7-0_真空技术基础知识.
- 格式:doc
- 大小:846.00 KB
- 文档页数:6
真空理论知识培训拟制:许坤良目录:一.基础知识:二.往复式真空泵:三.旋片式油封机械真空泵:四.罗茨式真空泵:五.分子真空泵:六.油扩散泵:七.低温泵:八.真空泵流量的测量方法:九.冲洗抽气法:一.基础知识:1.真空及其度量:真空----一般是指在给定的空间内,压力低于101325Pa的气体状态。
在真空状态下,气体的稀薄程度,通常用气体的压力值来表示。
真空的主要特性-----真空状态同正常的大气状态相比较,气体较为稀薄,即单位体积内的分子数目较少,分子之间或分子与其他质点(如电子、离子)之间的碰撞几率减少,分子在单位时间内碰撞于单位表面积(如器壁)上的次数也相对减少。
分为:“自然真空”和“人为真空”人为真空---是指人们对一个容器进行抽气而获得的真空空间。
气体的稀薄程度叫真空度。
真空度可用气体压强、分子密度、平均自由程和形成一个单分子层的时间来描述,在真空科学与技术中,通常都用气体的压强来表示。
气体压强越低,真空度越高。
2.换算关系:1atm=1.01325*105Pa (1Pa=1N/m2)(760mmHg)1atm=760mmHg=760Torr(标准大气压)1Torr=133.322Pa(1Pa=7.5*10-3Torr=0.0075Torr=7.5mTorr)1bar=105Pa=750Torr 1Pa=7.5mTorr 1mbar=750mTorr3.各真空区域的物理特性及应用:低真空:1*105Pa-----1*102Pa=0.75Torr=750mTorr中真空:1*102-----1*10-1Pa=0.75mTorr高真空:1*10-1----1*10-6Pa=7.5mTorr超高真空:1*10-6---1*10-12Pa极高真空:小于10-12Torr3.1低真空(1*105Pa-----1*102Pa)在低真空状态下,气态空间的特性和常压时相比,没有明显的不同。
气体分子仍以杂乱无章的热运动为主,气体分子间的相互碰撞十分频繁。
第七单元 真空技术7-0 真空技术基础知识“真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。
真空的发现始于1643,那年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。
此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa 的极高真空。
在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。
一、真空物理基础 1. 真空的表征表征真空状态下气体稀薄程度的物理量称为真空度。
单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。
在SI 单位制中,压强单位为 牛顿/米2(N/m 2):1牛顿/米2=1帕斯卡(Pascal ), (7-0-1)帕斯卡简称为帕(Pa ),由于历史原因,物理实验中常用单位还有托(Torr )。
1标准大气压(atm )=1.0135×105(Pa),1托=1/760标准大气压 (7-0-2) 1托=133.3帕斯卡习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014)托。
各种单位之间的换算关系见附表7-1 2. 真空的划分真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。
通常可分为:低真空(Pa 10~1013-)、高真空(Pa 10~1061--)、超高真空(Pa 10~10-10-6)和极高真空(低于Pa 1010-)。
(整理)真空技术基础知识真空技术基础知识前⾔1. 真空“真空”来源于拉丁语“Vacuum ”,原意为“虚⽆”,但绝对真空不可达到,也不存在。
只能⽆限的逼近。
即使达到10-14—10-16托的极⾼真空,单位体积内还有330—33个分⼦。
在真空技术中,“真空”泛指低于该地区⼤⽓压的状态,也就是同正常的⼤⽓⽐,是较为稀薄的⽓体状态。
真空是相对概念,在“真空”下,由于⽓体稀薄,即单位体积内的分⼦数⽬较少,故分⼦之间或分⼦与其它质点(如电⼦、离⼦)之间的碰撞就不那么频繁,分⼦在⼀定时间内碰撞表⾯(例如器壁)的次数亦相对减少。
这就是“真空”最主要的特点。
利⽤这种特点可以研究常压不能研究的物质性质。
如热电⼦发射、基本粒⼦作⽤等。
2. 真空的测量单位⼀、⽤压强做测量单位真空度是对⽓体稀薄程度的⼀种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分⼦数。
但是由于分⼦数很难直接测量,因⽽历来真空度的⾼低通常都⽤⽓体的压强来表⽰。
⽓体的压强越低,就表⽰真空度越⾼,反之亦然。
根据⽓体对表⾯的碰撞⽽定义的⽓体的压强是表⾯单位⾯积上碰撞⽓体分⼦动量的垂直分量的时间变化率。
因此,⽓体作⽤在真空容器表⾯上的压强定义为单位⾯积上的作⽤⼒。
压强的单位有相关单位制和⾮相关单位制。
相关单位制的各种压强单位均根据压强的定义确定。
⾮相关单位制的压强单位是⽤液注的⾼度来量度。
下⾯介绍⼏种常⽤的压强单位。
【标准⼤⽓压】(atm )1标准⼤⽓压=101325帕【托】(Torr )1托=1/760标准⼤⽓压【微巴】(µba )1µba=1达因/厘⽶2【帕斯卡】(Pa )国际单位制1帕斯卡=1⽜顿/m2【⼯程⼤⽓压】(at )1⼯程⼤⽓压=1公⽄⼒/厘⽶2⼆、⽤真空度百分数来测量%100760760%?-=P δ式中P 的单位为托,δ为真空度百分数。
此式适⽤于压强⾼于⼀托时。
3. 真空区域划分有了度量真空的单位,就可以对真空度的⾼低程度作出定量表述。
实验十 真空的获得与测量实验目的 1.学习高真空的获得与测量方法。
2.熟悉有关设备和仪器的使用方法。
实验仪器高真空装置,机器泵,扩散泵,复合真空计,检漏仪。
实验原理 真空技术在工业生产和科学研究中广泛的应用。
真空技术主要包括真空的获得、测量和检查漏气等方面的内容。
1.高真空的获得获得真空用真空泵。
真空泵按工作条件的不同分为两类:能够在大气压下工作的真空泵称为初级泵(如机器泵),用来产生预备真空,需要在预备条件下才能工作的真空泵称为次级泵(如扩散泵),次级泵用来进一步提高真空度,获得高真空。
(1)机器泵 一般采用油封转片式机器泵,其结构如图3-10-1所示,在圆柱形气缸(定子)内有偏心圆柱作为转子,当转子绕轴转动时,其最上部与气缸内表面紧密接触,沿转子的直径装有两个滑动片(简称滑片),其间装有弹簧,使滑动片在转子转动时与气缸内表面紧密接触,当转子沿箭头所指方向转动时,就可以把被抽容器内的气体由进气管吸入而经过排气孔,排气阀排出机械泵。
为了减少转动摩擦和防止漏气,排气阀及其下部的机械泵内部的空腔部分用密封油密封。
机械泵用的密封油是一种矿物油,要求在机械泵的工作温度下有小的饱和蒸汽压和适当的粘度,机器泵的极限真空度一般在10-2~10-4mmHg ,抽气速率一般为每分钟数十升到数百升。
(2)扩散泵 一般多采用油扩散泵,其结构如图3-10-2所示,扩散泵是高真空泵,当机器泵的极限真空度不能满足要求时,通常加扩散泵来获得高真空。
这种泵不能从通常气压下开始工作,只能在低于1Pa气压下才能工作。
因此,必须与初级泵串联使用。
油扩散泵使用的工作液体有许多种,目前广泛使用的是274号硅油(20℃时饱和汽压为1.3×10-7 Pa )和275号硅油(20℃时饱和汽压为1.3×10-8 Pa )。
在扩散泵开始工作之前,必须先开动机器泵抽气,等达到预备真空时(约1.3 Pa ),便可以使用电炉对蒸发器中的硅油进行加热。
真空技术基础知识⼀真空的概念物理学上将真空定义为:⼀个空间不含有任何物质的状态(或称之为绝对真空);然⽽事实上这种状态⽆法⼆真空范围从技术⾓度讲已经可以达到10-14的数量级,但实际应⽤中使⽤范围较⼩.三真空的表⽰⽅法1)绝对值表⽰法真空度以相对于绝对0度的数值表⽰.绝对0度(即0 bar)是最低真空度,相当于100%真空.在这⼀真空范围特点:真空值采⽤正值真空范围1-0bar2)相对值表⽰法真空值以相对于环境压⼒的⽐例值表⽰,前⾯标以负号,因此此真空值环境压⼒(即⼤⽓压⼒)北视为特点:真空值采⽤负号真空范围0-1;3)百分⽐表⽰法⽤绝对⼤⽓压压⼒值与海平⾯⼤⽓压压⼒值的⽐值表⽰;百分⽐相对值绝对值0%1,013mbar(海平⾯⼤⽓压)压⼒表压⼒表恒温下,所含分⼦微粒少,压⼒⼩,真空度越⾼恒温下,所含分⼦微粒多,压⼒⾼,真空度越低105102GV(低真空)FV(中等真空)10-1HV(⾼真空)10-5UHV(超⾼真空)10-14应⽤于抓取技术的真空范围;真空技术基础知识50%507mbar80%202mbar 100%0 mbar 四真空度测量单位官⽅单位:帕斯卡(Pa)其他单位:bar、mbar、%等单位换算:1bar=1000mbar100Pa=1hPa1hPa=1mbar1托(Torr)=1毫⽶汞柱(mmHg)=133.329帕(Pa) 1mbar=0.001bar1Pa =1N/m21物理⼤⽓压=1标准⼤⽓压(atm)普适定理海平⾯的⼤⽓压⼒约为1,013mbar海拔⾼度达到2,000m时,⼤⽓压⼒降低为763mbar,⼤约每100m降低1%到达海拔5,500m时,压⼒仅为海平⾯的50%;在珠穆朗玛峰(海拔8,848m),⼤⽓压仅为330mbar当海拔达到16,000m时,⼤⽓压⼒约为90mbar,⽽在30,000与50,000的海拔⾼度,⼤⽓压⼒分真空发⽣器产⽣真空原理⽂丘⾥原理进⽓⼝/⽂丘⾥喷嘴真空/吸盘连接⼝排⽓⼝/接收器喷嘴真空技术常⽤图⽰符号1⼯程⼤⽓压=1千克⼒/厘⽶2(kgf/cm2)1MPa=1x106Pa 1mbar=1000µbar=1000dyn/cm2( 达因/厘⽶2)-811 mbarPU R 321123-1,013mbar1、真空发⽣器2、真空压⼒表3、过滤器4、单向阀5、储⽓罐7、节流阀8、消声器基本真空回路图真空安全阀(ISV)⼀、应⽤范围⽤于多个吸盘并⾏安装的情况,如果⼀个或⼏个吸盘没有与物体完全接触,则整个真空不会消失⼆、功能图1、真空发⽣器2、分配器3、真空安全阀4、吸盘1121223三、⼯作原理4这种状态⽆法实现.因此通常当某⼀空间内的空⽓压⼒低于其外部⼤⽓压⼒或是空间内空⽓分⼦颗粒这⼀真空范围内1 bar为最⼤值,代表⼤⽓压⼒.压⼒)北视为0值参考点。
第七单元 真空技术7-0 真空技术基础知识“真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。
真空的发现始于1643,那年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。
此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa 的极高真空。
在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。
一、真空物理基础 1. 真空的表征表征真空状态下气体稀薄程度的物理量称为真空度。
单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。
在SI 单位制中,压强单位为 牛顿/米2(N/m 2):1牛顿/米2=1帕斯卡(Pascal ), (7-0-1)帕斯卡简称为帕(Pa ),由于历史原因,物理实验中常用单位还有托(Torr )。
1标准大气压(atm )=1.0135×105(Pa),1托=1/760标准大气压 (7-0-2) 1托=133.3帕斯卡习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014)托。
各种单位之间的换算关系见附表7-1 2. 真空的划分真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。
通常可分为:低真空(Pa 10~1013-)、高真空(Pa 10~1061--)、超高真空(Pa 10~10-10-6)和极高真空(低于Pa 1010-)。
20世纪70年代进一步提高到的宽达20个数量级的真空度范围,并随着某些新技术、新材料、新工艺的应用和开拓,将进一步接近理想的真空状态。
3. 描述真空物理性质的主要物理参数(1)分子密度:用于表示单位体积内的平均分子数。
气体压强与密度的关系为nkT p = (7-0-3)其中n 为分子密度,k 为玻耳兹曼常数,T 为气体温度。
(2)气体分子平均自由程:平均自由程是指气体分子在连续两次碰撞的间隔时间里所通过的平均距离。
对同一种气体分子的平均自由程为pkT 22πσλ=(7-0-4)其中σ为分子直径。
由(7-0-4)式可知,气体分子的平均自由程与气体的密度n 成反比因而它将随着气体压力的下降而增加。
在气体压强低于0.01Pa 的情况下,气体分子间的碰撞几率已很小,气体分子的碰撞主要是其与容器器壁之间的碰撞。
(3)单分子层形成时间:指在新鲜表面上覆盖一个分子厚度的气体层所需要的时间。
一般,真空度越高,干净表面吸附一层分子的时间越长,从而可较长时间地维持一个干净的表面。
单位表面积上气体分子的吸附频率ν与压强p 的关系为s cm /105.3222⋅⨯=分子p MTν (7-0-5)式中M 和T 分别为气体分子的分子量(单位:g )和温度(单位:K ),在高真空,例如610-=p Torr 时,对于室温下的氮气,()s cm /105.4214⋅⨯=分子ν,如果每次碰撞均被表面吸附,按每平方厘米单分子层可吸附14105⨯个分子计算,一个干净的表面只要1秒多钟就被覆盖满了一个单分子层的气体分子;若在超高真空1010-=p Torr 或1110-Torr ,由同样的估算可知干净表面吸附单分子层的时间将达几小时到几十小时之久。
所以超高真空技术经常应用于集成电路的生产工艺和科学研究等方面。
二、真空的获得用来获得、改善和维持真空环境的装置简称为真空泵。
按照真空泵的工作原理可分为二类:一类是“排气”型或称“压缩”型真空泵。
这类真空泵是利用其内部的各种压缩机构将被抽容器中的气体压缩到排气口方向,排入大气中。
例如,旋片式机械泵、增压泵、油扩散泵以及涡轮分子泵等。
另一类称为“吸附”型真空泵。
这类真空泵是在封闭的真空系统中利用各种物理或化学表面(吸气剂)吸气的方法将被抽空间的气体分子吸附在固体表面上。
例如吸附泵、溅射离子泵、钛升华泵及低温泵。
真空泵若按应用范围分,则有低真空泵(包括中真空),例如旋片式机械泵、增压泵及吸附泵等;高真空泵(包括超高、极高真空),例如油扩散泵、涡轮分子泵、离子泵及低温泵等。
真空泵常用的两个重要参量是:(1)极限真空,在被抽容器的漏气及容器内壁放气可忽略的情况下,真空泵能抽得的最高真空称为极限真空。
(2)抽气速率,在给定压强下,单位时间内从泵的进气口抽入泵内的气体体积,称为泵在该压强下的抽气速率,单位为升/秒。
1.机械真空泵机械真空泵按改变空腔容积方式分,有活塞往复式、定片式和旋片式等。
它的工作原理是建立在理想气体的波意尔-马略特定律基础之上,即RT PV =(P 为压强,V 为容器体积,T 为绝对温度,R 为常数),在等温过程中,一个容器内的体积和压强的乘积等于常数。
这样,只要使容器的体积在等温条件下不断扩大,就可不断降低容器的压强。
图7-0-1是常用的旋片式机械真空泵的结构图,其工作过程如图7-0-1所示。
7-0-1旋片式机械真空泵当转子逆时针转动时,开始处于图7-0-2(a )的位置,由进气口进入转子与定子之间部分空腔III 的体积不断扩大,而出气口与转子、定子间的部分空腔I 体积不断缩小,如图7-0-2(b );空腔I 内的体积继续被压缩,当压强大到足以推开排气阀时,气体被排出泵外;空腔II 继续传送被隔离气体,空腔III 继续抽气。
转子转到图7-0-2(c )时,空腔I 排气即将结束,空腔II 即将与排气口相通,开始压缩排气过程;空腔III 继续抽气。
转子到图7-0-2(d )的位置时,又开始重复上述过程。
机械泵具有结构简单,工作可靠的优点,机械泵可以从大气压开始进行工作,不仅可单独使用,常用来获得高真空系统的前级泵,以获得更高的真空度。
机械泵一般所能达到的极限真空约为10-2Pa,但在一般实验室情况下只能达到100-10-1Pa 。
2.油扩散泵油扩散泵是常用的获得高真空的设备,扩散泵不能直接在大气压下工作,需要在机械泵产生的低真空条件下工作,图7-0-3为常用的油扩散泵的工作原理图。
泵的上部为进气口,泵的底部为蒸发器,用来贮存硅树脂类扩散泵油(简称硅油)或其它专用的扩散泵油。
当加热炉加热槽中的硅油,油蒸汽流沿管筒上升,从伞形喷嘴(三个或四个)向下高速喷出,带动气体分子,使它自上而下作定向流动,气体被迫向排气口方向运动,而被排气口的机械泵抽走,扩散泵的名称也由此而来。
油蒸汽碰到有冷却水管冷却的泵壁上冷凝,油分子被冷凝为液态,沿着泵壁流回蒸发器继续循环使用,这样周而复始,从而达到连续抽气。
为了提高扩散泵的极限真空,扩散泵内通常有3至4个串联的喷嘴,如图7-0-3所示的是由铝合金材料制成的3个喷嘴的3级扩散泵的结构示意图。
一般油扩散泵的极限真空为10-4~10-5Pa 。
油扩散泵的一个缺点是泵内的油蒸汽的回流容易造成真空系统的污染。
由于这个原因,在材料表面分析仪器和其他超高真空系统中一般不采用油扩散泵。
使用油扩散泵时应注意几点:(1)不能在断水时使用。
油扩散泵工作时冷却水的作用很大,若水冷作用不够,就会使泵油的循环作用减弱、油蒸汽压提高而妨碍其工作。
(2)应选择适当的加热功率。
加热功率过低,油蒸汽无法形成,泵不能工作;加热功率过高,使油蒸汽过热甚至分解,大大降低其性能。
(3)要保证其预备真空和前级真空,尽量避免大气冲入油扩散泵。
冷却水进气口排气口接机械泵加热炉 冷却水真空油喷油嘴 图7-0-3 三级油扩散泵(4)油扩散泵停止使用时,需待工作油液冷却后才能关闭前级泵和冷却水,如有可能,将扩散泵始终保持在真空下为好,以免工作油液氧化、裂解,使得蒸汽压提高,泵的极限真空降低。
如发现泵的极限真空达不到要求,可将泵拆去,倒去旧油,严格清洗并烘干,再换以新的工作油液。
3.涡轮分子泵涡轮分子泵是适应现代真空技术对于无油高真空环境的要求而产生的一种高真空泵。
与油扩散泵一样,涡轮分子泵也是对气体分子施加作用力,并是气体分子向特定的方向运动的原理来工作的。
如图7-0-4所示,涡轮分子泵的转子叶片具有特定的形状,在它以20000-30000r/min 的高速旋转时,叶片将动量传给气体分子。
同时,涡轮分子泵中装有很多级叶片,上一级叶片输送过来的气体分子又会受到下一级叶片的作用而被进一步压缩至更下一级。
因此,涡轮分子泵的一个特点是其对一般气体分子的抽除极为有效。
例如对于氮气,其压缩比(即泵出口的压力与入口的压力之比)可以达到109。
但是,涡轮分子泵抽取低原子序数气体的能力较差。
例如对氢气,其压缩比仅有103左右。
由于涡轮分子泵对于气体的压缩比很高,因而其油蒸汽的回流可以完全忽略。
涡轮分子泵的极限真空可以达到10-8Pa 数量级,抽速可达1000L/s ,而适用的压力范围在1-10-8Pa 之间。
因而,在使用中多用旋片式机械泵作为前级泵。
使用涡轮分子泵应注意的几点:(1)涡轮分子泵不能先于前级泵(机械泵)启动,停机后应立即放气,以防机械泵反油;(2)及时加注和更新润滑油,分子泵被污染时,要及时清洗;(3)涡轮分子泵使用时,应避免剧烈振动,要求防止电磁干扰和强放射性辐射。
三、真空的测量测量真空度的仪器称为真空计。
能直接测得真空度的称为绝对真空计,如以水银柱面的高度差来测真空度的麦克劳真空计即属此类。
绝对真空计操作复杂,一般不易连续测量,常用作计量的基准。
通常使用的是相对真空计,即通过测量与真空度有关的物理量来间接地测量真空度,这种测量真空度的压强传感器称为真空规,与各种真空规相配套的真空仪都属于相对真空计,他们使用比较方便,但准确度较低而且各自的测量范围有限,而且需要用绝对真空计校准。
由于真空度覆盖了十几个数量级的范围,一种真空计难以测量如此宽范围的真空度,因此,常用不同的相对真空计来测量不同的真空度。
每一种真空计都只能测量一定范围的真空度,各种真空计结合起来完成全范围内的真空度的测量。
1.热偶真空计热偶真空计是常用的测量低真空的相对真空计,它由热偶规管和与之图7-0-5 热偶规真空计定子转子轴承 电机电连接端 级间法兰 抽气口 图7-0-4 涡轮分子泵结构示意图配套的测量电路构成,图7-0-5热偶规管的结构图。
规管上端与要测的低真空相通,ao 和ob 分别为康铜和镍铬丝组成的热电偶,cod 为由铂丝制成的加热用灯丝,加热电流由与c 和d 相联的导线从管脚通入,热电偶的热端o 与灯丝的中部相焊接,灯丝通过加热电流时,使热端温度达到100℃以上,热偶的冷端a 、b 所处的温度基本相同,并由导线从管脚引出,与测量温差电动势的测量仪器相联,测量仪器还提供稳定的灯丝加热电流(丝流).在灯丝加热电流保持一定的条件下,灯丝(即热电偶的热端)的热平衡温度取决于规管所处的真空度:真空度越高,规管内单位体积的气体分子数越少,气体导热性能越差,灯丝和热电偶热端的热平衡温度越高,热电偶冷热两端的温度差越大,温差电动势也就越大,这样由热电偶的温差电动势的大小可间接测出真空度,因为两者的关系很难通过理论计算得到,因此,一般要将热偶真空计用绝对真空计校准。