当前位置:文档之家› 缺血性脑损伤机制的研究进展

缺血性脑损伤机制的研究进展

缺血性脑损伤机制的研究进展
缺血性脑损伤机制的研究进展

脑缺血再灌注

什么是脑缺血?脑的短暂性血液供应不足并出现症状就叫做短暂性脑缺血发作,是一种 常见的急性脑血管病。病人突然发病,类似脑出血或脑梗塞的表现,一般在24小时内完全 恢复正常,常使家人虚惊一场,但可以反复发作。短暂性脑缺血发作病人一般在1~5年内 可能发生脑梗塞。而脑梗塞的病人中的1/3~2/3曾经发生过短暂性脑缺血发作脑缺血 - 再 灌注也可造成脑功能严重受损。脑缺血时脑细胞生物电发生改变,出现病理性慢波,缺血一 定时间后再灌注,慢波持续并加重。颞叶组织内神经递质性氨基酸代谢发生明显变化,即兴 奋性氨基酸(谷氨酸和天门冬氨酸)随缺血 - 再灌注时间延长而逐渐降低,抑制性氨基酸(丙 氨酸、γ- 氨基丁酸、牛黄酸和甘氨酸)在缺血 - 再灌注早期明显升高。缺血再灌注损伤 时间越长,兴奋性递质含量越低,脑组织超微结构改变越明显:线粒体肿胀,有钙盐沉积, 并可见线粒体嵴断裂、核染色质凝集、内质网高度肿胀,结构明显破坏、星型细胞肿胀, Nissl 体完整性破坏、胶质细胞、血管内皮细胞肿胀,周围间隙增大并有淡红色水肿液、白质纤维 间隙疏松,血管内由微血栓、髓鞘分层变性,呈现不可逆损伤。 多数情况下,缺血后再灌注可使组织器官功能得到恢复,损伤的结构得到修复,患者病情好转康复;但有时缺血后再灌注.不仅不能使组织、器官功能恢复,反而加重组织、器官的功能障碍和结构损伤。这种在缺血基础上恢复血流后组织损伤反而加重,甚至发生不可逆性损伤的现象称为缺血再灌注损伤(ischemi-a-reperfusion injury)。 缺血后疏通血管或再造血管使组织得到血液的再灌注,确能收到良好的治疗效果。但在一定条件下(取决于缺血时间)再灌注反而引起更加严重的后果。这不仅见于临床,而且也为不同种属(兔、大鼠、豚鼠、狗、猪等)的大量动物实验所证明。这是一种反常(paradox)现象,称之为再灌注损伤(reperfusion injury)。

缺血缺氧性脑损伤的治疗方法

如对您有帮助,可购买打赏,谢谢 缺血缺氧性脑损伤的治疗方法 导语:很多人对于缺血缺氧性脑损伤这种情况还不是很了解,的确,这种疾病的发病率现在还不是很高,但是也有和别人出现了缺血缺氧性脑损伤的症状表 很多人对于缺血缺氧性脑损伤这种情况还不是很了解,的确,这种疾病的发病率现在还不是很高,但是也有和别人出现了缺血缺氧性脑损伤的症状表现,这种疾病尽早治疗非常重要,可能我们大家对于缺血缺氧性脑损伤的治疗方法还没有一个清晰的认识,下面就让我们一起来了解一下缺血缺氧性脑损伤的治疗方法吧。 1.轻度脑病因为不留下后遗症通常不需要治疗,中重度脑病的治疗疗程也取决于治疗的效果和患儿的表现,对于没有神经系统异常症状和体征的婴儿不需要连续几个月的静脉营养脑细胞药物治疗。对于有脑损伤后遗症表现的婴儿,例如表现为智力发育落后、肌张力异常的婴儿,也应该以康复训练治疗为主,而营养脑细胞药物的疗效不能确定,这在国际上也是有争议的,因此治疗的重点应该放在康复上。 2.孩子若好出身、易惊,可能是缺钙早期表现或是神经系统兴奋的表现。多晒太阳或是服用维生素D软胶丸促进钙吸收预防佝偻病,近期可来医院给孩子做一个系统检查,毕竟有缺氧的病史,不能大意,我们到时结合孩子的表现,根据具体情况看是需要定期随访还是需要治疗,要是发育迟缓,应用营养脑细胞药物只是一方面,还需要配合综合康复治疗。到时挂儿童保健科的号就可以了。 以上内容为我们介绍了缺血缺氧性脑损伤的治疗方法,大家都可以按照以上的方法尽快治愈我们出现的缺血缺氧性脑损伤的情况,大家一定要尽快进行治疗,不能耽误病情治疗的黄金阶段,对于我们的康复会起到一个很好的作用。 生活中的小常识分享,对您有帮助可购买打赏

2020年执业药师继续教育脑缺血损伤及药物的干预作用答案

脑缺血损伤及药物的干预作用 单选题:每道题只有一个答案。 1.脑缺血病理损伤的病理机制是e A.离子平衡紊乱 B.细胞内钙超载 C.脑组织炎性损伤 D.脑组织能量代谢障碍 E.以上均是 2.细胞凋亡相关的信号途径,如一些细胞因子、生长因子、肿瘤坏死因子(Bcl-x),将存活或凋亡信号从胞外传递到胞内,再通过特定的信号途径,调控细胞凋亡进程。(a ) A.正确 B.错误 3.脑缺血急性期,通过诱发和促进炎症、细胞毒性反应及多种凋亡途径 加剧损伤;后期则发挥保护性作用。( a) A.正确 B.错误 4.S100B蛋白:高浓度特异地存在于中枢神经系统的多种细胞中。急性缺血性脑血管病神经细胞出现水肿、变性和坏死,脑脊液和血浆中 S100B蛋白水平显著升高,成为缺血性脑损伤的一个重要标志物。( a) A.正确 B.错误 5.血小板激活因子受体抑制剂是a

A.银杏苦内酯B B.阿斯匹林 C.组织型纤溶酶原激活剂 D.水蛭素 E.肝素 6.白细胞介素IL-3:(d ) A.正常时脑内只少量表达IL-1β,缺血后表达明显增加,高浓度的 IL-1β 参与了神经元损伤以及白细胞的粘附和浸润B.缺血后脑内IL-6表达明显增加,其作用是诱导缺血区B细胞、 T细胞分化,增强免疫反应,引起缺血性脑损伤C.脑缺血后IL-8表达增加,在中性粒细胞介导的炎性损伤中起枢纽作用。D.在脑缺血中主要发挥神经保护作用E.能有效地抑制T细胞、B细胞产生细胞因子,从而抑制免疫应答,发挥神经保护作用 7.血管性痴呆药物有效性的评价指标是d A.脑梗塞范围减少 B.肌张力增强 C.脑水肿减轻 D.记忆能力增强 E.平衡能力增强 8.血管性痴呆在欧洲和美国等国家是仅次于AD的第二位最常见的痴呆原因,患病率在0.9%和3.0%之间,约占痴呆的10%-50%。我国血管性痴呆的患病率约为 1.1%-3.0%。( a) A.正确 B.错误 多选题:每道题有两个或两个以上的答案,多选漏选均不得分。 1.补阳还五汤包含有( abcd)

缺血性脑损伤的病理生理基础和脑梗塞的治疗原则

缺血性脑损伤的病理生理基础和脑梗塞的治疗原则 急性缺血性脑损伤、神经元坏死的发病机制和防治经历过长时间的研究过程,从选择性神经的细胞死亡至迟发性神经元坏死(DND)以及至近年缺血半暗带,缺血治疗时间窗研究和溶栓治疗进展,为急性脑硬塞的治疗提供光明前景。一、迟发性神经元坏死(DND)早在1925年Spielmeyer提出选择性神经细胞易伤性,表现在不同的脑区,如海马cal区,小脑蒲金野细胞和大脑皮层Ⅲ-Ⅳ层等神经细胞损伤,曾有多种理论解释,诸如血管理论,特异性易伤性、血管结构和神经元理化特性等学说,也曾进行多种动物模型研究,直至Pulsinelli(1979)[1]首先建立四血管阻断全脑缺血再灌注模型,促进了脑缺血的实验研究。迟发性神经元死亡,Kirino(1982)[2]应用沙土鼠两血管阻断再灌注全脑缺血模型,发现海马cal区2-7天后出现神经元坏死称为迟发性神经元死亡,同年Pul sinelli[3]用大鼠4VO再灌模型取得相同的结果,即海马ca4区为缺血性细胞改变,ca3菊反应性改变,而cal区则为DND改变。自此得到公认并进一步深入病理形态,超微结构,理化改变研究对DND 发生机制取得突破性进展: 1 自由基(FR)与DND 自由基FR广泛存在于生物体内,正常生理情况下FR处在生成和清除平衡状态不损害机体具有毒物降解作用,生物体内的FR 有:氧化自由基,过氧化氢和羟自由基等,实验研究证明FR 代谢失平衡是脑缺血再灌注DND过程中的一个最基本特征[4,

5]。脑缺血再灌注氧自由基过多,特别是超氧化阴离子过多造成组织损伤,有血管内皮细胞损伤血脑屏障遭破坏产生脑水肿;神经细胞、胶质细胞的膜磷脂损伤、C a2+、Na+、流入细胞内、Ca2+超载;兴奋性氨基酸NMDA受体神经毒作用,造成神经元损伤等[6]。临床上应用维生素C、E的抗氧化作用保护和治疗受损神经细胞。 2 细胞Ca2+超载与DND 细胞内Ca2+超载是缺血再灌注造成DND的主要原因[7]。正常生理状态下细胞内外Ca2+浓度相差近万倍,多种Ca2+通道维持这种正常递度包括NMDA受体通道。电压依赖Ca2+通道,内质网Ca2+通道、线粒体Na/Ca2+交换Ca2+-ATP酶和钙调蛋白等[8 ]。当脑缺血缺氧病理状态下,EAA受体过度兴奋,引起溶质重排Ca2+细胞内流增加;高能磷酸化合物耗尽,离子泵受损,胞内Ca2+不能泵出,线粒体和内质网对Ca2 +的摄取和钙结合蛋白调蛋白的结合能力下降,造成细胞内Ca2+超载发生DND。 3 兴奋性氨基酸与DND 兴奋性氨基酸有谷氨酸和天门冬氨酸,在脑内的Glu为最多是CNS中的兴奋性递质参与多种生理功能包括感光信息处理,协调运动,认知过程的学习和记忆等。正常Glu细胞内高于细胞间隙1000倍,实验证明缺血5min,细胞间隙Glu升高 1 5-20倍,再灌注5min可恢复正常,但缺血20minGlu升高达20-100倍,继续再灌注2 0min亦不能恢复到正常水平,激活AMPA受体通过开放使细胞内能量和ATP耗尽,细胞外K+浓度增加导致细胞膜去极化Na+在细胞内堆积Cl-和

脑缺血再灌注损伤机制及治疗进展

脑缺血再灌注损伤机制及治疗进展 西安交通大学医学院第二附属医院麻醉科710004 薛荣亮 脑缺血一定时间恢复血液供应后,其功能不但未能恢复,却出现了更加严重的脑机能障碍,称之为脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIR)。 脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。急性局灶性脑缺血引起的缺血中心区死亡以细胞坏死为主,目前认识的比较清楚,即脑缺血后5-7分钟内,细胞能量耗竭,K+通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA 受体)致使细胞膜上的Ca2+通道开放,引起Ca2+超载,高Ca2+可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引起膜结构和DNA的损伤;Ca2+还可活化各种酶类,加剧细胞损伤和能量障碍,引发缺血级联反应,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引起细胞坏死。 近年来认识到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND常出现在缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀过程,称之为细胞凋亡(PCD)。脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深入研究。 现对脑缺血再灌注损伤机制的研究进展及保护措施简述如下:1.基因活化 脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现

变化,绝大多数基因与凋亡有关,其中57种基因的蛋白表达是缺血前的 1.7倍,而34种基因的表达量出现下降,均发生在4小时到72小时, 包括蛋白质合成,基因突变,促凋亡基因,抑凋亡基因和损伤反应基因变化等,这些基因的相互作用最终决定了DND的发生。 2.兴奋性氨基酸毒性 兴奋性氨基酸毒性是指EAA受体活化而引起的神经元死亡,是脑缺血性损伤的重要触发物和介导物。EAA可活化胞内信号转导通路,触发缺血后致炎基因表达。CA1区神经细胞分布着大量的EAA受体,而抑制性氨基酸受体分布很小,这就为缺血后的兴奋性毒性提供了基础。另外,CA1区较CA3区对缺血损伤敏感是由于其兴奋性氨基酸受体的类型不同,CA1区以NMDA受体为主,CA3区以KA受体为主,而KA 受体对缺血敏感性较差,可能是造成DND发生的重要原因。 3.自由基及脂质过氧化 脑缺血再灌注期间产生大量自由基。其有害作用可概括为:①作用于多价不饱和脂肪酸,发生脂质过氧化。②诱导DNA、RNA、多糖和氨基酸等大分子物质交联,交联后的大分子则失去原来的活性或功能降低。③促使多糖分子聚合和降解。自由基可广泛攻击富含不饱和脂肪酸的神经膜与血管,引发脂质过氧化瀑布效应(oxygen burst),蛋白质变性,多核苷酸链断裂,碱基重新修饰,细胞结构的完整性破坏,膜的通透性、离子转运、膜屏障功能均受到严重影响,从而导致细胞死亡。自由基还能导致EAA释放增加,促使脑缺血后DND发生。 4.热休克蛋白表达紊乱 热休克蛋白是在多种应激原的作用下生成的分子量为7-200KD的

缺氧缺血性脑损伤(HIE)小鼠模型详细步骤及说明

缺氧缺血性脑损伤(HIE)小鼠模型详细步骤及说明原型物种人 来源低氧导致的脑损伤 模式动物品系SPF级Balb/c 小鼠,雄性,6~8周 实验分组随机分组:对照组,模型组,阳性药物组和药物组,每组15只实验周期4~6w 建模方法将实验动物置于可视恒压舱内,并持续注入流量为5L/min的低氧气体(8%O2及92%N2),每次90min。每周干预1~3次,干预周期为3周。 应用疾病模型 模型评价 Morris水迷宫实验所有组别,于12周龄时,进行Morris水迷宫试验,试验分为定位航行实验和空间探索实验。 1. 定位航行实验:小鼠连续接受5天的训练,每天4次,每次时间间隔 30min,记录下小鼠从4个入水点和入水并找到平台所需要的时间,即逃避潜伏期。4次潜伏期的平均成绩作为当日的最终结果进入到最后统计。 2. 空间探索实验:实验的第6天,撤去平台,从距离平台的最远端入水后,将小鼠放入水中,记录下30s内小鼠的游泳轨迹,并观察分析小鼠在目标象限的停留时间,以及它的穿越平台的次数。

行为学结束后,将各组小鼠摘取全脑,冰上剥去小脑,放入4%多聚甲醛中固定,用于病理学检测。 1. 免疫组化染色 观察海马区和皮层去Aβ淀粉样斑块染色情况。光学显微镜下,计数6个视野下每组小鼠同一部位的阳性斑块数量,作统计分析。 2. Thiolain S染色 石蜡白片用Tholain S荧光染料染色,染色检测海马区以及皮层区Aβ淀粉样斑块(绿色荧光)的表达。荧光显微镜下,计数6个视野下每组小鼠同一部位的阳性斑块数量,作统计分析。 应用SPSS软件进行统计分析,计量资料以均数±标准差(x ±s)表示,采用t检验,组间比较采用单因素方差分析,P<0.05表示有显著差异。

关于脑缺血再灌注损伤机制及治疗

关于脑缺血再灌注损伤机制及治疗 脑缺血再灌注损伤(CIRI)是一种复杂的病理、生理过程。它由多种机制共同参与,如炎性反应,钙离子超载,自由基的过度形成,兴奋性氨基酸的毒性作用等。各个环节,多种因素共同作用,促进CIRI后脑梗死灶的形成及神经功能的破坏。本文,我们将从CIRI发病机制及药物治疗两方面进行阐述。 标签:CIRI;发病机制;药物研究 脑血管疾病是中老年人常见的致残原因。缺血性脑血管病(ICVD),它在脑血管病中的发病概率最高。患者脑缺血持续一段时间后,虽然供血量恢复,但功能尚未恢复,且并发严重的脑机能障碍,称为CIRI。CIRI具有发病机制复杂,病因多样等特点。CIRI不仅危害患者生命及健康,还会给社会及患者家庭带来巨大的精神及经济负担。现今,该病尚缺乏有效的治疗药物[1,2]。故而,研究及探讨疾病的病因及药物治疗方法具有重要意义。本文将就此进行综述。 1疾病的发病机制 1.1自由基自由基损伤脑组织多发于缺血再灌注期[3]。①氧自由基氧自由基过多,可造成核酸、蛋白质及脂质的过氧化,破坏机体膜结构,增加膜结构的通透性,促进核酸断裂、线粒体变性及蛋白质降解。氧自由基过多,还可诱导RNA,DNA,氨基酸等物质交联,减低物质活性。缺血时,机体内源性的抗氧化系统常无显著改变,而脂质过氧化物将显著上升,致使机体氧化、过氧化失衡。再灌注时,产生大量氧自由基,促使脂质过氧化过程继续,加重细胞的损伤。②NO自由基它在CIRI发病中,具有神经保护作用及神经毒性。过量的NO自由基可与超氧阴离子结合,促进DNA氧化,抑制其修复,损伤线粒体,促进机体细胞凋亡。 1.2兴奋性氨基酸的毒性作用(EAA)EAA是重要的兴奋性神经递质[4,5]。脑缺血时,EAA对脑细胞产生毒性作用。EAA是CIRI的重要环节。EAA 包括天冬氨酸及谷氨酸等。脑缺血时,谷氨酸起主要作用。大量谷氨酸激活AMPA 谷氨酸受体,继而激活了磷脂酰肌醇(与Gq蛋白耦联)的信号转导系统,致使细胞的通透性改变,Cl-和Na+大量进入脑细胞,随之,水也被动性的进入细胞,造成脑水肿,最终诱导脑细胞凋亡。 1.3钙离子超载脑缺血时,脑细胞能量代谢障碍,细胞内缺乏ATP,钙离子泵功能失调,钙离子外流减低。谷氨酸大量释放,NMDA受体被激活,致使钙离子内流。细胞无氧代谢,使产H+增加,促进Na+内流,细胞内高浓度的Na+,激活Ca2+/ Na+交换蛋白,进一步加重钙离子内流。细胞内离子的不均衡分布,将破坏脑细胞防御体系[6,7]。①细胞内Ca2+浓度过高,Ca2+积聚于线粒体,损伤线粒体膜,抑制ATP的合成,继而导致能量合成障碍。②Ca2+可激活C和A2,促进磷脂分解,产生白三烯、前列腺素等,对脑细胞产生毒性作用。③Ca2+含量过高,使钙调蛋白含量增加,继而促进弹性蛋白酶、5-羟色胺释放,致使脑

缺血性脑卒中与认知功能障碍

·专题· 缺血性脑卒中与认知功能障碍 张卫1,恽晓平1,2 [摘要]本文从缺血性脑卒中后认知障碍的流行病学、发病机制以及影像学指导下病灶与认知障碍之间的相关分析等方面进行综述。 [关键词]缺血性脑卒中;认知功能障碍;认知康复;综述 Ischemic Stroke and Cognitive Impairment(review)ZHANG Wei,YUN Xiao-ping.Capital Medical University School of Rehabilitation Medicine,the Department of Rehabilitation Evaluation,Beijing Charity Hospital,China Rehabilitation Research Center,Beijing100068, China Abstract:This paper reviewed the epidemiology,pathogenesis of post-ischemic-stroke cognitive impairment and the correlation analy-sis between the lesion and cognitive impairment under imaging guidance. Key words:ischemic stroke;cognitive impairment;cognitive rehabilitation;review [中图分类号]R743.3[文献标识码]A[文章编号]1006-9771(2011)06-0540-03 [本文著录格式]张卫,恽晓平.缺血性脑卒中与认知功能障碍[J].中国康复理论与实践,2011,17(6):540—542. 随着康复医学在我国的深入发展,脑卒中后康复的理念被神经内科医生认同并越来越受到重视。但是无论是科研还是临床,关注点一直比较集中在促进偏瘫躯体运动功能的恢复和改善语言障碍能力等方面。而脑卒中后出现的认知功能障碍,诸如注意障碍、记忆障碍、执行功能障碍以及各种知觉障碍等则长期未受到重视,一些仅仅影响认知功能的脑卒中患者甚至根本得不到任何治疗。实际上,这种治疗观念上的偏颇极大地影响脑卒中患者的康复和生活质量。 研究显示,脑卒中后认知功能障碍常常干扰患者对外界环境的感知和适应,出现生活和社会适应性障碍,还可造成焦虑、抑郁、激惹等情感障碍,影响脑卒中患者运动功能的恢复,严重影响其日常生活活动能力的提高。认知损害对生活质量的影响甚至远远超过躯体功能障碍的影响[1-2]。此外,由此而致的住院时间延长,医疗资源消耗增加,不仅加重患者家属的经济、生活及心理负担,也加重社会负担。 脑卒中后认知功能障碍的发病率较高。Hachinski等(2007)研究显示,高达64%的脑卒中患者存在某种程度的认知障碍,约1/3会明确发展为痴呆[3]。脑卒中患者发生认知障碍的风险至少是未患脑卒中患者的6~9倍,尤以脑卒中后12个月内发生认知障碍的风险更高,而且可能持续数年之久[4]。由于缺血性脑卒中占所有类型脑卒中的比例较高,西方发达国家高达85%[5],我国为60%~80%[6],因此对于脑卒中后认知功能障碍的研究,多以缺血性脑卒中患者为主要研究对象。Jaillard及同事研究发现,缺血性脑卒中后2周非痴呆的患者中,高达91.5%至少存在一个认知领域的障碍,而有73.4%存在多个认知领域的障碍[7]。因此,及早发现并有效治疗缺血性脑卒中后的认知功能障碍对脑卒中康复十分重要。 1认知与认知功能的结构基础 1.1认知功能及认知功能障碍认知功能指人类在觉醒状态下始终存在的各种有意识的精神活动,是大脑执行高级活动的功能。包括从简单对自己和环境的确定、感知、理解、判断到完成复杂的数学计算等[8]。它既是知识的获得、组织和应用过程,也是一个体现机能和行为的智力过程,更是人们适应周围环境赖以生存的必要条件。认知功能由多个认知域组成,包括记忆、注意、计算、时空间定向、结构能力、执行能力(计划、起始、顺序、运行、反馈、抽象、决策和判断等)、语言理解和表达及应用等方面[9]。如果其中某一个认知域发生障碍,就称为该认知域的障碍,如记忆障碍、计算障碍、定向障碍等;如为多个认知域发生障碍,则称为认知功能障碍[10]。 1.2脑结构与认知功能研究显示,大脑额叶、颞叶、丘脑、基底核及顶叶与认知关系密切。其中额叶,特别是前额叶区与认知功能关系最为密切,参与注意、记忆、执行、推理和抽象思维等高级认知活动[11-13]。基底核与前额叶在解剖位置上很接近,且参与前额叶相关的皮质-纹状体-苍白球-黑质-丘脑-皮质环路系统,因而基底节与额叶共同执行决策、注意选择、行为变换和语言记忆等活动[14]。顶叶参与物体的空间位置识别和加工[15],并与额叶共同参与空间记忆、注意、计算、推理判断[16]。颞叶参与记忆、执行和语言(复述及流畅性)认知活动[17]。丘脑参与注意、语言、记忆等认知活动[18-19]。 尹义臣等的研究表明,大脑皮质和皮质下结构(皮质下白质、边缘系统、间脑神经核团、脑干核团及小脑等)共同组成神经网络或环路,参与认知活动。复杂的认知活动不是由某一脑区或神经结构单独完成,而是多个脑功能区和神经结构共同参与;不同的脑功能区或神经结构承担认知活动中不同环节的信息处理,不同的认知活动需要不同的脑功能区参与;而各种认知活动也不能截然分开,某一脑区或神经结构可能与多种认知活动有关[20]。 大脑皮层及皮质下结构有着不同来源的血液供应,其主要来自颈内动脉系统中的脉络膜前动脉、大脑前动脉及大脑中动脉3支动脉和椎-基底动脉系统中的大脑后动脉。某一皮层或皮质下结构也不完全由同一支动脉供血,例如基底核区就由大脑前、中、后动脉的中央分支及脉络膜前动脉发出相应分支提供血液;而某一支动脉也可能供应多个大脑皮层或皮质下结构,例如大脑中动脉就供应大脑半球背外侧面的额叶、颞叶、顶叶 作者单位:1.首都医科大学康复医学院,北京市100068;2.中国康复研究中心北京博爱医院康复评定科,北京市100068。作者简介:张卫(1975-),男,河北邯郸市人,硕士研究生,主要研究方向:康复评定和认知康复。通讯作者:恽晓平。

第二十三讲缺血再灌注损伤概论修订版

第二十三讲缺血再灌注 损伤概论 Document number:PBGCG-0857-BTDO-0089-PTT1998

第二十三章缺血-再灌注损伤 一、基本要求 1. 掌握自由基、活性氧、缺血-再灌注损伤、氧反常、钙反常、pH反常、钙超载、无复流现象和呼吸爆发的概念, 重点掌握缺血-再灌注损伤的发生机制。 2. 熟悉缺血-再灌注损伤的原因和条件, 熟悉缺血-再灌注损伤时机体的功能和代谢变化。 3. 了解防治缺血-再灌注损伤的病理生理基础。 二、知识点纲要 (一)缺血-再灌注损伤的概念 各种原因造成组织血液灌流量减少,可使细胞发生缺血性损伤。再灌注具有两重性,多数情况使缺血组织和器官的功能结构得以修复,患者病情得到控制。但是,部分患者或动物缺血后再灌注,不仅没使组织器官功能恢复,反而使缺血所致功能代谢障碍和结构破坏进一步加重,这种现象称为缺血-再灌注损伤。与之密切相关的概念,还有氧反常、钙反常和pH反常。缺血-再灌注损伤在不同种属和各种组织器官均可发生,具有普遍性。 ( 二 ) 缺血-再灌注损伤的原因和条件 再灌注损伤取决于缺血时间、侧支循环、需氧程度以及电解质浓度。 ( 三 ) 缺血-再灌注损伤的发生机制 1. 自由基的作用 (1) 自由基的概念、特性、类型、体内代谢和生物学意义 (熟悉和了解) (2) 缺血-再灌注时氧自由基生成增多的机制 (掌握) 1) 黄嘌呤氧化酶形成增多; 2) 中性粒细胞的呼吸爆发;3) 线粒体损伤,氧分子单电子还原增多;4) 儿茶酚胺增加,自氧化增强。 (2) 自由基的损伤作用(掌握) 1) 生物膜脂质过氧化增强导致①膜结构破坏──膜的液态性和流动性减弱,通透性增强;②抑制膜蛋白功能──离子泵失灵和细胞内信号传递障碍;③线粒体功能受损──ATP 生成减少。 2) 细胞内Ca2+超载源于自由基引起细胞膜通透性增强,膜上Na+-K+-ATP酶失活和线粒体功能障碍。 3) DNA 断裂和染色体畸变外面无组蛋白保护的线粒体DNA对氧化应激敏感。 4) 蛋白质变性和酶活性降低自由基可引起蛋白质分子肽链断裂,使酶的巯基氧化。 5) 诱导炎症介质产生自由基可导致脂质过氧化和胞内游离钙增加,激活磷脂酶,脂加氧酶及环加氧酶。 2. 钙超载 (1) .细胞内钙稳态调节 (熟悉和了解) (2) 再灌注时细胞内钙超载的机制 (掌握) 1) Na+-Ca2+交换异常;2) 细胞膜通透性增高;3) 线粒体功能障碍;4) 儿茶酚胺增多。 (3) 钙超载引起再灌注损伤的机制 (掌握)

科普 婴儿脑损伤和缺氧缺血性脑病分类

婴儿脑损伤和缺氧缺血性脑病分类 早期婴儿脑损伤是指1岁以前,产前产后由于外环境影响而发生的脑组织伤害。脑组织损害的程度主要不决定于伤害的原因(如宫内窒息、缺氧、感染、中毒和机械性损伤),而是伤害发生在什么样的发育时期。临床表现为脑性瘫痪、智力缺陷和癫痫。常见的有以下几种:新生儿颅内出血,缺氧缺血性脑病,积水性无脑畸形,先天性脑穿通畸形,婴儿硬膜下水瘤,蛛网膜囊肿等。 一、新生儿颅内出血 新生儿疾病和死亡的一个主要原因是颅内出血。早产儿的颅内出血发生率很高,多为脑的生发层出血,继发脑室内出血和脑实质内出血。一般发生于早产儿生后28天之内。 足月婴儿颅内出血原因是产伤和缺氧缺血性损害。产伤引起颅内出血,按出血部位分,以硬膜下出血最多,以下依次为蛛网膜下腔出血和脑基底池出血。分娩时,胎头通过产道,额枕部受到突然的压力,作用在小脑幕和大脑镰的后部,继而引起静脉撕裂,形成硬膜下血肿。 二、缺氧缺血性脑病(Hypoxic-Ischemic Encephalopathy,HIE) 缺氧缺血性脑病是全部脑组织因缺氧缺血引起的脑损害。常见原因有:长时间严重的低血压、心跳骤停后复苏、新生儿窒息、一氧化碳中毒。早产儿可表现为脑室周围白质软化。早产儿体重越小,发生本病的机会越多,孪生的早产儿又患新生儿呼吸窘迫综合征者,发生本病的机会也多。 早产儿脑缺氧缺血性损害不仅表现为脑室旁白质软化,还表现脑室内或脑室旁生发层出血。 足月婴儿,围产期有过窒息,可以有特征性的CT表现。窒息后24~48小时内可以发生严重的弥漫性脑水肿。CT表现弥漫性脑实质密度减低,但是小脑、脑干和基底神经节可保留相对较高密度,而大脑半球密度显著减低。几天以后发生出血性脑皮质坏死,继而出现钙化,最后表现重度脑萎缩。 三、无脑性脑积水畸形或水脑畸形(Hydranencephaly) 本病是胎儿大脑已经形成以后,发生颈内动脉闭塞,以后脑组织萎缩,变成一种边缘性的膜样结构,脑组织全被脑脊液代替。但脑干、小脑、大脑颞叶、枕叶和大脑镰不受影响。若头围较小,CT诊断本病比较容易。如头颅明显增大,则与脑积水不易鉴别。但是脑积水一般表现进行性头围增加,而本病相对是静止的,没有头围增加。脑积水血管造影表现变细但仍存在的血管,鞘内注射造影剂,侧裂内有造影剂充盈,而水脑畸形则不具备这些表现。 四、先天性脑穿通畸形(孔洞脑,Congenital porencephaly)

1 细胞凋亡与缺血性脑损伤

1 细胞凋亡与缺血性脑损伤 内质网(endoplasmic reticulum,ER)在细胞内分布广泛,是真核细胞中重要的细胞器,其内膜表面积占细胞所有膜结构的50 %,体积占细胞总体积的10 %,参与重要的生理功能的维持,其基本生理功能包括负责蛋白质的合成转运、信号肽识别、糖基化修饰等过程以及钙离子的贮存和调节,信号转导及细胞内钙的再分布。内质网巨大的膜结构为细胞内活性物质的反应提供了一个广阔的平台,在许多信号调控中起到关键作用。最近的研究表明,内质网是细胞凋亡调节中的重要环节[1]。 细胞应激涉及线粒体、内质网、细胞核等细胞器的应激,他们既相对独立,又相互作用[2]。内质网是细胞加工蛋白质和贮存Ca2+的主要场所,对应激极为敏感,其功能紊乱时出现错误折叠与未折叠蛋白在腔内聚集以及Ca2+平衡紊乱的状态,称为内质网应激(endoplasmic reticulum stress,ERS)[3]。ER非常敏感,葡萄糖/营养素缺乏、蛋白质糖基化抑制、二硫键形成障碍、蛋白质转运异常、Ca2+耗竭等刺激都可导致ER功能失调,发生内质网应激。内质网应激主要激活三条信号通路:未折叠蛋白反应(unfold protein response,UPR)、内质网超负荷反应(endoplasmic reticulum overload response,EOR)和固醇调节级联反应。前两者是由于蛋白质加工紊乱所致,后者则是在ER表面合成的胆固醇损耗所致。 凋亡(apoptosis)又叫程序性细胞死亡,是指机体在生理条件下受到刺激后,经过多种信号传递导致细胞产生一系列生态和生化方面的改变而引起细胞程序性死亡的过程。自1972年John Korr第一次提出凋亡概念后,经三十多年的研究,目前已知有三条主要的细胞内信号转导通路来调控细胞凋亡:(1)线粒体通路;(2)死亡受体通路;(3)内质网通路。传统的观点认为,线粒体受损后能释放多种促凋亡物质,从而导致细胞凋亡。最近的研究表明,脑缺血后损伤内质网,导致内质网应激,最终通过多种途径致使神经元凋亡[4]。 脑血管病是危害人类生命和健康的常见病和多发病,其中缺血性脑中风占75 %—85 %。有关缺血性脑损伤的基础研究和临床治疗方面均取得很大进展。新近研究证实,在缺血半暗区确实发现有凋亡细胞和神经细胞再生。与急性缺血性神经元坏死相比,半暗区的侧枝循环尚未完全中断,因此,缺血性中风的治疗关键在于延长治疗时间窗和及时挽救缺血半暗带尚未死亡的神经元[5]。缺血再灌注(ischemia/reperfusion,I/R)时,缺氧、酸中毒、ATP 耗竭、钙超载及大量自由基生成等均可作为诱导ERS的刺激因素,ERS在I/R损伤的发生发展中具有重要意义[6]。 2 脑缺血诱导的内质网应激及其引发的细胞凋亡 2.1 脑缺血后Ca2+浓度变化对内质网的影响及其引起的细胞凋亡 Paschen等发现,细胞在短暂性脑缺血时的变化与神经元内质网Ca2+稳态受到破坏后,都出现了内质网应激,显示内质网Ca2+稳态紊乱参与了缺血性脑损伤的病理生理学过程,内质网应激可能是脑缺血细胞损伤的关键环节[8]。

脑缺血再灌注损伤治疗的研究进展

脑缺血再灌注损伤治疗的研究进展 向军 同济大学医学院,上海(200433) E-mail: Chelsea_JX@https://www.doczj.com/doc/3012791472.html, 摘要:缺血性脑血管是现代社会致死致残的最主要疾病之一,其治疗原则及时恢复缺血区的血液再灌注,而随之而来的再灌注损伤又成为一大难题。笔者对近年来脑缺血再灌注损伤的治疗研究综述如下。 关键词:脑缺血再灌注损伤;治疗;进展 缺血性脑血管病是现代社会致死、致残的最主要疾病之一,其治疗原则是及时的恢复缺血区的血液灌注。然而在某些情况下缺血后再灌注不仅没有使组织功能恢复,反而使缺血所致的功能障碍和结构破坏进一步加重,这种现象即缺血再灌注损伤(ischemia reperfusion injury),抑制再灌注损伤已成为缺血性中风治疗的重要环节。近年来针对脑缺血再灌注损伤的治疗研究取得一定成果,现将其综述如下。 1.自由基研究 自由基(free radical)是外层轨道上有单个不配对价电子的原子、原子团和分子的总称,其化学性质极为活波,可与各种细胞成分(膜磷脂、蛋白、核酸)发生反应,导致细胞功能障碍和结构破坏。在脑缺血再灌注时,机体的自由基产生和清除系统遭到破坏,导致大量自由基的存在,造成脑组织损伤和功能障碍。由于再灌注治疗窗十分短暂(仅1-3小时),因此清除自由基应在再灌注前或者再灌注早期即开始。 自由基的清除主要靠自由基清除剂,包括酶性自由基清除剂,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、Prion蛋白(PrPc)等;低分子自由基清除剂,如维生素C、维生素E、谷胱甘肽等;其他如甘露醇、糖皮质激素等。 有研究表明,褪黑素(Melatonin MT)能够清除羟自由基、过氧亚氮阴离子、降低单线态氧毒性和自由基引起的脂质过氧化反应,是有效的自由基清除剂和间接抗氧化剂,具有较好的神经元保护作用[1-2]。Cesario等[3]通过体内外实验观察发现,褪黑素的减轻脑缺血再灌注损伤作用,还与其对胶质细胞的保护作用有关,且胶质细胞对治疗比神经元更敏感。别嘌呤醇是黄嘌呤氧化酶抑制剂,通过阻止次黄嘌领转化为黄嘌呤,进而阻断自由基的产生。Allport等[4]的实验证明别嘌呤醇能够减少大鼠脑缺血再灌注模型的梗死面积和比率,对脑缺血和再灌注引起的脑损伤都具有保护作用。EGB761是银杏叶提取物的标准制剂,其主要活性物质是24%黄酮苷和6%萜烯内酯,具有较好的抗氧化作用。A. Ur′?kov等[5]的实验证明EGB761能够抑制脑缺血再灌注时的脂质过氧化反应,减轻自由基氧化作用对大鼠前脑的损害。 2.钙超载研究 脑缺血再灌注时,ATP供应不足、N-甲基-D-门冬氨酸(NMDA)受体过渡兴奋介导与其偶联的钙通道开放、细胞膜通透性增大以及Na- Ca2+交换异常等因素导致细胞内游离钙([Ca2+]i)浓度升高。细胞内钙超载一方面使血管收缩,进一步加重脑缺血缺氧;另一方面引起细胞结构和功能的破坏,导致细胞死亡。[Ca2+]i浓度升高既是脑损伤的后果,同时又是

脑缺血损伤的病理生理机制 - 哈药集团生物工程有限公司

脑缺血损伤的病理生理机制 柳挺,尹金鹏 (南阳医学高等专科学校基础医学部) 【摘要】 缺血性脑血管病是临床常见病、多发病,50以上的存活者遗留瘫痪、失语等严重残疾,给社会和家庭带来沉重负担。本文从缺血后脑内免疫反应、基因表达、血管活性因子等方面综述了缺血性脑血管病发生发展的病理生理机制,为临床防治缺血性脑血管病提供一定的理论依据。 【关键词】脑缺血;病理生理 高血压引起的脑小动脉硬化,高血脂引起的颈动脉和脑内动脉粥样硬化,高血糖引起的脑的微循环障碍,都可造成脑供血不足,导致脑缺血的发生与发展,使脑产生不同程度的病理损伤,使认知功能下降,痴呆产生。缺血性脑血管病一直是临床和基础研究的重要课题,多年来人们对脑缺血的病理生理进行了深入研究,并提出了多种学说为解释脑缺血机制奠定了基础。 1.脑组织病理学改变 脑缺血组织病理学的改变包括皮质萎缩、皮质和海马神经元变性、白质疏松、胶质细胞增生和毛细血管床的改变等。NiJW等[1]报道,双侧颈总动脉永久性结扎(2-vessel occlusion,2VO)后1个月,除部分大鼠皮质和纹状体有一些小梗死灶外,皮质和海马并无大体结构和光镜下神经元脱失改变;4个月时,可见海马CAI区神经元变性,伴胶质细胞活化;7个月后,可观察到明显的神经元脱失和广泛的变性和皮质萎缩。有报道认为[2],神经元的脱失与细胞凋亡有关,白质的变化包括小胶质细胞和星形细胞增生活化,少突胶质细胞减少和白质疏松等。Bennett SA 等[3]用 Western印迹法观察到,永久性结扎大鼠双侧颈总动脉,术后25周,皮质和海马AB物质沉积增加,且与淀粉样前体蛋白(APP)由神经元向胞外转移有关,说明在无其他致病因子存在时,慢性脑缺血本身即可引发APP 裂解成AB片段,导致细胞外淀粉样蛋白沉积,从而产生一些类似老年性痴呆(Alzheimer disease,AD)的病理改变。 2. 与脑内免疫反应的关系 刘之荣等[4]研究了2VO模型对脑内免疫细胞活动的影响,结果表明,2个月缺血区内,小胶质细胞被广泛活化,形态多异,白细胞和T细胞大量入侵缺血区脑实质。这些细胞的活动以皮层明显;海马和白质次之;在血管周围和梗死区显著;在缺血区半暗带,这些细胞高度集聚,说明这些细胞的活动与慢性脑灌注不足致脑损害高度相关。李露斯等 [5]观察,2VO术后1个月,皮层、海马和白质有白细胞和T细胞的浸润;2~4月,浸润的白细胞和T细胞减少,认为慢性脑灌注不足,引起免疫细胞的活动,从而促进认知功能障碍的发生发展。 3. 脑缺血后基因表达[6] 灌注梯度不仅决定半暗带,还决定脑缺血后基因表达的方式,即灌注水平不同。基因表达的方式也不一样。分析原位杂交放射自显影法检测到的基因表达、放射自显影法LCBF及组织梗死三者之间的关系显示,缺血的程度决定基因表达的时间、空间分布运用DNA微对列技术,筛查了缺血后数千基因的表达方式。MCAO 2h,再灌注3h后,有两大类基因表达:已知受缺血缺氧调节的基因和最近认为可能与缺血缺氧有关的基因缺血缺氧反应性基因中,有28种表达上调,6种下调,包括有即早期基因、热体克蛋白(heat shock proteins.HSP)、抗氧化酶、营养因子及介导RNA代谢、炎症、细胞信号的基因。新的缺氧缺血相关基因中,

缺血再灌注损伤机制及保护综述

缺血再灌注损伤机制及保护综述 脑缺血再灌注损伤机制及治疗进展 西安交通大学医学院第二附属医院麻醉科 710004 薛荣亮 脑缺血一定时间恢复血液供应后,其功能不但未能恢复,却出现了更加严重的脑机能障碍,称之为脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIR)。 脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。急性局灶性脑缺血引起的缺血中心区死亡以细胞坏死为主,目前认识的比较清楚,即 +脑缺血后5-7分钟内,细胞能量耗竭,K通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA 2+2+2+受体)致使细胞膜上的Ca通道开放,引起Ca超载,高Ca可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引起膜结构和 2+DNA的损伤;Ca还可活化各种酶类,加剧细胞损伤和能量障碍,引发缺血级联反应,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引起细胞坏死。 近年来认识到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND 常出现在缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀过程,称之为细胞凋亡(PCD)。脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深入研究。 现对脑缺血再灌注损伤机制的研究进展及保护措施简述如下: 1(基因活化 脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现

[论文]缺血再灌注损伤机制及保护综述

[论文]缺血再灌注损伤机制及保护综述脑缺血再灌注损伤机制及治疗进展 西安交通大学医学院第二附属医院麻醉科 710004 薛荣亮 脑缺血一定时间恢复血液供应后,其功能不但未能恢复,却出现了更加严重的脑机能障碍,称之为脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIR)。 脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。急性局灶性脑缺血引起的缺血中心区死亡以细胞坏死为主,目前认识的比较清楚,即 +脑缺血后5-7分钟内,细胞能量耗竭,K通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA 2+2+2+受体)致使细胞膜上的Ca通道开放,引起Ca超载,高Ca可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引起膜结构和 2+DNA的损伤;Ca还可活化各种酶类,加剧细胞损伤和能量障碍,引发缺血级联反应,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引起细胞坏死。 近年来认识到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND 常出现在缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀过程,称之为细胞凋亡(PCD)。脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深入研究。 现对脑缺血再灌注损伤机制的研究进展及保护措施简述如下: 1(基因活化

脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现变化,绝大多数基因与凋亡有关,其中57种基因的蛋白表达是缺血前的 1.7倍,而34种基因的表达量出现下降,均发生在4小时到 72小时, 包括蛋白质合成,基因突变,促凋亡基因,抑凋亡基因和损伤反应基因变化等,这些基因的相互作用最终决定了DND的发生。 2(兴奋性氨基酸毒性 兴奋性氨基酸毒性是指EAA受体活化而引起的神经元死亡,是脑缺血性损伤的重要触发物和介导物。EAA可活化胞内信号转导通路,触发缺血后致炎基因表达。CA1区神经细胞分布着大量的EAA受体,而抑制性氨基酸受体分布很小,这就为缺血后的兴奋性毒性提供了基础。另外,CA1区较CA3区对缺血损伤敏感是由于其兴奋性氨基酸受体的类型不同,CA1区以NMDA受体为主,CA3区以KA受体为主,而KA受体对缺血敏感性较差,可能是造成DND发生的重要原因。 3(自由基及脂质过氧化 脑缺血再灌注期间产生大量自由基。其有害作用可概括为:? 作用于多价不饱和脂肪酸,发生脂质过氧化。? 诱导DNA、RNA、多糖和氨基酸等大分子物质交联,交联后的大分子则失去原来的活性或功能降低。? 促使多糖分子聚合和降解。自由基可广泛攻击富含不饱和脂肪酸的神经膜与血管,引发脂质过氧化瀑布效应(oxygen burst),蛋白质变性,多核苷酸链断裂,碱基重新修饰,细胞结构的完整性破坏,膜的通透性、离子转运、膜屏障功能均受到严重影响,从而导致细胞死亡。自由基还能导致EAA释放增加,促使脑缺血后DND发生。 4(热休克蛋白表达紊乱 热休克蛋白是在多种应激原的作用下生成的分子量为7-200KD的蛋白大家族,但研究的较多的是HSP70,有报道称CA1区神经细胞能表达大量的Hsp70mRNA,而

脑缺血再灌注损伤主要发病机制的研究进展

脑缺血再灌注损伤主要发病机制的研究进展 脑血管疾病是一种严重危害人类身体健康的疾病,其具有死亡率、致残率高和难以预见的特点,一直受到国内外医学界的广泛关注[1]。其中,缺血性脑损伤疾病占脑血管疾病的绝大部分,缺血后及时的恢复血流再灌注对于恢复缺血区脑组织血氧供应、维持受损脑组织的正常形态与功能具有重要的意义。但当脑组织缺血时间较长时,再给予恢复血流再灌注的处理会进一步加重脑组织的损伤程度,此即为脑缺血再灌注损伤。脑缺血再灌注损伤的发病机制是一个快速的级联反应,这个级联反应包括许多环节[2]。主要环节有细胞内钙稳态失调、脑组织中氨基酸含量失稳态、自由基生成、炎症反应、凋亡基因激活及能量障碍等。这些机制彼此重叠,相互联系,形成恶性循环,最终引起细胞凋亡或坏死,导致缺血区脑组织不可逆的损伤[3]。 脑缺血早期,由于阻断血流使相关脑区能量(葡萄糖、O2、ATP等)迅速耗尽而导致能量危机,大脑神经元内钙离子超载,氧自由基增多以及兴奋性氨基酸的过度释放,引发了细胞内的毒性反应,引起神经元的过度凋亡和一系列的炎症反应;长时间的脑缺血恢复再灌注后,存活的脑组织中过氧化物堆积,可加剧脑组织损伤,在缺血区可见坏死、凋亡的细胞并伴随明显的炎症症状,引起脑组织坏死,且坏死区域会随着时间和空间扩大,进一步加重脑损伤程度[4]: 1.Ca2+超载与脑缺血再灌注损伤 钙离子参与细胞膜电位和细胞内的生化反应过程,对于维持神经细胞的正常功能起到关键性的调节作用[5],钙离子在脑缺血再灌注损伤的作用主要包括:(1)脑缺血再灌注后,细胞内Na+/Ca2+交换蛋白迅速激活,Na+向细胞外转运,同时将大量Ca2+转入细胞内,造成细胞内Ca2+超载,触发线粒体摄取Ca2+,使Ca2+聚集在线粒体内,过量的Ca2+可抑制ATP合成,使能量生成障碍;(2)Ca2+活化能激活线粒体上的磷脂酶, 促进膜磷脂分解产生对细胞有毒害作用的游离脂肪酸、前列腺素、白三烯和溶血磷脂等,改变其通透性,引起线粒体膜损伤。另外

相关主题
文本预览
相关文档 最新文档