水电站-蜗壳
- 格式:ppt
- 大小:3.79 MB
- 文档页数:29
水电站蜗壳层混凝土施工要点一、引言水电站蜗壳是水轮机的关键组成部分,蜗壳层混凝土施工质量直接影响水轮机的稳定运行和发电效率。
在进行蜗壳层混凝土施工时,需要严格按照技术规范和施工要点进行操作,确保混凝土浇筑质量,提高工程的安全可靠性和稳定性。
二、蜗壳层混凝土施工要点1. 材料准备(1)水泥:应选择优质普通水泥或矿渣水泥,并按照规定比例进行配合。
(2)砂石:砂石应选用坚硬、清洁的天然骨料,应经过筛分和洗净。
(3)混凝土外加剂:在施工过程中可以适量添加外加剂,以提高混凝土的性能。
(4)水:选用清洁的饮用水,并确保水质符合规定标准。
2. 模板安装(1)模板应符合设计要求,表面应平整、光滑、无损伤和砂眼。
(2)模板的安装应牢固可靠,确保不会因为混凝土的浇筑而移位或变形。
3. 混凝土配合比(1)混凝土的配合比应按照设计要求进行配制,应严格控制水灰比,以保证混凝土的强度和耐久性。
(2)混凝土的搅拌应均匀,搅拌时间应符合规定,以确保混凝土的均匀性和稳定性。
4. 浇筑施工(1)在浇筑混凝土前,应将模板表面用清水湿润,以防止混凝土吸附水分,影响浇筑质量。
(2)在浇筑过程中,应采用振捣方式,确保混凝土充实,并排除气泡和空隙。
(3)在浇筑过程中应控制浇筑速度,避免混凝土分层和偏析现象的发生。
(4)在浇筑完成后,应对混凝土表面进行修整,确保表面平整、光滑。
5. 养护措施(1)混凝土浇筑完成后,应及时进行养护,在养护周期内应避免混凝土表面受到外力撞击和破坏。
(2)养护期内可以采用喷水养护或覆盖养护膜的方式,以保持混凝土表面的湿润。
(3)养护期结束后,应逐渐去除养护层,并保持混凝土表面的湿润,直至混凝土达到设计强度。
6. 质量检验(1)在混凝土浇筑完成后,应对混凝土的强度、密实性、平整度等进行检验,确保混凝土的质量符合规定要求。
(2)对蜗壳层混凝土进行超声波检测等非破坏性检测,以发现可能存在的缺陷和隐患。
7. 安全防护在进行蜗壳层混凝土施工时,应加强安全防护,采取措施确保施工人员和设备的安全。
水电站混凝土蜗壳设计探析摘要:水电站为了提高运行稳定性、增加经济效益,经常会对混凝土蜗壳展开有效设计。
本文将从某水电站的工程概况出发,对其混凝土蜗壳的设计进行分析与探究,希望为相关人员提供一些帮助和建议,更好地设计水电站的蜗壳。
关键词:蜗壳设计;混凝土蜗壳;水电站引言在水轮机中,蜗壳是十分重要的一个过流部件,设计的蜗壳质量高低会对水电机组整体工作效率产生直接影响,并且关系到水电站布置的科学性与合理性,这要求水电站应结合自身实际情况,寻找设计混凝土蜗壳的依据,展开有效的蜗壳设计。
因此,研究设计混凝土蜗壳的策略具有一定现实意义。
一、工程概况某水电站安装了300MW水轮发电混流式机组,共计六台,安装的水轮机高程是128米,水头设计为113米,额定转速为每分钟106r,额定流量是每秒295立方米,额定出力为305MW,直径为6米。
其蜗壳的进口直径是7.3米,甩负荷压力的最大值是1.91兆帕,静水压力最大值为1.39兆帕。
水电站中的一些机组设备通过世界银行进行贷款,借助国际招标工作,最终由相关企业承包并建造。
在该水电站中,水轮发电的机组主要通过下机架进行支承,并将软垫层敷设于钢蜗壳的外部。
所有内水的压力都能被钢蜗壳承担,内水压力的设计值是1.92兆帕,蜗壳混凝土结构仅能够承受楼板、水轮发电机等上部结构产生的重力荷载。
二、水电站机组的荷载按照水电站布置的整体规定,连接机组和引水压力钢管的形式为一管一机。
蜗壳的进口内径是7.1米,压力钢管的直径是7.7米,把连接段设置到钢蜗壳和钢管间。
蜗壳钢板的厚度为20毫米至40毫米,厂房轴线和机组中心线存在11.5度的夹角。
此钢蜗壳具有较为复杂的混凝土结构受力情况与尺寸体型,在设计结构过程中,对围岩的压力、内外水的压力、发电机组的荷载、结构的自重、风罩传递的荷载等基本荷载类型均有涉及,水轮机的总重量是10500千牛,发电机的总重量是18600千牛。
三、设计混凝土蜗壳的混凝土结构在设计时,钢蜗壳断面使用了全埋型圆断面,安装的机组高程为128米,段长是26米,低于124米高程的部分宽23米,高出的部分宽25米。
水电站厂房蜗壳结构静动力分析随着科技的不断进步,水电站建设已经成为国家重点发展的产业之一。
在水电站的建设中,厂房的蜗壳结构静动力分析是一项非常重要的工作,对于水电站的运行和安全具有非常重要的意义。
本文就水电站厂房蜗壳结构静动力分析进行详细的介绍。
1.蜗壳结构的组成水电站厂房的蜗壳结构由壳体、支撑、轴承和润滑系统组成。
其中,壳体是由一系列弯曲的叶片组成的,支撑用以支持转子的重量,轴承用于支持转轴,润滑系统则是为了减少摩擦力和摩擦热。
2.厂房蜗壳结构的静力分析静力分析是水电站厂房蜗壳结构设计的重要环节。
在静力分析中需要考虑的因素包括扭矩、力矩、剪力和弯矩等。
静力分析的目的是确定蜗壳结构在正常工作情况下的状态,以及蜗壳受到外力或内力时的变形范围、承载能力和破坏条件。
3.厂房蜗壳结构的动力分析除了静力分析之外,水电站厂房蜗壳结构还需要进行动力分析。
与静力分析不同的是,动力分析必须考虑蜗壳结构动态载荷和蜗壳结构的固有频率。
在动力分析中,需要确定蜗壳结构的共振频率,以及在这个频率或其附近出现的共振现象。
此外,还需要考虑蜗壳结构受到工作液体流动的影响,因为流体流动会引起厂房的振动和噪音。
4.厂房蜗壳结构分析的方法在水电站厂房蜗壳结构静动力分析过程中,需要使用一些特定的软件和工具。
静力分析可以使用有限元分析软件进行模拟计算。
动力分析则需要使用计算流体力学软件进行计算,并结合实验数据进行分析。
此外,在实际建设过程中,还需要进行一些结构测试,以确保厂房中的蜗壳结构的强度和稳定性。
5.总结在水电站建设中,厂房蜗壳结构静动力分析是非常重要的一项工作。
静力分析旨在确定蜗壳结构在正常工作情况下的状态,动力分析则需要考虑蜗壳结构动态载荷和流体流动对蜗壳结构的影响。
建设者可以使用有限元分析软件和计算流体力学软件进行分析和计算,结合实验数据进行优化。
通过分析蜗壳结构的强度和稳定性,可以确保水电站的运行和安全。
浅谈水电站厂房蜗壳结构静动力随着社会经济的快速发展,电力资源越来越紧缺,一大批水电工程开始陆续建立起来,水电开发不仅为工业和农业生产提供了能源,同时因为燃煤带来的污染等相关问题也得到了缓解,还大大促进了旅游、航运以及水产等相关项目的发展,在水利枢纽中水电站厂房是非常重要的组成部分之一,因此其安全性问题逐渐引起了人们的重视。
1蜗壳结构的埋设方式蜗壳结构在计算过程中往往要与某种蜗壳埋设方式相结合,现阶段我国主要采用的结构形式有三种:第一,将软垫层铺设在钢蜗壳外上部的相应范围内,然后将其外围浇筑混凝土,形成垫层蜗壳;第二,在充水保压的状态下,钢蜗壳外围浇筑了一层混凝土之后形成保压蜗壳;第三,直接将混凝土浇筑在刚蜗壳上,不设置垫层或者充水保压,混凝土和蜗壳共同承载,这样就形成了直埋蜗壳。
通过对国内外大量工程实践的总结分析可以看出,以上三种蜗壳结构形式各有优缺点,目前都有广泛的应用。
笔者认为,充分借助有限元等现代数值分析法,可以基本上解决蜗壳结构静力上存在的强度与变形等相关问题。
2厂房蜗壳动力分析的有关内容蜗壳结构的动力分析并不是利用静力分析的那套理论,必要条件下需要选取厂房整体或者一部分岩石来进行分析。
目前动力分析的研究主要集中在下面几方面:首先,弹性模量、范围选择等垫层参数对厂房整体及蜗壳局部动力特征的影响;其次,在一系列内源激烈作用的影响下,三种埋设方式的厂房蜗壳动力反应特点分析和研究;第三,直埋蜗壳因为流道内压力而引起蜗壳外围混凝土内贯穿性损伤及分裂的存在,对厂房和机组运行稳定性造成的影响等等。
通过大量实践研究发现,蜗壳的埋设方式并不会对厂房及蜗壳整体刚度带来太大的影响,也不会控制機组运行的稳定性。
3水电站厂房蜗壳结构静动力分析的主要问题分析本文以某水电站作为工程背景,针对厂房蜗壳结构展开静动力分析,通过对目前国内外研究情况的总结来看,我们可以通过以下几方面展开深入分析。
3.1垫层材料垫层材料主要应用在压力管道和蜗壳上,目前国内外已经针对其残余变形、疲劳、徐变应力性能等方面进行了较多研究,但是在机组振源、地震等动荷载影响下的动力非线性应力应变关系等方面还未开展研究。
中小型水电站蜗壳混凝土施工技术之我见摘要:蜗壳施工是水电站工程施工里的重要环节,本文以大唐华银巫水公司湖南长寨水电站为例,详细讲解了中小型的水电站在混凝土蜗壳方面的施工技术,在施工技术经验上有很大的借鉴意义。
由于电站厂房二期混凝土具有结构复杂、钢筋密集、温控要求高,以及浇筑难度大等特点。
为了保证混凝土浇筑质量,施工前对混凝土浇筑施工的重点和难点进行了分析,并提出了有针对性的施工方案。
关键词:中小型;水电站;混凝土蜗壳;施工技术中图分类号:tu74 文献标识码:a 文章编号:长寨水电站施工工程由大唐华银巫水公司出资建设,在该水电枢纽施工建成后,主营发电,兼营灌溉、航运。
其蜗壳使用的是立模浇筑混凝土成型的施工技术,下面就讲一讲该水电站的混凝土蜗壳施工技术。
混凝土蜗壳施工工艺分析长寨水电站施工工程采用了2台机组,总装机容量24mw。
在水电站施工方案的制定时,考虑到其对季节性要求很高,避免洪水汛期带来的不良影响,为此,混凝土蜗壳的施工采取预留基坑二期浇筑的方法,放在厂房上下游防洪墙浇筑至一定高度形成了封闭后进行,让2台机组构成流水的工序。
结合施工现场、蜗壳本身形状对蜗壳混凝土进行研究,蜗壳混凝土施工有着以下特点:本部位对质量要求较高,混凝土浇筑要求密实度较好,座环底部要求埋设灌浆系统进行灌浆达到密实要求。
土建施工与机电埋件安装穿插进行施工互相干扰,如基坑里衬、转轮室周围的二期混凝土施工,为满足业主进度需求,混凝土浇筑准备工作(钢筋、模板、止水等安装)与机电安装经常同时进行。
蜗壳混凝土模板为异形模板,制作、安装难度较大。
二期基坑尺寸较小,且本部位钢筋密集,场地紧张。
结合水电站蜗壳的特征,为了以后能够方便地施工,为此在把蜗壳分成了几个部分,先后进行施工,这几个部分有侧壁部分、斜平面和锥体部分、底板部分、顶板部分。
为保证浇筑的连续性,减小蜗壳温度应力影响,需对混凝土进行分层分块,在分层中还应充分考虑蜗壳钢衬结构形状,避免产生小锐角混凝土体、减小混凝土浇筑上升时对蜗壳的浮力,防止蜗壳位置偏差等,施工分层在设计蓝图的基础上进行了优化调整,蜗壳分4层进行浇筑,分层厚度2.5~3.0m。
水电站蜗壳层混凝土施工要点蜗壳层是水电站的重要组成部分,是用来固定和保护发电机组蜗壳的一层混凝土结构。
它承载着巨大的压力和重量,所以在施工过程中需要特别注重一些要点。
1. 施工前期准备在施工前期,需要进行详细的施工计划和工程量的测算。
确定好施工的时间和施工队伍,并组织好相应的施工人员、设备和材料。
还要对施工现场进行勘测和平整,确保施工能够顺利进行。
2. 蜗壳层混凝土浇筑蜗壳层混凝土浇筑是整个施工过程中最重要的环节之一。
在浇筑前,需要先进行模板的搭建和支撑,确保模板的稳固和平整。
然后按照设计要求将混凝土进行配制,并进行适当的加水和搅拌,以确保混凝土的质量。
在浇筑过程中,要注意控制混凝土的浆体流动速度和流动方向,并采取相应的振捣措施,以防止混凝土中产生空洞和麻面,在确保浇筑质量的同时提高浇筑效率。
3. 施工中的细节处理在混凝土浇筑完成后,需要对施工中的细节进行处理。
首先是对混凝土表面进行养护,防止混凝土过早干燥和开裂。
其次是对蜗壳层进行防水处理,以提高其耐久性和防渗性能。
还要对蜗壳层进行表面的光滑处理,以减少水电机组在运行中的阻力,提高发电效率。
4. 安全施工在水电站蜗壳层混凝土施工过程中,安全是最重要的考虑因素之一。
必须建立健全的安全管理体系,严格执行各项安全规章制度。
确保施工现场的人员和设备安全,并采取措施保护周边环境的安全。
水电站蜗壳层混凝土施工要点包括施工前期准备、蜗壳层混凝土浇筑、施工中的细节处理和安全施工。
在施工过程中需要特别注意混凝土的质量和浇筑效果,以及对蜗壳层的防水和光滑处理,以确保水电站的安全性和运行效率。