其中2a =.【答案】1a a -,2【分析】利用通分,因式分解,运算法则细心计算即可.【详解】解:原式=()()()222111a a a a a a a a +-+-¸++=()()()()221·111a a a a a a +++-=1a a -,当2a =时,原式2221==-.【点睛】本题考查了分式的化简,熟练运用分式的通分,因式分解,约分进行化简是解题的关键.16.(2021·河南八年级期末)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务:22112221x x x x x ---+++=2(1)(1)12(1)(1)x x x x x +---++…第一步=1112(1)x x x x ---++…第二步=2(1)12(1)2(1)x x x x ---++…第三步=2(1)(1)2(1)x x x ---+…第四步=2212(1)x x x ---+…第五步=322x x -+…第六步任务一:填空:(1)以上化简步骤中,第一步进行的运算是 .A .整式乘法B .因式分解(2)以上化简步骤中,第 步是进行分式的通分,通分的依据: .(3)第 步开始出现错误,这一步错误的原因: .任务二:请直接写出该分式化简后的正确结果,并从不等式组211102x x +³ìïí-+>ïî的解集中选择一个合适的整数作为x 的值,代入求值;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】任务一:(1)B ;(2)四,分式的基本性质;(3)五,去括号没有变号;任务二:122x x -+,12-或0;任务三:分式化简时需要注意分母的取值不为零.【分析】任务一:分式化简的要先因式分解,再通分;任务二:解不等式组,求得解集,选取合适的值,代入计算即可;任务三:在运算时,去括号要注意变号,代入求值时,注意分母的取值.【详解】解:(1)第一步进行因式分解,故选:B ;(2)第四步分式通分,通分根据分式的基本性质,故答案为:四,分式的基本性质;(3)第五步出现错误,原式2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+,在去括号时符号错误,故答案为:五,去括号没有变号;任务二:22112221x x x x x ---+++2(1)(1)1(1)2(1)x x x x x +--=-++1112(1)x x x x --=-++2(1)12(1)2(1)x x x x --=-++2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+122x x -=+,解不等式组2 1 110 2x x +³ìïí-+>ïî①②,由①得,x ≥﹣1,由②得,x <2,∴不等式组的解集为﹣1≤x ≤2,∵x ≠﹣1,∴x 可以取0,1,当x =0时,原式=12-,当x =1时,原式=0;任务三:分式化简时需要注意分母的取值不为零.【点睛】本题考查了分式的化简,解不等式组,熟练掌握分式化简的方法,掌握分式的基本性质,注意分母的取值不为零的情况是解题的关键.17.(2021·贵州八年级期末)先化简,再求值:(x ﹣2122x -+)42x x -¸+,其中x =5.【答案】﹣x ﹣4,﹣9.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算即可.【详解】解:(x ﹣2122x -+)42x x -¸+()()22122x x x -+-=+•24x x +-2162x x -=+•24x x +- ()()442x x x +-=+•()24x x +-- =﹣(x +4)=﹣x ﹣4,当x =5时,原式=﹣5﹣4=﹣9.【点睛】本题主要考查分式的化简求值,解题关键是掌握分式的混合运算顺序和运算法则.18.(2021·湖南师大附中博才实验中学八年级期末)先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.【答案】1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+æö-¸ç÷+++èø,=()22112x x x x -+×+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.19.(2021·浙江七年级期末)先化简,再求值:x y xy -÷(x y y x-),其中x =12,y =﹣13.【答案】1x y+,6【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:原式=22x y x y xy xy--¸=22x y xy xy x y --g =()()x y xy xy x y x y -+-g =1x y+,当x =12,y =﹣13时,原式=116=6.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则进行计算,本题属于基础题型.20.(2021·辽宁八年级期末)先化简,再求值:2211121x x x x x---¸++,其中3x =.【答案】11x +,14【分析】根据分式的运算法则及运算顺序进行化简,再代入求值即可.【详解】解:2211121x x x x x---¸++()()()211111x x xx x +-=-×-+11=-+x x 11+-=+x x x 11x =+,当3x =时,原式131=+14=.【点睛】此题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.21.(2021·四川成都市·九年级期末)先化简,再求值:232a a a --÷(a +2﹣52a -),其中a 2+3a ﹣1=0.【答案】213a a +,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】解:原式=()()()225322a a a a a a +---¸--=()()()()23233a a a a a a --´-+-=()13a a +=213a a +,∵a 2+3a ﹣1=0,∴a 2+3a =1,则原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(2021·山西临汾市·八年级期中)计算:(1)101(1)12p -æö--+-ç÷èø(2)2241611a a a a a æö--+¸ç÷--èø,其中2a =-.【答案】(1(2)14a -+,12-【分析】(1)利用零指数幂,负正数指数幂,绝对值的性质化简计算即可;(2)先将括号内的分式通分计算,同时将除法转化为乘法,约分化简计算即可;【详解】解:(1)原式211=-+-=(2)原式24(1)(4)(4)111a a a a a a a a æö--+-=+¸ç÷---èø411(4)(4)a a a a a --=×-+-14a =-+.当2a =-时,原式11242=-=--+.【点睛】本题主要考查实数的混合运算及分式的混合运算,熟练运用零指数幂,负整数指数幂及绝对值的运算性质和分式的混合运算法则计算是解题的关键.23.(2021·重庆实验外国语学校八年级期末)化简求值:232228323y x x y x x y x y x xy y x yæö+-+¸×ç÷+++-èø,其中x y =【答案】x y x +-,﹣1【分析】先利用完全平方公式和提取公因式法和平方差公式分解因式,然后根据分式的运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:2322283·23y x x y x x y x y x xy y x yæöæö+-+¸ç÷ç÷+++-èøèø()()22222383x x y y x y x x y x yx y éù+æö-+=¸êç÷+-+èøêúëûg ()()2222933x y y x x x y x x y x y +-=++-g g ()()()()223333y x y x x y x x y x x y x y+-+=++-g g x yx +=-把x =,y =原式=﹣1﹣y x =﹣1【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握分式的混合运算的相关方法.24.(2021·辽宁鞍山市·八年级期中)已知2m =2121m m m -+-的值.【答案】3【分析】结合m 值先化简分式,再将m 的值代入化简后的式子求解即可.【详解】2121m m m -+-2(1)1m m -=-11(1)m m m m -=---.Q 2m =110m \-=<,\原式1121123m m =-+===.【点睛】本题考查了分式的化简,二次根式的性质,分母有理化,正确的计算是解题的关键.25.(2021·辽宁葫芦岛市·八年级期中)给出以下式子:224114422x x x x x x æö-+-¸ç÷-+-+èø,先简化,然后从1-,2,2+【答案】22x x +-,2x =+1【分析】先根据分式的运算法则及运算顺序进行化简,再将使原式有意义的未知数的值代入计算即可.【详解】解:原式()()()22212212x x x x x x éù+-+=-×êú-+-êúëû212221x x x x x ++æö=-×ç÷--+èø1221x x x x ++=×-+x 2x 2+=-,由题意得,20x -¹,20x +¹,10x +¹,∴2x ¹,2x ¹-,1x ¹-,∴当2x =+原式==1=【点睛】本题考查了分式的化简求值和二次根式的化简求值,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(2021·河南南阳市·八年级期中)已知a 2+a =1,求代数式221312442a a a a a a a +---¸++++的值.【答案】222a a +-,-2【分析】先根据分式的运算法则进行化简,然后整体代入21a a +=即可求解.【详解】解:原式=()22122123a a a a a a +-+-´+-+=()()213221a a a a a +--++-=()()221321a a a a --++-222a a =+-21a a +=Q \原式2212==--【点睛】本题考查分式的化简求值,掌握整体代入思想是解题的关键.27.(2021·胶州市初级实验中学九年级一模)(1)计算:212111a a a a a +æö-+¸ç÷++èø(2)解不等式组:235123x x x -³-ìïí+<ïî(3)关于x 的方程()21310m x x ++-=有两个实数根,求m 的取值范围【答案】(1)2a a +;(2)不等式组的解集为3x >;(3)m 的取值范围为134m £且1m ¹-.【分析】(1)由分式的加减乘除混合运算进行化简,即可得到答案;(2)分别求出每个不等式的解集,然后取公共部分,即可得到答案;(3)根据根的判别式0D ³,即可求出m 的取值范围.【详解】解:(1)212111a a a a a +æö-+¸ç÷++èø=211111(2)a a a a a a æö-++´ç÷+++èø=211(2)a a a a a +´++=2a a +;(2)235123x x x -³-ìïí+<ïî①②解不等式①,得1x ³-;解不等式②,得3x >;∴不等式组的解集为3x >;(3)∵关于x 的方程()21310m x x ++-=有两个实数根,∴()()234110m D =-´+´-³,∴134m £;当10m +=,即1m =-时,原方程是一元一次方程,只有一个解,不符合题意;∴1m ¹-;∴m 的取值范围为134m £且1m ¹-.【点睛】本题考查了分式的加减乘除混合运算,分式的化简,解不等式组,一元二次方程根的判别式,解题的关键是熟练掌握运算法则,正确的进行计算.28.(2021·浙江七年级期末)按条件求值:①若分式52x +的值是整数,求非负整数x 的值.②已知分式321x x -+可以写成531x -+,利用上述结论解决;若分式234x x--表示一个整数,求整数x 的值.③化简:235222x x x x x x -æö¸+-¸ç÷--èø,再从0,2±,3±五个数中,选择一个你最喜欢的数代入并求值.【答案】①3;②3或5或9或-1;③13x +,1【分析】①根据分式的值是整数可得x +2=±5,从而求出x ;②将分式变形为524x ---,参照①中方法即可求出x ;③首先通分,计算括号里面分式的减法,然后再计算括号外的除法,化简后,再根据分式有意义的条件确定x 的值,然后代入x 的值即可.【详解】解:①分式52x +的值是整数,∴x +2=±5,∴x =3或x =-7,∵x 为非负整数,∴x =3;②234x x--=()42384x x --+--=524x ---,∴x -4=±1或±5,∴x =3或5或9或-1;③235222x x x x x x -æö¸+-¸ç÷--èø=()2345222x x x x x x x -æö-¸-¸ç÷---èø=()23922x x x x x x --¸¸--=()()()321233x x x x x x x--´´-+-=13x +∵x 不能取0,3,2,-3,∴x =-2时,原式=123-+=1.【点睛】此题主要考查了分式的化简求值,关键是掌握分式的除法和减法计算法则,正确把分式进行化简.29.(2021·山西八年级期中)阅读材料,完成任务.一道习题引发的思考小明在学习第16章《分式》时,遇到了一道习題,并对有关内容进行了研究:习题再现:己知12a a +=,求221a a+的值;解题过程:解:2112,4,a a a a æö+=\+=ç÷èøQ 221124a a a a \+×+=,即22124a a++=,2212a a \+=.通过以上的解题思路,小明可以总结出论:已知形如n mx a x ±=(m ,n 为常数,我们可以利用完全平方公式计算求出2222n m x x +的值.任务:(1)请你帮小明计算2222n m x x+的值;(2)①若131(0)2b b b -=>,求22194b b +的值;②在①的基础上,求132b b+的值.【答案】(1)22a mn -;(2)①4;.【分析】(1)根据阅读材料中的方法配成完全平方式即可求解;(2)①根据阅读材料中的方法将多项式变形,求出值即可;②对132b b +两边平方后,利用①的结论计算即可.【详解】解:(1)∵n mx a x +=(m ,n 为常数,0mn ¹),∴2222222222n n m n n m x m x x x x mx x x+=+-+××2()2n mx mn x=-+22a mn =-;(2)①∵131(0)2b b b -=>,∴222211211993232244b b b bb b b b -´×´+×+=+21(3)32b b=-+13=+4=;②222111(3)923224b b b b b b+=+´´+221934b b=++43=+7=,∵0b >,∴132b b+=.本题考查了配方法的应用,分式的化简求值,利用完全平方公式:a2±2ab+b2=(a±b)2配方是解题关键.。
《分式的化简求值》强化训练题(一) 组卷人:班级:_________________ 姓名:_________________ 座号:________________1.计算:21()(1)x x x x++÷.2.计算:222242a a a a a a +⋅−−−.3.计算:2224214424x x x x x x x−+÷−−+−.4.化简:231(1)22a a a a a +−−+÷++.5.化简:212(1)11a a a a ++÷−−.6.先化简,再求值:()a b a b ab b a +÷−,其中3a =,2b =.7.先化简,再求值:2344(1)11x x x x x −+−−÷−−,其中3x =.8.先化简,再求值:22691(1)22a a a a a −+÷−−−,其中4a =.9.先化简,再求值.221(1)11a a a −÷+−,其中3a =−.10.先化简,再求值:2269(1)11a a a a +++÷++,从3−,1−,2中选择合适的a 的值 代入求值.11.先化简,再求值:2292(1)693m m m m −÷−−+−,其中2m =.12.先化简,再求值:211()122x x x x −+÷+−−,其中1x =−.13.先化简,再求值:224(1)244x x x x x −−÷−−+,其中4x =−.14.先化简,再求值:21(21)11a a a a a +÷−−−−,其中3a =.15.先化简,再求值:2212()ab b a b a b a b ÷+−+−,其中1a =,1b =−.16.先化简2121(1)1221a a a a a −−−÷+−−+,再从1,2,3中选一个适当的数代入求值.17.化简求值:222244(1)x x x x x x −−+−÷−,其中4x =.18.先化简:2242(2)244x x x x x x −++÷−−+,再从0、1、2、3中选择一个适合的数代入求值.19.先化简,再求值:22221124()11x x x x x x x−+−−÷−++,其中6x =.20.先化简,再求值:22111x x x x−−÷−,其中x =21.先化简,再求值:211a a a −+−,其中5a =.22.先化简,再求值:211(1)a a a−+÷,其中1a =.23.先化简,再求值:2121()x x x x x−+÷−其中1x =.24.先化简222244()4424x x x x x x x −−−÷−+−−,再从1−、2、4中选一个你喜欢的数作为x 的值 代入求值.25.先化简:2212(1)244a a a a a a +−−÷−−+,然后从0,2,2023中选择一个合适的数代入求值.26.求代数式222232x y x x y y x++−−的值,其中2x y =+.27.先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =.28.先化简,再从1−,0,1x 值代入求值.211()111x x x x +÷+−−.29.先化简,再求值:229311()21112a a a a a a a −−÷−⋅−+−−+,其中2a =.30.先化简,再求值:35(2)242a a a a −÷+−−−,其中32a =−.31.先化简,再求值:2269(1)11a a a a −+−÷−−,从3−,1−,1,3中选择一个合适的a 的 值代入求值.32.先化简,再求值:324(2)244x x x x x ++÷−−+,其中x 是满足条件2x 的合适的 非负整数.33.先化简,再求值:2296()693x x x x x x −÷+−+−,其中x =34.先化简,再求值:22211()2111x x x x x x −+÷−+−−,其中x 是满足条件11x −的整数.35.先化简,再求值22344(1)1a a a a a a −++−÷−−,其中113a =−.36.先化简,再求值:2228224442a a a a a a a −÷−++−+,其中1a =.37.先化简,再求值:22424412x x x x x x x −+÷−−++−,其中2x =.38.先化简,再求值:21(1)11x x x ÷−−+,其中1x =.39.先化简,再求值:2121(1)m m m m −+−÷,其中1m =+.40.已知:22x M +=,42x N x =+. (1)当0x >时,判断M N −与0的关系,并说明理由;(2)设2216x y N M=+时,若x 是正整数,求y 的正整数值.《分式的化简求值》练习题(一)参考答案1.解:原式21x x x x x +=⨯+1(1)x x x x x +=⨯+1x =.2.解:原式(2)2(2)(2)2a a a a a a a +=⋅−+−−222a a a =−−−1=.3. 解:2224214424x x x x x x x −+÷−−+−2(2)(2)2(2)1(2)(2)x x x x x x x +−−=⋅−−+21x x =−1x =.4. 解:231(1)22a a a a a +−−+÷++(1)(2)32[]22(1)(1)a a a a a a a a −+++=+⋅+++− 22122(1)(1)a a a a a a +++=⋅++−11a a +=−.5. 解:212(1)11a a a a ++÷−−211112a a a a a ++−−=⋅−2(1)(1)12a a a a a +−=⋅−1a =+.6. 解:()a b a b ab b a+÷−22a b a b ab ab +−=÷()()a b ab ab a b a b +=⋅+−1a b =−,当3a =,2b =时,原式1132==−. 7. 解:原式223(1)11(2)x x x x −−−=⋅−−2(2)(2)11(2)x x x x x +−−=−⋅−−22x x +=−−, 当3x =时,原式3232+=−−5=−.8. 解:原式2(3)21()(2)22a a a a a a −−=÷−−−−2(3)3(2)2a a a a a −−=÷−−2(3)2(2)3a a a a a −−=⋅−−3a a −=, 当4a =时,原式43144−==. 9. 解:原式2111(1)(1)a a a a a +−=÷++−2(1)(1)1a a a a a +−=⨯+1a a−=, 当3a =−时,原式31433−−==−.10. 解:原式23(3)11a a a a ++=÷++2311(3)a a a a ++=⋅++13a =+, 由分式有意义的条件可知:a 不能取1−,3−,故2a =,原式123=+15=. 11. 解:2292(1)693m m m m −÷−−+−2(3)(3)32(3)3m m m m m +−−−=÷−−3335m m m m +−=⋅−−35m m +=−, 当2m =时,原式235253+==−−.12. 解:原式2411[](1)(2)(1)(2)2x x x x x x x x −+−=+÷+−+−− 331(1)(2)2x x x x x −−=÷+−−3(1)2(1)(2)1x x x x x −−=⨯+−−31x =+,当1x =时,原式==.13. 解:原式2(2)(2)2(2)(2)x x x x x x −−−=⋅−+−2222x x x −=⋅−+22x =+, 当4x =−时,原式242=−+1=−.14. 解:原式(1)(1)(21)11a a a a a a +−=⨯−−−+21a a =−+1a =−+, 当3a =时,原式312=−+=−.15. 解:2212()ab b a b a b a b ÷+−+−2()()ab a b b a b a b a b −+=÷−+−()()ab a b a b a b a b+−=⋅−+ab =,当1a =,1b =−时,原式1)=51=−4=.16. 解:原式222112(1)a a a a a −−=⋅+−−−221121a a a a −=⨯+−−−2111a a =+−−31a =−; 因为1a =,2时分式无意义,所以3a =, 当3a =时,原式32=.17. 解:222244(1)x x x x x x −−+−÷−222(2)(1)x x x x x x −−−=÷−22(1)(2)x x x x x −−=⋅−12x x −=−, 当4x =时,原式4142−=−32=.18. 解:原式2244(2)()22(2)x x x x x x −−=+⋅−−−222x x x x−=⋅−x =, (2)0x x −≠,0x ∴≠,2x ≠,当1x =时,原式1=,当3x =时,原式3=.19. 解:22221124()11x x x x x x x−+−−÷−++112(2)()11(1)x x x x x x −−=−÷+++2(1)12(2)x x x x x −+=⋅+−2x =, 当6x =时,原式62=3=.20. 解:22111x x x x −−÷−2(1)(1)11x x x x x +−=⋅−−11x x +=−1x x x +−=1x =,当x ===. 21. 解:原式2(1)11a a a a −+−=−2211a a a a −+−=−2211a a a −−=−(21)(1)1a a a +−=−21a =+, 当5a =时,原式10111=+=.22. 解:原式1(1)(1)a a a a a++−=÷1(1)(1)a a a a a +=⋅+−11a =−,当1a =时,原式2==.23. 解:原式2121x x x x −+−=÷(1)(1)1x x x x x +−=⋅+1x =−,当1x =时,原式11=+−=24. 解:222244()4424x x x x x x x −−−÷−+−−2(2)4(2)(2)[](2)24x x x x x x x −+−=−⋅−−− 4(2)(2)()224x x x x x x +−=−⋅−−−4(2)(2)24x x x x x −+−=⋅−−2x =+, 2x =−,2或4时,原分式无意义,1x ∴=−,当1x =−时,原式121=−+=.25. 解:2212(1)244a a a a a a +−−÷−−+212(2)()22(2)a a a a a a a +−−=−÷−−−21(2)(2)2(2)a a a a a a +−−−=⨯−−212(2)2(2)a a a a a a +−+−=⨯−−23(2)2(2)a a a a −=⨯−−3a =, 当0a =,2a =时,原式没有意义,∴当2023a =时,332023a =.26. 解:原式32()()()()x y x x y x y x y x y +=−+−+−2()()()x y x y x y +=+−2x y =−, 当2x y =+时,原式212y y ==+−.27. 解:原式21(1)(3)(3)31x x x x x x x x +=⋅+−−⋅−+31x =+−2x =+, 当2x =时,原式224=+=.28. 解:原式111(1)(1)x x x x x −+−=⋅+−11x =+, 又1x ≠−,0,1,x ∴可以取==29. 解:原式2(3)(3)111[](1)312a a a a a a a −+−=⋅−⋅−−−+311()112a a a a +=−⋅−−+ 2112a a a +=⋅−+11a =−, 当2a =时,原式1121==−.30. 解:35(2)242a a a a −÷+−−−3(2)(2)52(2)2a a a a a −+−−=÷−− 2392(2)2a a a a −−=÷−−322(2)(3)(3)a a a a a −−=⋅−+−12(3)a =+126a =+, 当32a =−时,原式11332()62==⨯−+.31. 解:原式23(3)11a a a a −−=÷−−2311(3)a a a a −−=⋅−−13a =−, 由分式有意义的条件可知:a 不能取1,3,故1a =−,原式11134==−−−.32. 解:原式23244()22(2)x x x x x −=+÷−−−223(2)2x x x x −=⋅−2x x−=, 0x ≠且20x −≠,0x ∴≠且2x ≠,1x ∴=,则原式1211−==−.33. 解:原式22(3)(3)36(3)3x x x x x x x −+−+=÷−−333(3)x x x x x +−=⋅−+1x=,当x ==. 34. 解:22211()2111x x x x x x −+÷−+−−22(1)(1)11[](1)1x x x x x x +−−=−⨯−− 2111()11x x x x x+−=−⨯−−211x x x x −=⨯−1x =; x 是满足条件11x −的整数,且0x ≠且1x ≠,1x ∴=−,∴原式1=−.35. 解:22344(1)1a a a a a a−++−÷−−2213(2)()11(1)a a a a a a −−=−÷−−− 2(2)(2)(1)1(2)a a a a a a +−−=⨯−−(2)2a a a +=−222a a a +=−, 当113a =−时,原式得2221144(1)2(1)()2()2433331421512233a a a −+⨯−−+⨯−+====−−−−−.36. 解:原式28(2)2(2)(2)(2)2a a a a a a a −=÷−++−+28(2)(2)2(2)(2)2a a a a a a a +−=⋅−+−+ 8222a a =−++62a =+.当1a =,原式6====.37. 解:22424412x x x x x x x −+÷−−++−2(2)(2)1(2)22x x x x x x x +−+=⨯−−+− 122x x x x +=−−−12x =−,当2x =+==38. 解:21(1)11x x x ÷−−+21111x x =÷−+1(1)(1)(1)x x x =⨯++−11x =−;当1x =时,原式==39. 解:原式21(1)m m m m −−=÷21(1)m m m m −=⋅−11m =−,1m时,原式3===.40. 解:(1)0M N −,理由如下:22x M +=,42x N x =+, M N ∴−2422x x x +=−+24482(2)x x x x ++−=+2(2)2(2)x x −=+, 0x >,20x ∴+>,2(2)0x −, ∴2(2)02(2)x x −+, 即0M N −;(2)2216x y N M =+ 22164()22()2x x x x =+++ 2226416(2)(2)x x x x =+++ 2216(4)(2)x x x +=+ 2216(2)64(2)x x +−=+ 26416(2)x =−+, x 是正整数,y ∴的正整数值为:当2x =时,12y =,当6x =时,15y =.综上所述,y 的正整数值为12或15.。
精品文档初二数学分式化简求值练习题及答案2、先化简,再求值:12?2,其中x,,2( x?1x?1,其中a=,1(3、先化简,再求值:4、先化简,再求值:5先化简,再求值6、化简:7、先化简,再求值:,其中(,其中x=(,其中x满足x,x,1=0(2a?3ba?b? a?ba?b,其中a=(先化简x11?)?2,再从,1、0、1三个数中,选择一个你认x?1x?1x?1为合适的数作为x的值代入求值(1 / 26精品文档9、先化简,再求值:先化简下列式子,再从2,,2,1,0,,1中选择一个合适的数进行计算(12、先化简,再求值:13、先化简,再求值:,其中((318+1)?,其中x=2(x?1x,其中x=2.xx?1??x?2?3xx2x?)?14、先化简?2x?1x?1x?12a?1a2?2a?111a????值:2,其中。
2a?1a2?aa?11x,2x,118(先化简,再求值:??1,x,2?x2,4x,,5(??x2?1?2x?1?22 / 26精品文档??x?19. 先化简再计算:2?,其中x是一元二次方程x?2x?2?0的正数根. x?x?x?2m2?2m?1m?120 化简,求值: )其中m=( ? aa??x?3x2?6x?91?2?,再取恰的x的值代入求值.3请你先化简分式2x?1x?2x?1x?12a?2a2?1??a?1??224、先化简再求值其中a=+1 a?1a?2a?125、化简,其结果是(x2,16x26(先化简,再求值:?,其中x3,4(x,2x,2xx2,4x,4x,22x27、先化简,再求值:,x,2.x,162x,8x,428、先化简,再求值:?2,其中x?4( x?2x?2x?42aa3 / 26精品文档?)?a,其中a?1. a?11?a30、先化简,再求值:?a,其中aa2?11?a2?1?x?1(?1???x?x?1a?1?aab2a?b)?32(?a2?b2a?bb?a2??233先化简,再求值:?a?1???a?1,其中a1( a?1????34化简:(35(先化简,再求值:11?a2a?,其中( ?221-a1?a4 / 26精品文档x2,2x,1x36、.先化简,x值代入求值.x,1x,1x22x?1?39(当x??2时,求的值( x?1x?1x2?42?xx?)?40先化简,再把x取一个你最喜欢的数代入求值:42、先化简,再求值:43、先化简:先化简,再求值(+x(其中45、先化简,再求值,?(再从1,2,3中选一个你认为2(+)?,其中x=2(1化简,再从,1,1两数中选取一个适当的数作为x的值代x?1入求值(全国初中数学竞赛辅导第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以同一个不等于5 / 26精品文档零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据(在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值(除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答(本讲主要介绍分式的化简与求值(例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多(,,--+,说明本题的关键是正确地将假分式写成整式与真分式之和的形式(例求分式当a=2时的值(分析与解先化简再求值(直接通分较复杂,注意到平方差公式:a-b=,可将分式分步通分,每一步只通分左边两项(22例若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂(下面介绍几种简单的解法(解法1 因为abc=1,所以a,b,c都不为零(解法因为abc=1,所以a?0,b?0,c?0(6 / 26精品文档例化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简(说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧(例化简计算:似的,对于这个分式,显然分母可以分解因式为,而分子又恰好凑成+,因此有下面的解法(解说明本例也是采取“拆项相消”法,所不同的是利用例已知:x+y+z=3a,求分析本题字母多,分式复杂(若把条件写成++=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解(解令x-a=u,y-a=v,z-a=w ,则分式变为u+v+w+2=0(由于x,y,z不全相等,所以u,v,w不全为零,所以u+v+w?0,从而有7 / 26精品文档222222说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化(下例同:例化简分式:变形,化简分式后再计算求值(适当22=3,即x-8x+13,0(原式分子=+++10432322分式练习题及答案初二1、当x为何值时,分式x2 8 / 26精品文档?1x2?x?2有意义,当x为何值时,分式x2?1 x2?x?2的值为零,2、计算: a2?4x2a?2??a?2??1a?22x?x?2?x? ??1??1?x??xx?2??? x2?2x ?22?x?y??x?y?1124?3x?x?y??x?y?3x????9 / 26精品文档?x1?x?1?x?1?x2?1?x43、计算已知x2x2?2?1,求11??x的值。
1?2???1?x?10 / 26精品文档1?x?????x2?1?x???222当x?4sin300???1?0、y?tan600时,求???? 1?2xx?y?x?2xy?y?x?xy? ???3x?3yx2 ?y2的值。
2已知3x2 ?xy?2y2 ?0,求11 / 26 精品文档xy?yx2?yx?xy的值。
2已知a2?3a?1?0,求aa4?1的值。
4、已知?2?a?2??a、b、c为实数,且满足3?b 2c2?4??c?2?0,求1a?b?12 / 26精品文档1b?c的值。
5、解下列分式方程: x?x?22 x?2?2?x;x?1x?1?3x2?1?42??x2?1?1? x?1?x2??3???x??x??1 ?x?4x2x2?113 / 26精品文档?3?11?6、解方程组:? ?x?1y?3?11??2?xy97、已知方程2x?x?mx?x2?1?1x?1,是否存在m的值使得方程无解,若存在,求出满足条件的m的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价(9、某书店老板去图书批发市场购买某种图书(第一14 / 26精品文档次用1200元购书若干本,并按该书定价7元出售,很快售完(由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本(当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书(试问该老板这两次售书总体上是赔钱了,还是赚钱了,若赔钱,赔多少,若赚钱,赚多少,10、进入防汛期后,某地对河堤进行了加固(该地驻军在河堤加固的工程中出色完成了任务(这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.11、建筑学要求,家用住宅房间窗户的面积m必须小于房间地面的面积n,但窗户的面积与地面面积的比值越大,采光条件越好。
小明提出把房间的窗户和地面都增加相同的面积a,以改善采光条件。
他这样做能达到目的吗,12、阅读下列材料:11?11?11?11?1?1?11?11?,,,??????1???????????,?52?35?17?192?1719?1 ?32?3?5?72?57?1111??????? 1?33?55?717?1911111111111 =?????15 / 26精品文档232352572171911111111119= =?(33557171921919?1?解答下列问题: 在和式11?3?13?5?15?7???中,第6项为______,第n项是__________(上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以_______,从而达到求和的目的( 受此启发,请你解下面的方程:1x?1?1?16 / 26精品文档32x?18(答案1、分析:?判断分式有无意义,必须对原分式进行讨论而不能讨论化简后的分式;?在分式AB中,若B,0,则分式AB无意义;若B?0,则分式AB有意义;?分式AB的值为零的条件是A,0且B?0,两者缺一不可。
答案:x?2且x?,1;x,12、分析:题是分式的乘除混合运算,应先把除法化为乘法,再进行约分,有乘方的要先算乘方,若分式的分子、分母是多项式,应先把多项式分解因式;题把??x?2?当作整体进行计算较为简便;题是分式的混合运算,须按运算顺序进行,结果要化为最简分式或整式。
对于特殊题型,可根据17 / 26精品文档题目特点,选择适当的方法,使问题简化。
题可以将?x?y看作一个整体??x?y?,然后用分配律进行计算;题可采用逐步通分的方法,即先算11?x88?11?x,用其结果再与21?x2相加,依次类推。
答案:1a?2;4x?2;?x?2x?12xx?y;1?x3、分析:分式的化简求值,应先分别把条件及所求18 / 26精品文档式子化简,再把化简后的条件代入化简后的式子求值。
略解:原式,??1?2x22x2?x22x?2?11?2x2?2x?2x22?1?2?1???19 / 26精品文档??2?原式,?23?x?4sin300???1??1,y?tan600? ?原式,x?y2x?y2yx?1?31?3?3?1分析:分式的化简求值,适当运用整体代换及因式分解可使问题简化。
略解:原式,??x?23?3x2?xy?2y2?0 ??3x?2y??x?y??023y时,原式,,3;当x??y时,原式,21a?3y或x??y 当x??a2?3a?1?0,a?0 ?a??20 / 26精品文档a42a?1,a?21a21??,?a???2,32?2,7a??2?b?3?c?2??0?4、解:由题设有?,可解得a,2,b??3,c,,222?2?a??3?b?c?4?0??1111? ?,,2?3?2?3,?a?bb?c2?32?3??5、分析:题用化整法;题用换元法;分别设y?但去分母会使方程两边次数太高,仔细观察可发现2x?舍去); x1,0,x2,1,x3?x1?1?623?21 / 26精品文档212x?1x?12,y?x?1x2,解后勿忘检验。