北师大版九年级数学上册教学设计(教案):第五章《反比例函数》回顾与思考
- 格式:doc
- 大小:106.00 KB
- 文档页数:7
2019-2020学年九年级数学上册第五章反比例函数复习教案北师大版总课时: 3 课时第5课时回顾与思考1、教学目标:1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念.2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.3.会从函数图象中获取信息,解决实际问题.2、过程与方法:1.经历抽象反比例函数概念的过程理解反比例函数的概念进一步培养学生的抽象思维能力.2.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和能力.3.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能利用图象解决实际问题.3、情感态度与价值观:通过本章内容的回顾与思考,培养学生的归纳、整理等能力;能利用反比例函数的性质及图象解决实际问题,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力.教学重点:本章知识的网络结构.反比例函数的概念.会画反比例函数的图象,并掌握其性质.反比例函数的应用.教学难点:探索反比例函数的主要性质.反比例函数的应用.教 学 过 程:第一环节:通过提问,引入复习课活动目的 给学生设置疑问,明确学习任务,激发学生学习兴趣。
活动过程:本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容? 第二环节:重点知识回顾,形成本章知识结构图活动目的:引导学生对本章的基础知识进行归纳、总结,使学生明确各个知识点之间的联系, “串珠为链”, 做到基础知识网络化。
活动过程:(一)本章知识结构带领学生一齐构造本章内容结构图。
(也可以给学生时间让学生自己构造,然后出示投影片)本章内容框架活动效果:绝大部分学生可以根据以上内容框架,用自己的语言归纳总结本章内容. (二)说说函数y =x 2和y =-x2的图象的联系和区别.联系:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交;(3)它们都不过原点,既是中心对称图形,又是轴对称图形. 区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一和第三象限;y=-x2的两支曲线在第二和第四象限. (2)y =x 2的图象在每个象限内,y 随x 的增大而减小:y=-x2的图象在每个象限内,y 随x 的增大而增大.还有一点.虽然y =x 2和y=-x2的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2. (三)画反比例函数图象的步骤,讨论反比例函数图象的性质画图象的步骤有列表,描点,连线.在画反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.反比例函数图象的性质有:1.反比例函数的图象是两支双曲线,当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.3.因为在y=xk(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.第三环节:经典例题及练习,巩固新知活动目的:使学生利用自己所学的基础知识和基本方法能够熟练的解决问题,提高学生分析问题、解决问题的能力。
北师大版实验教材《数学》九年级上册第五章第二节y = 反比例函数 的图象与性质xy0 1 6 x课题《反比例函数的图象与性质》授课教师:教材:北师大版实验教材《数学》九年级上册第五章第二节【教材地位】本节课是在介绍了反函数的概念后的一节,是进一步对反函数的图象性质的探索和认识。
【学生情况】学生在七年级和八年级对函数的变化关系有了较为丰富的体验和感受,也具备了一定的探索能力和归纳能力。
【教学目的】1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。
2、能力目标:提高学生的观察、分析能力和对图形的感知水平。
3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。
【教学重点】探索反比例函数图象的主要性质及其图像形状。
【教学难点】1、准确画出反比例函数的图象。
2、准确掌握并能运用反比例函数图象的性质。
【教学方法】1、教法:师生互动,引导发现2、学法:自主探究,合作交流【教学思路】复习引入――――引发认知冲突探究新知(认识反比例函数图像)-―――――――探索图象性质――――应用提高【教学过程】一、复习引入1、提问:让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。
(列表、描点、连线),对照图象回忆一次函数的性质。
(要求完整地表达出性质)2、让学生仿照画一次函数的方法画反比例函数y =x4的图像并观察图像的特点。
(三名学生上台板演,其他学生在下面画,在作此步骤时,学生可能会出现画成直线、折线、单曲线.....等情形,这时正好针对问题鼓励学生间互相讨论相互比较,共同取得正确的图像。
以下是学生在作图过程中可能出现的几种情况)二、探索性质1、观察我们所画出的xy 4=的图象回答下列问题 (1)函数的图象分别位于哪几个象限内?(2)在每一个象限内,随着x 值的增大,y 的值是怎样变化的?能说明这是为什么吗?(三种方式来说明:①通过图像观察,,②也可采用数据代入求值得到函数的增减性,③可通过对式子的分析。
北师大版数学九年级上册《反比例函数》教案《北师大版数学九年级上册《反比例函数》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标1.从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解.2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念.3.体会数学从实践中来又到实际中去的研究、应用过程.培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重难点【教学重点】理解和领会反比例函数的概念.【教学难点】领悟反比例函数的概念.教学方法小组合作、探究式教学过程(一)创设情境,引入新课你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?(二)互动探究,学习新课我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?;(2)利用你写出的关系式完成下表:学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?(3)变量I是R的函数吗?为什么?我们通过控制电阻的变化来实现舞台灯光的效果.在电压一定时,当R变大时,电流I变小,灯光就变暗,相反,当R变小时,电流I变大,灯光变亮.引导学生看课本例子,京沪高速铁路全长约为1318km,列车沿京沪高速铁路从上海驶往北京,列车行完成全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?(三)学生分组交流讨论提示学生:数学来源于生活,请同学在生活中找出类似的例子.分组交流讨论,并完成资料的讨论部分。
我们再看例子:两个变量x和y的乘积等于-6,用函数关系式表示出来是,思考:变量x和y之间的关系是什么?提出问题:①变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数.②如何给反比例函数下定义?教师总结并和学生一起探索出反比例函数的概念:一般地,如果两个变量x,y之间的关系可以表示成:(k为常数,k≠0)的形式,那么称y是x的反比例函数.强调在理解概念时要注意:①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当写成时注意x的指数为—1.④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了.(四)例题讲解探究点一:反比例函数的概念【类型一】辨别反比例函数在下列函数表达式中,哪些函数表示y是x的反比例函数?(1)y=5x; (2)y=x3; (3)y=3x2;(4)xy=21; (5)y=x-12; (6)y=-x2;(7)y=2x-1; (8)y=xa-5(a≠5,a是常数).解析:根据反比例函数的概念,必须是形如y=xk(k是常数,k≠0)的函数,才是反比例函数.如(2)(3)(6)(8)均符合这一概念的要求,所以它们都是反比例函数.但还要注意y=xk(k是常数,且k≠0)的一些常见的变化形式,如xy=k,y=kx-1等,所以(4)(7)也是反比例函数.在(5)中,y是(x-1)的反比例函数,而不是x的反比例函数.(1)中的y是x的正比例函数.解:(2)(3)(4)(6)(7)(8)表示y是x的反比例函数.方法总结:判断一个函数是否是反比例函数,关键看它能否写成y=xk(k是常数,k≠0)或xy=k(k≠0)或y=kx-1(k≠0)这样的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就成反比例关系;否则便不成反比例关系.【类型二】根据反比例函数的概念求值若y=(k2+k)xk2-2k-1是反比例函数,试求(k-3)2015的值.解:根据反比例函数的概念,得k2+k≠0.k2-2k-1=-1,所以k≠0且k≠-1.k=0或k=2,即k=2.因此(k-3)2015=(2-3)2015=-1.易错提醒:反比例函数表达式的一般形式y=xk(k是常数,k≠0)也可以写成y=kx-1(k≠0),利用反比例函数的定义求字母参数的值时,一定要注意y=xk中k≠0这一条件,不能忽略,否则易造成错误.探究点二:确定反比例函数的表达式【类型一】用待定系数法求反比例函数的表达式已知y是x的反比例函数,当x=-4时,y=3.(1)写出y与x之间的函数表达式;(2)当x=-2时,求y的值;(3)当y=12时,求x的值.解:(1)设y=xk(k≠0),∵当x=-4时,y=3,∴3=-4k,解得k=-12.因此,y和x之间的函数表达式为y=-x12;(2)把x=-2代入y=-x12,得y=--212=6;(3)把y=12代入y=-x12,得12=-x12,x=-1.方法总结:(1)求反比例函数表达式时常用待定系数法,先设其表达式为y=xk(k≠0),然后再求出k值;(2)当反比例函数的表达式y=xk(k≠0)确定以后,已知x(或y)的值,将其代入表达式中即可求得相应的y(或x)的值.【类型二】用待定系数法求有反比例关系的函数的表达式已知y与x-1成反比例,当x=2时,y=4.(1)用含有x的代数式表示y;(2)当x=3时,求y的值.解:(1)设y=x-1k(k≠0),因为当x=2时,y=4,所以4=2-1k,解得k=4.所以y与x的函数表达式是y=x-14;(2)当x=3时,y=3-14=2.易错提醒:题中y与x-1成反比例,而y与x不成反比例,防止出现设y=xk(k≠0)的错误.探究点三:建立反比例函数的模型已知一个长方体水箱的体积为1000立方厘米,它的长是y厘米(y>25),宽是25厘米,高是x厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围.解:(1)根据题意,可得y=25x1000,化简得y=x40;(2)根据题设可知自变量x的取值范围为0方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.(五)课堂练习I、学生完成课本的做一做1-3题:1、一个矩形的面积为20,相邻的两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3、y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据表达式完成上表.教师巡视个别辅导,学生完毕教师给予评估肯定.II巩固练习:限时完成课本“随堂练习”1-2题.教师并给予指导.(六)课堂总结(结合板书小结)今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成(k 为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当可写为时注意x的指数为—1.④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了.(七)布置作业(八)板书设计北师大版数学九年级上册《反比例函数》教案这篇文章共8011字。
《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。
《反比例函数》教案一、本章知识网络图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧反比例函数与实际问题三角形矩形问题反比例函数与面积有关对称性增减性位置形状图象和性质定义及表示形式二、知识点及考点: (一)反比例函数的概念: 知识要点:1、一般地,形如 y = x k( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式:(A )y = x k(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx-1(k ≠0)例题讲解:有关反比例函数的解析式(1)下列函数,① 1)2(=+y x ②.11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x =;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2(3)若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x =≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
北师大版数学九年级上册5.1《反比例函数》教学设计一. 教材分析《反比例函数》是北师大版数学九年级上册第五章第一节的内容。
本节内容是在学生已经掌握了函数概念和正比例函数的基础上,引出反比例函数的概念,让学生进一步理解函数的本质,体会数学与实际生活的联系。
本节内容对于学生来说比较抽象,但是通过生活中的实例,可以让学生更好地理解反比例函数的概念和性质。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质已经有了初步的了解。
但是反比例函数的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,我将会结合生活中的实例,让学生更好地理解反比例函数的概念和性质。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.如何运用反比例函数解决实际问题。
五. 教学方法1.实例导入:通过生活中的实例,引导学生思考反比例函数的概念。
2.小组讨论:让学生通过小组讨论,共同探究反比例函数的性质。
3.练习巩固:通过大量的练习题,让学生巩固反比例函数的知识。
4.实际应用:让学生运用反比例函数解决实际问题,感受数学与生活的联系。
六. 教学准备1.PPT课件:制作反比例函数的教学课件,包括生活中的实例、反比例函数的性质等内容。
2.练习题:准备一些关于反比例函数的练习题,用于课堂练习和巩固知识。
3.教学视频:准备一些关于反比例函数的教学视频,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如商场打折,引导学生思考反比例函数的概念。
2.呈现(10分钟)通过PPT课件,呈现反比例函数的性质,让学生初步了解反比例函数的特点。
3.操练(10分钟)让学生通过小组讨论,共同探究反比例函数的性质。
期间,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生解答一些关于反比例函数的练习题,巩固所学知识。
北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。
二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。
三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。
四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。
教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。
五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。
第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。
第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。
第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。
六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。
七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。
同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。
在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。
2反比率函数的图象与性质第 1 课时反比率函数的图象与性质 (1)课标要求【知识与技术】1.会用描点法画反比率函数图象; 2.理解反比率函数的性质.【过程与方法】经过察看反比率函数图象,剖析和研究反比率函数的性质.【感情态度】在着手绘图的过程中领会乐趣,养成勤于着手,乐于研究的习惯.【教课要点】画反比率函数的图象,理解反比率函数的性质.【教课难点】理解反比率函数的性质,并能灵巧应用.一、情境导入,初步认识1.一次函数 y= kx+b(k、b 是常数,k≠ 0)的图象是什么形状?其性质有哪些?62.反比率函数 y=x的图象会是什么形状呢?请大家猜猜看,我们能够采纳什么方法画?二、思虑研究,获得新知61.教师先指引学生思虑,示范画出反比率函数y=x的图象,再让学生试试6画出反比率函数y=-x的图象.2.在作图过程中,启迪学生类比画一次函数的图象的过程;研究反比率函数的图象作图步骤:①列表;② 描点;③连线.663.比较 y=x与 y=-x的图象,它们有什么共同特点?它们之间有什么关系?66334.察看函数 y=x和 y=-x以及 y=x和 y=-x的图象. [根源 :](1)你能发现它们的共同特点以及不一样点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内, y 随 x 的变化如何变化?【教课说明】学生小组议论,察看思虑后进行剖析、概括,获得反比率函数的性质.【概括结论】k反比率函数 y=x(k 为常数, k 不为零 )的图象是一种双曲线;当k >0 时,双曲线的两支分别位于第一、三象限,当k < 0 时,双曲线的两支分别位于第二、四象限.三、运用新知,深入理解[ 根源 :Z*xx*]1.假如函数 y=2x k+1的图象是双曲线,那么k= __-2__.k2.假如点 (1,- 2)在双曲线 y=x上,那么该双曲线在第 __二、四 __象限.k- 33.假如反比率函数y=x的图象位于第二、四象限内,那么知足条件的正整数 k 的值是 __1, 2__.-14.反比率函数 y=x的图象大概是图中的 ( D )5.以下反比率函数图象必定在第一、三象限的是( C )m m+1A.y=x B.y=xm2+ 1mC.y=x D.y=-xkb 6.已知直线 y=kx+b 的图象经过第一、二、四象限,则函数y=x的图象在第 __二、四 __象限.3b- k7.已知一次函数 y= kx+b 与反比率函数 y=的图象交于点(-1,-1),x1则此一次函数的关系式为__y=2x+1__,反比率函数的关系式为__y=x__.128.作出反比率函数y=x的图象,并依据图象解答以下问题:(1)当 x=4 时,求 y 的值;(2)当 y=- 2 时,求 x 的值;(3)当 y>2 时,求 x 的范围.解:列表:x-3 -3-1123y- 4-6-1212 64由图知: (1)y= 3; (2)x=- 6;(3)0< x< 6.49.作出反比率函数y=-x的图象,联合图象回答:(1)当 x=2 时, y 的值;(2)当 1<x≤4时, y 的取值范围;(3)当 1≤y<4 时, x 的取值范围.解:列表:x-4-2-1124y[ 来源:1124-4-2-1ZXXK]由图知: (1)y=- 2;(2)- 4< y≤-1;(3)-4≤x<- 1.【教课说明】为了让学生灵巧的运用反比率函数的性质解决问题,在研究题目时,重要扣性质进行剖析,达到理解性质的目的.四、师生互动、讲堂小结[ 根源 :1ZXXK]教课反省本节课学习了哪些知识?在知识应用过程中要注意什么?你有什么收获?课后作业1.部署作业:教材“习题 5.2 ”中第 2、3 题.2.达成练习册中本课时练习.第 2 课时反比率函数的图象与性质(2)课标要求【知识与技术】研究反比率函数的主要性质.【过程与方法】经历察看、概括、沟通的过程,提升学生的察看、剖析能力和对图形的感知水平.【感情态度】让学生进一步领会用反比率函数刻画现实生活问题的作用.【教课要点】正确掌握并能运用反比率函数图象的性质.【教课难点】正确掌握并能运用反比率函数图象的性质.一、情境导入,初步认识上一节课我们已经学习了反比率函数的定义和图象的画法,及图象所在的象限.今日我们持续来研究反比率函数的图象和它的性质.二、思虑研究,获得新知661.画一画反比率函数 y=x和 y=-x的图象.思虑:跟着 x 的增大, y 值是如何变化的?【概括结论】反比率函数 y=k≠ 的图象:当>时,在每一象限内,y的值跟着x值x(k0)k的增大而减小;当 k<0 时,在每一象限内, y 的值跟着 x 值的增大而增大.62.在反比率函数 y=x的图象上取两点P(1, 6),Q(6,1),过点 P 分别作 x 轴、 y 轴的平行线,与坐标轴围成的矩形面积为S1=________;过点 Q 分别作 x轴、y 轴的平行线,与坐标轴围成的矩形面积为S =________;S 与 S 有什么关212系?为何?【教课说明】指引学生依据必定的分类标准研究反比率函数的性质,同时鼓舞学生用自己的语言进行表述,进而提升学生的表达能力与数学语言的组织能力.【概括结论】k第5页/共8页象上随意一点引x 轴、 y 轴的平行线,与坐标轴围成的矩形面积为k 的绝对值.三、运用新知,深入理解[ 根源 :1ZXXK]31.若点 A(7,y1), B(5,y2)在双曲线 y=-x上,则 y1、y2中较小的是 y2 .k2.若反比率函数 y=x,当 x>0 时, y 随 x 的增大而增大,则k 的取值范围是( A )A.k<0B. k>0C.k≤0D. k≥03.以下函数中,当x>0 时, y 随 x 的增大而减小的是 ( B )1A.y=x B.y=x12C.y=-x D. y=x4.反比率函数 y= (2m-1)xm2-2 ,当 x>0 时,y 随 x 的增大而增大,则 m 的值是( C)1A.±1B.小于2的实数C.-1D. 1k5.已知点 A(x1,y1), B(x2,y2)是反比率函数y=x(k>0)的图象上的两点,若 x1<0<x2,则有 ( A )A.y1< 0< y2B.y2<0<y1C.y1<y2< 0D.y2<y1< 0k6.一次函数 y=kx+ b 与反比率函数 y=x的图象如下图,则以下说法正确的选项是(C)A.它们的函数值y 跟着 x 的增大而增大B.它们的函数值y 跟着 x 的增大而减小C.k<0D.它们的自变量x 的取值为全体实数错误!,第8题图)k7.当 k<0 时,反比率函数y=x和一次函数 y=kx+2 的图象大概是 ( B )28.如图, A、B 是函数 y=x的图象上对于原点对称的随意两点,BC∥ x 轴,AC∥y 轴,△ABC 的面积记为 S,则 ( B )A.S=2 B.S=4C.2<S<4 D.S>4m+39.已知点 A(m, 2)、B(2,n)都在反比率函数y=x的图象上.(1)求 m、n 的值;(2)若直线 y= mx-n 与 x 轴交于点 C,求 C 对于 y 轴对称点 C′的坐标.解: (1)m=n=3; (2)C′(-1,0).10.已知正比率函数和反比率函数的图象都经过点A(3,3).(1)求正比率函数和反比率函数的关系式;(2)把直线 OA 向下平移后与反比率函数的图象交于点B(6,m),求 m 的值和这个一次函数的关系式;(3)在 (2)中的一次函数图象与x 轴、 y 轴分别交于 C、D,求四边形 OABC 的面积.939解: (1)y=x,y=x; (2)m=2;y=x-2;1(3)S 四边形OABC=108.四、师生互动、讲堂小结经过本节课的学习你有哪些收获,还有哪些迷惑?请与伙伴沟通.课后作业1.部署作业:教材“习题 5.3 ”中第 1、 2 题.2.达成练习册中本课时练习.。
北师大版数学九年级上册5.2《反比例函数的图象与性质》教学设计1一. 教材分析《反比例函数的图象与性质》是北师大版数学九年级上册第五章第二节的内容。
本节内容是在学生已经掌握了函数的概念、正比例函数的图象与性质的基础上,进一步学习反比例函数的图象与性质。
通过本节课的学习,使学生能够理解反比例函数的概念,掌握反比例函数的图象与性质,并能够运用反比例函数解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数的图象与性质有一定的了解。
但是,对于反比例函数的理解可能会存在一定的困难,因此,在教学过程中,需要引导学生从实际问题出发,逐步理解反比例函数的概念,掌握反比例函数的图象与性质。
三. 教学目标1.知识与技能目标:使学生能够理解反比例函数的概念,掌握反比例函数的图象与性质,能够运用反比例函数解决一些实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,使学生能够自主探索反比例函数的图象与性质,提高学生的数学思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生能够积极主动地参与数学学习活动。
四. 教学重难点1.反比例函数的概念。
2.反比例函数的图象与性质。
五. 教学方法1.情境教学法:通过创设生活情境,引导学生从实际问题中抽象出反比例函数模型。
2.自主探索法:鼓励学生自主探究反比例函数的图象与性质,培养学生的创新能力。
3.合作交流法:引导学生通过小组合作、讨论,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.准备一些与反比例函数相关的实际问题,如广告费用、速度与时间等问题。
2.准备反比例函数的图象与性质的课件,以便于学生更好地理解反比例函数。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生从实际问题中抽象出反比例函数模型,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示反比例函数的图象与性质,引导学生观察、分析,从而归纳出反比例函数的性质。
第五章反比例函数回顾与思考一、学生知识状况分析本章学习了反比例函数的定义、图象、性质及应用,在本章内容编排方面,直观操作,观察,概括和交流是重要的活动方式.通过这些活动,对函数的三种表示方法进行整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取信息的能力,提高感知水平,逐步形成用函数观点处理问题的意识,体验数形结合的思想方法.教师应以本章教学目标为标准来考查学生的学习状况,考查学生对反比例函数的定义,图象,性质是否掌握,能否从函数图象中敏锐地获取函数的相关信息,是否善于对实际问题进行分析,并灵活运用有关知识解决问题.在教学过程中,应以学生总结为主,教师只给予适当指导.二、教学任务分析教学任务:《第五章反比例函数》回顾与思考。
教学目标(一)教学知识点1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念.2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.3.会从函数图象中获取信息,解决实际问题.(二)能力训练要求1.熟练掌握本章的知识网络结构.2.经历抽象反比例函数概念的过程,理解反比例函数的概念,进一步培养学生的抽象思维能力.3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能利用图象解决实际问题.(三)情感与价值观要求通过本章内容的回顾与思考,培养学生的归纳、整理等能力;能利用反比例函数的性质及图象解决实际问题,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力.教学重点本章知识的网络结构.反比例函数的概念.会画反比例函数的图象,并掌握其性质.反比例函数的应用.教学难点探索反比例函数的主要性质.反比例函数的应用.教学方法师生交流互动法.三、教学过程分析本节课设计了五个教学环节:第一环节:通过提问,引入复习课;第二环节:重点知识回顾,形成本章知识结构图;第三环节:经典例题及练习,巩固新知;第四环节:探讨收获、课时小结;第五环节:课后作业第一环节:通过提问,引入复习课活动目的给学生设置疑问,明确学习任务,激发学生学习兴趣。
活动过程:本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?第二环节:重点知识回顾,形成本章知识结构图活动目的:引导学生对本章的基础知识进行归纳、总结,使学生明确各个知识点之间的联系,“串珠为链”,做到基础知识网络化。
活动过程: (一)本章知识结构带领学生一齐构造本章内容结构图。
(也可以给学生时间让学生自己构造,然后出示投影片)本章内容框架活动效果:绝大部分学生可以根据以上内容框架,用自己的语言归纳总结本章内容.注意事项:1. 应以学生总结为主,教师只给予适当指导;2.如果有些学生总结的结构图与老师的不一样,只要是合理、全面,老师都要给于肯定和鼓励。
(二)举出现实生活中有关反比例函数的实例,并归纳反比例函数概念. (三)说说函数y =x 2和y =-x2的图象的联系和区别. 联系:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交;(3)它们都不过原点,既是中心对称图形,又是轴对称图形. 区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一和第三象限;y=-x2的两支曲线在第二和第四象限. (2)y =x 2的图象在每个象限内,y 随x 的增大而减小:y=-x2的图象在每个象限内,y 随x 的增大而增大.还有一点.虽然y =x 2和y=-x2的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2.(四)画反比例函数图象的步骤,讨论反比例函数图象的性质画图象的步骤有列表,描点,连线.在画反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.反比例函数图象的性质有:1.反比例函数的图象是两支双曲线,当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.3.因为在y=xk(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.第三环节:经典例题及练习,巩固新知活动目的:使学生利用自己所学的基础知识和基本方法能够熟练的解决问题,提高学生分析问题、解决问题的能力。
活动过程:出示投影片 例一1.下列函数中,其图象位于第一、三象限的有哪些?在其图象所在象限内,y 的值随x 值的增大而增大的是哪些 ( )(1)y=x 31 (3)y=x 2.0 (2)y= x10(4)y=-x 10072.在函数y =x 3的图象上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积是多少?分析:根据反比例函数图象的根据,当k >0时,图象位于第一、三象限,在每一个象限内,y 随x ,的大而减小;当k<0时,正好相反,但在y =x31中,形式好象和反比例函数的形式不相同,但可以化成y=x31的形式。
1的答案:图象位于第一、三象限的有(1)(2).在其图象所在象限内,y 的值随x 值的增大而增大的有(3)(4).2的答案: S=|k |=3. 例二1.一个圆台物体的上底面积是下底面积的41,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?2.一定质量的CO 2,当体积v =5米3时.它的密度ρ=1.98千克/米3,求(1)ρ与v 的函数关系式;(2)当v=9米3时,CO 2的密度.分析:压强p 与受力面积S ,压力F 之间的关系为p=SF,因为是同一物体,所以F 是一定的,由于面积不同,所以压强也不同. 质量m ,密度ρ和体积v 之间的关系为:ρ=vm由,由v=5米3,ρ=1.98千克/米3,可知质量m ,实际是已知反比例函数中的k ,就求出了反比例函数关系式. 解:1.当下底面放在桌面上时,对桌面的压强为p 1=SF=200Pa,所以倒过来放时,对桌面的压强p 2=S FS F 441=800Pa. 2.设CO 2的质量为m 千克,将v=5米3,ρ=1.98千克/米3代入公式ρ=vm中,得m=9.9千克.故所求ρ与v 间的函数关系式为ρ=v9.9. (2)当v =9米3时,ρ=v9.9=1.1(千克/米3)。
课堂练习 出示投影片: 1.对于函数y=x2,当x>0时,y_______0,这部分图象在第______象限;对于y =-x2,当x<0时,y____0,这部分图象在第_____象限.2.函数y=x10的图象在第____象限内,在每一个象限内,y 随x 的增大而______. 3.根据下列条件,分别确定函数y =x k的表达式(1)当x=2时,y =-3;(2)点(-31,21-)在双曲线y =x k上.答案:1.> 一、三 < 二、四 2.一、三 减小 3.(1)y=x6- (2)y=x 61;注意事项:在本环节教学中,教师要组织学生通过分组讨论、合作交流等形式,启发学生对问题进行分析,探究,形成解题思路,进而感悟和总结解决此类问题的一般方法和规律。
第四环节:探讨收获 课时小结本节课我们从现实世界出发,抽象出反比例函数的概念,比较了反比例函数y=x2和y=-x2的图象的联系和区别,归纳了反比例函数的图象和性质,并进一步进行了应用.第五环节:课后作业 (一)、复习题 A 组 (二)、活动与探究反比例函数图象与矩形的面积 若点A 是反比例函数y=xk(k ≠0)图象上的任意一点,且AB 垂直于x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,则矩形面积S ABOC =|k |.如图(1).1.如图(2),P 是反比例函数)y=xk(k ≠O)图象上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影部分(矩形)的面积为3,则 这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A 、B 分别作x 轴,y 轴的垂线,若矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,则S 1与S 2的关系是_____.1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3. ∴k=x3 . 2.解:由题意得 S 1=S 2=|k |=2. (三)补充练习四、教学反思本章涉及到了中学数学里所有的数学思想方法,它们相互渗透,相互融合,构成了函数应用的广泛性,解法的多样性,和思维的创造性。
函数的性质、图象及函数与方程、不等式知识的联系和综合应用是命题的热点。
探索性题型在函数中考查较多,其主要特点是要求学生能够建立数学模型,有关函数的题型仍是探索开放,综合应用,但活而不难。