纳滤(NF)
- 格式:ppt
- 大小:1.29 MB
- 文档页数:56
nf膜脱盐率
摘要:
1.NF 膜脱盐率的概念
2.NF 膜脱盐率的影响因素
3.NF 膜脱盐率的提高方法
4.NF 膜脱盐率的应用领域
正文:
一、NF 膜脱盐率的概念
F 膜,即纳滤膜,是一种介于反渗透膜和超滤膜之间的膜分离技术。
NF 膜脱盐率,是指纳滤膜对水中溶解盐分的去除能力,通常用来衡量纳滤膜的过滤效果。
二、NF 膜脱盐率的影响因素
1.膜的材质:不同的膜材质对脱盐率有直接影响,一般来说,聚合物膜的脱盐率较高,陶瓷膜的脱盐率较低。
2.膜的孔径:膜的孔径大小对脱盐率有直接影响,孔径越小,脱盐率越高。
3.膜的表面电荷:膜的表面电荷对脱盐率有影响,通常来说,负电荷的膜对阴离子的去除效果较好,正电荷的膜对阳离子的去除效果较好。
4.操作条件:如压力、温度、流速等也会影响NF 膜脱盐率。
三、NF 膜脱盐率的提高方法
1.选择合适的膜材料和孔径:根据实际需要选择合适的膜材料和孔径,以
达到最佳的脱盐效果。
2.调整膜的表面电荷:通过调整膜的表面电荷,增强对离子的去除效果。
3.优化操作条件:通过调整操作条件,如提高压力、降低温度等,以提高脱盐率。
四、NF 膜脱盐率的应用领域
F 膜脱盐率广泛应用于水处理、食品工业、饮料工业、医药工业等领域。
例如,在水处理中,NF 膜脱盐率可以用来去除水中的溶解盐分,从而达到淡化海水、净化水质的目的。
在食品工业中,NF 膜脱盐率可以用来去除果汁中的糖分,制备低糖果汁。
纳滤膜(NF)设备一、纳滤膜的基本性能近年来,纳滤膜(NF)由于其分离范围广,在城市市政水处理的应用中得到了重视,这是因为纳滤膜不仅可以在低压下对原水软化和适度脱盐,而且因为可脱除三卤甲烷(THM)色度、细菌、病毒和溶解性有机物,因而日益受到青睐。
1.纳滤(NF)膜介于反渗透(RO)膜与超滤(UF)膜之间,反渗透(RO)几乎对所有的溶质都有很高的脱盐率,但纳滤(NF)膜只对特定的溶质具有高脱盐率,如能透过一价离子的20%~80%,能脱除二价离子和多价离子90%~99%,当只需部分脱盐时,纳滤是一种代替反渗透的有效方法。
2.纳滤(NF)膜主要去除直径为1mm左右溶质离子,截留分子量大约为200以上,排除能力为90%~99%,在饮用水领域,主要用于脱除三卤甲烷中间体、异味、农药、色度、合成药剂、可溶性有机物、Ca、Mg等硬度成分及蒸发残留物质。
纳滤(NF)膜的一个很大的特征是膜本体带有不同的电荷,这是它在很低压力下仍具有较高脱盐性能和截留分子量达数百的重要原因。
二、纳滤膜的特点1.在分离过程中,它能截留水中的有机物,实现高分子量与低分子量(200~1000MW)的有机物分离,并同时透析盐,即集浓缩与透析为一体。
2.应用于水中的单价盐,不需高脱盐率,可实现不同价态离子的分离。
3.由于无机盐能通过纳滤膜而透析,使得纳滤过程的反渗透压力远比反渗透过程的低可实现低压力操作,节约动力。
三、纳滤膜(NF)的应用1.软化水处理对于大多数溶解固体低于2000mg/l的水,纳滤膜可在70~100psi的压力下生产饮用水。
而低压反渗透膜要在200psi下操作才能生产出较高质量的渗透水。
2.饮用水有害物质的脱除传统的饮用水处理主要通过絮凝、沉降、砂滤和加氯消毒来去除水中的悬浊物和细菌,而对各种溶解性化学物质的脱除作用很低。
而纳滤膜由于本身的性能特点,可脱除河水及地下水中含有的三卤甲烷中间体THM(加氯消毒时的副产物为致癌物质)、低分子有机物、家药、异味物质、硝酸盐、氟、硼、砷等有害物质,因此纳滤十分适于饮用水领域。
超滤、钠滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。
是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。
是矿泉水、山泉水生产工艺中的核心部件。
超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。
超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。
因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理围,更全面地消除水中的污染物质。
2、钠滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。
也就是说用钠滤膜制水的过程中,一定会浪费将近30%的自来水。
这是一般家庭不能接受的。
一般用于工业纯水制造。
3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。
可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。
也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。
这是一般家庭不能接受的。
一般用于纯净水、工业超纯水、医药超纯水的制造。
反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。
4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,瓷滤芯等都属于微滤畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。
滤芯通常不能清洗,为一次性过滤材料,需要经常更换。
① PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。
②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。
③瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。
纳滤膜的工作原理及特点纳滤(NF)是20世纪80年代后期发展起来的一种介于反渗透和超滤之间的新型膜分离技术,早期称为“低压反渗透”或“疏松反渗透”,是为了适应工业软化水的需求及降低成本而发展起来的一种新型的压力驱动型膜过程。
工作原理:纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜,而截留大分子物质的一种液液分离方法,又称低压反渗透。
纳滤膜截留分子量范围为200-1000MWCO,介于超滤和反渗透之间,主要应用于溶液中大分子物质的浓缩和纯化。
1、料液具有足够的流速可将被膜截留的物质从膜表面剥离,连续不断的剥离降低了膜的污染程度,因而可在较长的时间内维持较高的膜渗透通量。
2、纳滤系统多采用错流过滤的方式。
错流方式避免了在死端过滤过程中产生的堵塞现象:料液流经膜的表面,在压力的作用下液体及小分子物质透过纳滤膜,而不溶性物质和大分子物质则被截留。
3、错流过程同时避免了在死端过滤(如板框压滤机、鼓式真空过滤机)过程中依靠滤饼层进行过滤的情况,分离发生在膜表面而不是滤饼层中,因而滤液质量在整个过程中是均一而稳定的。
滤液的质量取决于膜本身,使生产过程完全处于有效的控制之中。
纳滤膜的特点1、纳滤膜的电荷效应荷电效应是指离子与膜所带电荷的静电相互作用。
大多数纳滤膜的表面带有负电荷,他们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在较低压力下仍具有较高脱盐性能的重要原因。
2、对不同价态的离职截留效果不同对二价和高价离子的截留率明显高于单价离子。
对阴离子的截留率按下列顺序递增:NO3-、CI-、OH-、SO42-、CO32-;对阳离子的截留率按下列顺序递增:H+、Na+、K+、Mg2+、Ca2+、Cu2+。
3、对离子的截留离子半径的影响在分离同种离子时,离子价数相等时,离子半径越小,膜对该离子的截留率越小,离子价数越大,膜对该离子的截留率越高。
4、适合有机物和无机物的浓缩和分离截留相对分子质量在200-1000之间,适用于无机物和有机物的分离。
NF和RO膜系统培训手册1、NF/RO膜简介(1)纳滤NF:纳滤介于反渗透膜和超滤膜之间,约150~1000道尔顿。
此外,由于其表面分离层由聚电解质所构成,故对不同价态的粒子存在Donnan效应,对无机盐有一定截留率,约40~90%。
纳滤对二价离子的截留率比对一价的高,在渗滤液中优先脱色。
(2)NF的作用:主要是去除超滤单元不能去除的不可降解有机物、部分总氮、色度、二价离子等。
(3)反渗透RO:反渗透是最精密的膜法液体分离技术,它能阻挡所有溶解性盐及分子量大于100的有机物,但允许水分子透过,脱盐率一般大于98%。
它们广泛用于海水及苦咸水淡化,锅炉给水、工业纯水及电子级超纯水制备,饮用纯净水生产,废水处理及特种分离等过程。
(4)RO的作用:实际运行过程中若原水的C/N比不能满足去除总氮的要求,外加碳源有没有及时供给时,因硝酸盐氮的影响NF出水总氮就不能达标,这时需要有一最后把关单元,一般采用RO处理单元,RO单元可保证出水总氮、COD等全部指标达标。
2、NF/RO膜过滤机理纳滤、反渗透膜具有以下三种特别的机能。
(1)过滤机能:半透膜中有众多的微孔以便水分子通过。
这些微孔的直径为0.0005微米,与水分子的直径相当。
最小的细菌和病毒的直径分别是0.2和0.02微米。
杀虫剂666的直径约为0.0015微米。
因而,这些污染物和其它生物污染物以及众多的有机污染物均不能通过此半透膜,而与纯水分离。
盐类在水中是以水合离子形式存在的,而这些水合离子的体积一般比水分子大10-25倍,因此,除了以上提及的电排斥机能外,膜也可以通过滤机能除去溶解的盐类。
(2)自我清洗机能:一般的滤水器在除去污染物的同时,也将这些污染物留在了滤水器中。
在此后过滤的水都要经过这些污染物,从而对水产生再次污染。
同时,细菌也会在滤水器中繁殖,水产生微生物再污染。
与此不同,半透膜在净水过程中将污染物全部留在被排除的浓水中,以实现自我清洗机能。
纳滤技术简介及水处理中的应用纳滤技术简介及水处理中的应用一、纳滤技术简介纳滤(NF)是20世纪80年代后期发展起来的一种介于反渗透和超滤之间的新型膜分离技术。
纳滤膜的截留相对分子质量为200~1000,膜孔径约为1nm,适宜分离大小约为1nm 的溶解组分,故称为"纳滤"。
纳滤的操作压力通常为0.5~1.0 MPa,一般比反渗透低0.5~3 MPa,并且由于其对料液中无机盐的分离性能,因此纳滤又被称为"疏松反渗透"或"低压反渗透"。
纳滤技术是为了适应工业软化水及降低成本的需要而发展起来的一种新型的压力驱动膜过滤。
纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效地截留二价及高价离子和相对分于质量高于200 的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分子量和低分子量有机物的分离,且成本比传统工艺低,因而被广泛应用于超纯水的制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。
纳滤膜的一个显著特征是膜表面或膜中存在带电基团,因此纳滤膜分离具有两个特性,即筛分效应和电荷效应。
分子量大于膜的截留分子量的物质,将被膜截留,反之则透过,这就是膜的筛分效应。
膜的电荷效应又称为Donnan 效应,是指离子与膜所带电荷的静电相互作用。
对不带电荷的分子的过滤主要是靠筛分效应。
利用筛分效应可以将不同分子量的物质分离; 而对带有电荷的物质的过滤主要是靠荷电效应。
纳滤与超滤、反渗透一样,均是以压力差为驱动力的膜过程,但其传质机理有所不同。
一般认为,超滤膜由于孔径较大,传质过程主要为筛分效应; 反渗透膜属于无孔膜,其传质过程为溶解—扩散过程(静电效应);纳滤膜存在纳米级微孔,且大部分荷负电,对无机盐的分离行为不仅受化学势控制,同时也受电势梯度的影响。
对于纯电解质溶液,同性离子会被带电的膜活性层所排斥,而如果同性离子为多价,则截留率会更高。