第七章工业机器人的轨迹规划
- 格式:ppt
- 大小:339.00 KB
- 文档页数:24
工业机器人的轨迹规划和控制S. R. Munasinghe and Masatoshi Nakamura 1.简介工业机器人操作臂被用在各种应用中来实现快速、精确和高质量的生产。
在抓取和放置操作,比如对部分的操作,聚合等,操作臂的末端只执行器必须在工作空间中两个特定的位置之间移动,而它在两者之间的路径却不被关心。
在路径追踪应用中,比如焊接,切削,喷涂等等,末端操作器必须在尽可能保持额定的速度下,在三维空间中遵循特定的轨迹运动。
在后面的事例中,在对末端操作器的速度、节点加速度、轨迹有误等限订的情况下轨迹规划可能会很复杂。
在没有对这些限制进行充分考虑的情况下进行轨迹规划,通常会得到很差的表现,比如轨迹超调,末端操作器偏离给定轨迹,过度的速度波动等。
机器人在笛卡尔轨迹中的急弯处的的表现可能会更加恶化。
到目前为止很多轨迹规划算法己经被提出,从笛卡尔轨迹规划到时间最优轨迹规划。
然而,工业系统无法适应大多数的这些方法,有以下两点原因:(1)这些技术经常需要进行在目前机构中进行硬件的移动,生产过程必须被打断以进行系统重新配置,而这往往需要很长时间。
(2)这些方法中很多通常只考虑到一种约束,而很少关注工业的需求和被请求的实际的约束。
因此,它们很难在工业中实现。
在本文的观点中,我们提出了一种新的轨迹规划算法,考虑到了末端操作器的速度限制,节点加速度限制,应用中的容错度。
这些是在工业应用中实际的约束。
其他工业操作臂中的技术问题是他们的动力学延迟,这导致末端操作臂在轨迹中的拐角处出轨。
为了补救这个问题,我们设计了前向补偿,稍稍改变了拐角处的路径,使得即使在延迟动力学环节存在的情况下依然确保末端操作臂的实际跟踪轨迹。
结合了前向补偿新的轨迹规划算法在控制系统中表现为单一的前向阻塞。
它可以轻松地适应目前的工业操作臂系统,不冒风险,不花费时间重新配置硬件。
轨迹规划算法可以为所有操作臂的节点产生位置,速度和加速度的大体规划。
在大多数工业操作臂中,系统输入是节点的位置数据,这在工业中是作为被给定的数据而广为人知的。
工业机器人运动轨迹规划与优化随着科技的不断发展和工业化水平的提高,工业机器人在各个领域扮演着越来越重要的角色。
工业机器人的运动轨迹规划与优化是一个关键的问题,它直接影响到机器人的运行效率和工作质量。
本文将探讨工业机器人运动轨迹规划与优化的相关概念、方法和技术。
第一部分:概述工业机器人运动轨迹规划与优化是指在给定任务和环境条件下,确定机器人的最佳运动路径,并对路径进行优化,以达到最佳的运行效果和工作品质。
这个问题的复杂性主要体现在以下几个方面:首先,机器人必须在各种不同的工作环境和条件下进行运动,包括狭窄的空间、复杂的障碍物等;其次,机器人需要遵循约束条件,如机器人的自身结构、工作物体的形状等;最后,机器人需要充分考虑运动速度、加速度等因素,以确保运动的平稳性和稳定性。
第二部分:运动轨迹规划的方法在工业机器人运动轨迹规划中,常用的方法包括离线方法和在线方法。
离线方法是指在机器人开始工作之前,提前计算并存储好机器人的运动路径。
这种方法适用于固定的环境和任务,但不能适应环境和任务的变化。
在线方法是指机器人在实际工作过程中根据实时的环境和任务信息进行路径规划和优化。
这种方法具有较好的适应性和灵活性,但计算复杂度较高。
离线方法中常用的算法有A*算法、Dijkstra算法和遗传算法等。
A*算法是一种基于搜索的算法,可以在给定环境和任务条件下计算出最佳路径。
Dijkstra算法是一种基于图的算法,通过计算节点之间的最短路径来确定机器人的运动轨迹。
遗传算法是一种模仿自然选择的优化算法,通过遗传和突变的过程来搜索最优解。
在线方法中常用的算法有RRT算法、PRM算法和优化控制算法等。
RRT算法是一种快速概率采样算法,通过采样机器人运动空间中的随机点并进行树搜索来生成路径。
PRM算法是一种基于图的算法,通过预先构建一个机器人运动空间的图来寻找最佳路径。
优化控制算法是一种基于优化理论的方法,通过对机器人的运动进行优化,以达到最佳效果。
工业机器人的运动规划与轨迹控制研究随着科技的发展和工业自动化的推进,工业机器人在制造业中的应用越来越广泛。
工业机器人的运动规划与轨迹控制是实现机器人高效、精确操作的关键技术。
本文将对工业机器人的运动规划与轨迹控制进行深入研究与分析。
首先,工业机器人的运动规划是指在完成特定任务时,机器人需要根据给定的工作空间、运动要求和约束条件,确定机器人的运动路径和轨迹。
运动规划的目标是实现机器人各关节的角度和位置的规划,使机器人可以精确地到达所需位置,并完成所需动作。
运动规划的主要内容包括运动学分析、驱动器选择、轴向和关节参数规划等。
运动规划的第一步是进行运动学分析,即确定机器人各个关节之间的运动学关系。
这一步需要根据机器人的结构和运动范围,利用逆运动学或前向运动学方法计算机器人各关节的位置和角度。
运动学分析提供了机器人运动的基础数据,为后续的运动规划和轨迹控制提供了必要的信息。
运动规划的第二步是进行驱动器选择,即选取适合机器人运动的驱动器。
驱动器的选择需要考虑到机器人的负载、速度、精度等因素。
常见的驱动器包括伺服电机、步进电机等。
根据机器人的需求,选择合适的驱动器可以提高机器人的运动效率和精度。
运动规划的第三步是进行轴向和关节参数规划,即根据机器人的结构和运动要求,确定各个关节的参数。
这些参数包括关节的初始位置、极限位置、速度限制等。
通过合理规划关节的参数,可以保证机器人在运动过程中的稳定性和安全性。
与运动规划相对应的是机器人的轨迹控制,即控制机器人按照确定的路径和轨迹进行运动。
轨迹控制的目标是实现机器人在不同工作阶段的平滑过渡和准确控制。
轨迹控制的主要内容包括速度规划、加速度规划、路径跟踪等。
速度规划是指根据机器人的位置、速度和加速度等参数,确定机器人在运动过程中的速度曲线。
速度规划需要考虑到机器人的动力学特性、工作空间和任务需求等因素,以实现机器人的高效运动。
加速度规划是指根据机器人的运动要求,确定机器人在运动过程中的加速度变化规律。
工业机器人的运动规划与控制近年来,随着科技的不断发展和智能制造的兴起,工业机器人在生产和制造领域中扮演着越来越重要的角色。
工业机器人的运动规划与控制是保证机器人高效运行和实现精确操作的关键技术。
本文将探讨工业机器人的运动规划与控制的基本理论和方法。
一、工业机器人的运动规划工业机器人的运动规划是指通过合理的路径和轨迹规划,使机器人能够以最短的时间、最小的能耗和最高的精度完成指定的任务。
运动规划的关键问题是如何确定机器人的轨迹和路径,以提高运动的效率和精度。
1. 轨迹规划轨迹规划是指在给定的工作空间中确定机器人的末端执行器的路径。
常用的轨迹规划方法包括插补法、优化算法和仿真算法等。
插补法是最常用的轨迹规划方法之一,通过对给定的起始点和目标点进行插补计算,确定机器人末端执行器的轨迹。
常用的插补方法有线性插补、圆弧插补和样条插补等。
优化算法是通过建立数学模型,通过求解最优化问题来确定机器人的轨迹。
常用的优化算法有遗传算法、模拟退火算法和蚁群算法等。
仿真算法是利用计算机模拟机器人在特定环境下的运动过程,通过不断调整参数来寻找最优的轨迹。
2. 路径规划路径规划是指确定机器人从起始点到目标点的最佳路径。
常用的路径规划方法包括基于图搜索的方法、基于规划器的方法和最优控制方法等。
基于图搜索的方法是将工作空间划分为网格,通过搜索算法(如A*算法和Dijkstra算法)确定起始点到目标点的最佳路径。
基于规划器的方法是通过构建规划器,对工作空间进行可行性分析,并通过规划器的引导确定机器人的路径。
最优控制方法是通过数学模型和控制理论,通过求解最优控制问题来确定机器人的路径。
二、工业机器人的运动控制工业机器人的运动控制是指在给定的运动规划基础上,通过控制算法和控制器,实现机器人的运动控制和动作执行。
1. 运动控制算法运动控制算法是实现机器人运动控制的核心技术。
常用的运动控制算法包括PID控制算法、模糊控制算法和神经网络控制算法等。
工业机器人中的路径规划与轨迹控制技术分析工业机器人在现代制造业中起着至关重要的作用,它能够自动完成重复性、高精度和高效率的任务。
工业机器人的核心功能之一就是路径规划与轨迹控制。
本文将对工业机器人中的路径规划与轨迹控制技术进行详细分析。
一、路径规划技术路径规划是指确定机器人从起始位置到目标位置的最佳路径的过程。
在工业机器人中,路径规划技术的目标是使机器人能够以最短的时间和最小的代价到达目标位置。
在路径规划过程中,需要解决以下几个关键问题:1.1 环境建模在路径规划过程中,首先需要对机器人所处的环境进行建模。
这包括利用传感器获取环境中的障碍物信息,并将其转化为机器人可理解的形式,例如地图、网格或点云等。
通过对环境进行建模,可以使机器人能够感知并避开障碍物,确保路径安全。
1.2 路径搜索算法路径搜索算法是路径规划的核心算法,其目标是在环境模型中找到一条最佳路径。
常用的路径搜索算法包括A*算法、Dijkstra算法和RRT算法等。
这些算法使用启发式搜索方法,根据机器人的起始位置、目标位置和环境信息,逐步搜索可能的路径,并根据启发函数评估路径的优劣。
1.3 优化策略在找到一条可行路径后,还需要对其进行优化,以满足特定的性能要求。
例如,可以通过优化路径长度、时间和能源消耗等来提高机器人的效率。
优化策略可以基于路径搜索算法的结果进行进一步的优化,或者使用全局规划算法来寻找更优的解。
二、轨迹控制技术轨迹控制是指控制机器人在路径上的运动,使其按照预定的轨迹精确运动。
在工业机器人中,轨迹控制技术的目标是实现高精度和高稳定性的运动控制。
以下是常用的轨迹控制技术:2.1 PID控制PID控制是一种简单而常用的控制方法,它通过不断调节系统的输出来使系统的反馈信号与期望值尽可能接近。
在轨迹控制中,PID控制可以被用来控制机器人的位置、速度和加速度等。
通过调节PID参数,可以实现较高的运动精度和稳定性。
2.2 路径跟踪控制路径跟踪控制是一种更高级的控制方法,其目标是使机器人按照给定的路径进行精确跟踪。
工业机器人运动轨迹规划技术随着工业生产的快速发展和机器人技术的逐渐成熟,工业机器人已经成为了现代工厂中不可缺少的一部分。
然而,随着机器人数量的增加和任务复杂度的提高,工业机器人运动轨迹规划技术也日益发展。
本文将介绍工业机器人运动轨迹规划技术及其发展趋势。
一、运动轨迹规划的意义在工业生产中,机器人的运动轨迹规划是非常重要的,其主要目的是为了保证机器人能够高效、准确地完成任务。
而规划运动轨迹能够直接影响工业机器人的运动性能,包括速度、加速度、精度、稳定性等。
所以,一个好的运动轨迹规划方案不仅能够使机器人完成任务,而且能够保证机器人的安全和可靠性。
二、基本运动轨迹规划方法1.位姿规划方法位姿规划方法是运动轨迹规划的最基本方法,其主要是为机器人规划出一串位置坐标点,然后机器人按照这些位置点依次移动,从而完成任务。
一般情况下,位姿规划是采用数学模型计算得出的,主要是采用正运动学和逆运动学方法。
2.时间规划方法时间规划方法主要是为机器人规划出一段时间内应该完成的运动,一般是确定机器人在每一个时间点的位置、方向和速度等信息。
时间规划方法是在位姿规划的基础上进一步计算的,它可以有效地控制机器人的运动速度和加速度,同时也能够保证机器人的精度和稳定性。
3.优化规划方法优化规划方法是一种基于最优化算法的运动轨迹规划方法,主要是为了解决复杂任务中的多目标、多约束优化问题。
尽管优化规划方法计算量大,但在大规模复杂任务中具有非常重要的作用。
三、轨迹规划技术的发展趋势1.深度学习技术的应用人工智能和深度学习技术的快速发展将为运动轨迹规划技术带来非常大的变化。
深度学习带来的主要优势是可以处理非常大的数据量,从而可以识别出更加复杂的模式,进而提高机器人的运动性能。
2.仿真技术的发展随着工业基础设施的升级和运算能力的提高,仿真技术日趋成熟,其在工业机器人的运动轨迹规划中发挥着越来越重要的作用。
仿真技术可以模拟现实环境中的场景,并为机器人规划出最佳的运动轨迹,从而降低机器人的开发成本和风险。
工业机器人时间最优轨迹规划工业机器人时间最优轨迹规划随着工业自动化的发展,工业机器人在生产和制造过程中起到了越来越重要的作用。
然而,如何使工业机器人在完成任务的同时,能够在最短的时间内完成轨迹规划,成为了一个关键的挑战。
本文将探讨工业机器人时间最优轨迹规划的方法和技术,以期提高生产效率和质量。
在工业生产中,工业机器人通常会执行一系列复杂的动作和任务。
在规划机器人的轨迹时,一个重要的考虑因素是时间。
时间的优化可以大大提高机器人的生产效率,并减少生产成本。
因此,时间最优轨迹规划成为了提高工业机器人性能的重要手段。
时间最优轨迹规划的基本思想是使机器人在执行任务时,经过的路径尽量短且路径之间的切换时间最小。
这样一来,机器人能够在最短的时间内完成任务,并且可以更好地满足生产的需求。
为了实现时间最优轨迹规划,以下几个步骤是必不可少的。
首先,需要对机器人的任务和环境进行建模和描述。
这包括机器人的初始位置、目标位置、工作区域等。
通过建模和描述,可以对机器人的任务进行更加深入的分析和理解。
其次,需要对机器人的运动进行建模和描述。
在这个步骤中,可以考虑机器人的动力学、运动学以及约束条件等。
通过建模和描述,可以对机器人的运动进行更加精细的分析和规划。
接下来,需要选择合适的路径规划算法。
路径规划算法是对机器人的运动进行规划的核心。
常用的路径规划算法有A*算法、Dijkstra算法、RRT算法等。
这些算法可以根据机器人的运动模型和约束条件,生成时间最优的轨迹。
然后,需要进行路径规划的优化。
在实际应用中,路径规划往往需要考虑一些额外的约束条件,如避障、不可碰撞等。
通过对路径规划进行优化,可以更加准确地满足这些约束条件,并生成更加合理的时间最优轨迹。
最后,需要对生成的时间最优轨迹进行验证和评估。
通过验证和评估,可以判断生成的时间最优轨迹是否符合预期的要求,并对轨迹进行进一步的调整和优化。
总的来说,工业机器人时间最优轨迹规划是一个复杂而重要的问题。