画轴对称图形习题
- 格式:doc
- 大小:148.50 KB
- 文档页数:3
画轴对称图形练习题轴对称图形是指在平面上存在一个轴,当图形沿该轴作对称变换时,图形与自身重合。
画轴对称图形是培养儿童对称思维和审美能力的重要训练内容。
今天,我们来练习一些画轴对称图形的练习题。
1. 画出以下几个字母的轴对称图形:A、B、C、D、E、F、G。
2. 画出以下几个数字的轴对称图形:0、1、2、3、4、5、6、7、8、9。
3. 画出以下几个几何形状的轴对称图形:正方形、长方形、圆形、三角形、椭圆、五边形。
4. 根据给定的轴对称图形,完成图形的绘制:a) 给定一个正方形,画出它的轴对称图形。
b) 给定一个三角形,画出它的轴对称图形。
c) 给定一个长方形,画出它的轴对称图形。
d) 给定一个圆形,画出它的轴对称图形。
5. 设计一个轴对称的图案,使用你喜欢的颜色和形状进行绘制。
可以尝试使用不同的几何形状和线条来创造出独特的图案。
通过以上的练习题,我们可以巩固轴对称图形的绘制技巧和观察力。
画轴对称图形不仅能够培养我们的审美能力,还有助于提升我们的创造力和想象力。
在绘制过程中,我们需要注意以下几点:首先,要明确轴对称图形的基本特征,即从一个点为中心,沿轴线进行对称变换后图像不变。
其次,要注意绘制对称轴,可以使用直尺或绘图工具来帮助我们找到中心轴线。
然后,要对称地绘制图形的各个部分,确保每个部分都与其对称位置保持一致。
最后,要仔细观察和检查绘制结果,确保图形的各部分符合对称关系,并且整体上看起来完美对称。
在进行绘制时,可以使用纸和铅笔进行草图,并使用彩色铅笔或绘图软件进行上色。
可以尝试不同的颜色和图案来增加绘图的趣味性和创造力。
通过不断的练习和探索,我们可以提高自己的轴对称图形绘制能力,在欣赏美丽图形的同时,也培养了自己的审美能力和想象力。
所以,在日常生活中,多多练习画轴对称图形,让我们的大脑得到锻炼,同时也提高我们的艺术水平和绘画技巧。
希望以上的练习题能够帮助大家提升对轴对称图形的理解和绘制能力。
不要忘记享受绘画的过程,并在每次创作中发挥自己的想象力!。
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
利用轴对称设计图案习题精选(二) ★轴对称的性质1.下列图案中,对称轴的条数超过一条的是________。
2.下列说法中,正确说法的个数有()①对顶角是轴对称图形,其中一个角的平分线是它的一条对称轴;②等腰三角形至少有1条对称轴,至多有3条对称轴;③两个全等的三角形一定关于某直线对称;④两图形关于某直线对称,对称点一定在直线的两旁。
A.1B.2C.3D.43.画出图15-4-1中各图的对称轴.4.如图15-4-2,分别以直线L为对称轴,画出图形的另一半,先猜一猜,再试一试。
5.如图15-4-3,已知△ABC,直线MN,求作△A B C ''',使△A B C '''与△ABC 关于MN 对称,并指出它的对应点、对应线段和对应角。
★利用轴对称设计图案6.如图15-4-4,下列四个图形中,不是轴对称图形的是()7.正方形经过适当的剪拼,可得到不同的轴对称图案,如图15-4-5,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后,得到标号为P 、Q 、M 、N 的四组图形,按照哪个正方形剪开后得到哪组图形的对应关系填空:A 与______对应;B 与______对应;C 与______对应;D 与______对应。
[学科综合]8.如图15-4-6,已知△ABC 和直线l ,求作△A B C ''',使△A B C '''与△ABC 关于直线l 轴对称,并指出其对称点.9.如图15-4-7,以虚线为对称轴画出图的另一半。
[创新思维](一)新型题10.观察图15-4-8中的10种图形,说出哪些图形可以放在一起形成轴对称(可以将图形上下放置或左右放置)。
(二)课本习题变式题11.(课本P57习题第2题变式题)在黑板上钉着20枚钉子(如图15-4-9),相邻的两个钉子间的距离(指上下左右)等于1cm,请从●号钉子开始到★号钉子为止绷上一跟19cm 长的线,使这根线通过所有钉子。
小学三年级轴对称图形练习题轴对称图形是小学数学中的一个重要知识点,培养孩子的观察能力和逻辑思维能力。
本文将为小学三年级的学生提供一些轴对称图形的练习题,帮助他们巩固和应用所学知识。
读者可以尝试解答每个练习题,然后对照答案进行自我检验。
问题一:(1)请画一个关于蝴蝶的轴对称图形。
(2)请找出蝴蝶的轴对称线,并用直线将此图形划分为对称的两部分。
问题二:(1)请画一个关于汽车的轴对称图形。
(2)请找出汽车的轴对称线,并用直线将此图形划分为对称的两部分。
问题三:(1)请画一个关于花朵的轴对称图形。
(2)请找出花朵的轴对称线,并用直线将此图形划分为对称的两部分。
问题四:(1)请画一个关于手表的轴对称图形。
(2)请找出手表的轴对称线,并用直线将此图形划分为对称的两部分。
问题五:(1)请画一个关于房子的轴对称图形。
(2)请找出房子的轴对称线,并用直线将此图形划分为对称的两部分。
问题六:(1)请画一个关于椅子的轴对称图形。
(2)请找出椅子的轴对称线,并用直线将此图形划分为对称的两部分。
以上是一些小学三年级的轴对称图形练习题。
通过练习这些题目,孩子们可以更好地理解轴对称图形的概念,锻炼他们的观察力和创造力。
建议在练习时使用铅笔和直尺,确保图形的对称性和准确性。
(文章内容)在这篇文章中,我们为小学三年级的学生准备了一系列的轴对称图形练习题。
通过解答这些题目,孩子们可以提高他们的观察力和逻辑思维能力。
在练习中,建议使用铅笔和直尺,以确保图形的对称性和准确性。
问题一要求画一个关于蝴蝶的轴对称图形。
蝴蝶是一种美丽而独特的昆虫,具有明显的轴对称特征。
我们可以画一只蝴蝶,然后通过将图形折叠,使得两侧完全重合,以展现它的轴对称性。
根据题目的要求,我们需要找出蝴蝶的轴对称线,这是将蝴蝶图形划分为对称的两部分的直线。
问题二要求画一个关于汽车的轴对称图形。
汽车是一种常见的交通工具,它们通常具有对称的设计。
我们可以画一辆汽车,并以车的中心线作为轴对称线,将汽车图形划分为左右两部分。
轴对称图形
数学上定义:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形
折痕所在的这条直线叫做对称轴。
轴对称图形的基本性质
每组对应点到对称轴的距离都相等
对应点连线垂直于对称轴。
如果一个图形沿着一条直线对折,直线两边的部分能够完全重合,那么这个图形就叫做(),折痕所在的这条直线叫做()。
在轴对称图形中,对应点到对称轴的距离()。
三、画一画。
(画出下面对称图形的对称轴)(20分)
长方形有()条对称轴。
正方形有()条对称轴
圆有()条对称轴
等腰梯形有()条对称轴
五、补一补。
(根据对称轴补足另一半的图形)(16分)
六.判断正误。
1.所有的平行四边形都是轴对称图形。
()
2.有对称轴的图形一定是轴对称图形。
()
3.梯形都是轴对称图形。
()
4.如有侵权请联系告知删除,感谢你们的配合!
5.
6.
7.。
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
初中数学《八上》第十三章轴对称-画轴对称图形考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、在正方形网格中,建立如图所示的平面直角坐标系,的三个顶点都在格点上,点的坐标,请解答下列问题:画出关于轴对称的,并写出点,,的坐标;将绕点逆时针旋转,画出旋转后的,并写出点,的坐标.知识点:画轴对称图形【答案】(1) 见解析;(2 )见解析【分析】(1 )根据网格结构找出点 A 、 B 、 C 关于 y 轴的对称点 A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2 )根据网格结构找出点 A 、 B 绕点 C 逆时针旋转90° 的对应点 A2、B2的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可.【详解】如图所示,,,;(2 )如图所示,,.【点睛】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.2、如图,在平面直角坐标系xOy中,,,.(1 )请画出关于y轴对称的(其、、分别是A、B、C的对应点,不写画法);(2 )直接写出、、三点的坐标:______ ,______ ,______ ;(3 )的面积是______ .知识点:画轴对称图形【答案】(1 )见解析;(2 );;;(3 )【分析】(1 )分别作出各顶点关于y轴的对称点,连线即可;(2 )根据(1 )中图形写出坐标即可;(3 )用所在矩形面积减去周围三个小三角形的面积即可得出答案.l (2 )直接写出、、三点的坐标:______ ,______ ,______ ;(3 )的面积是______ .知识点:画轴对称图形【答案】(1 )见解析;(2 );;;(3 )【分析】(1 )分别作出各顶点关于y轴的对称点,连线即可;(2 )根据(1 )中图形写出坐标即可;(3 )用所在矩形面积减去周围三个小三角形的面积即可得出答案.【详解】解:(1 )如图所示;(2 )由(1 )图知:,,,故答案为:;;;(3 )如图:,故答案为:.【点睛】本题考查了作图-轴对称变换,根据题意画出轴对称图形是解本题的关键.4、下面是小明关于“ 对称与旋转的关系” 的探究过程,请你补充完整.(1 )三角形在平面直角坐标系中的位置如图 1 所示,简称G,G关于y轴的对称图形为,关于轴的对称图形为.则将图形绕____ 点顺时针旋转 ____ 度,可以得到图形.(2 )在图 2 中分别画出G关于y轴和直线的对称图形,.将图形绕____ 点(用坐标表示)顺时针旋转 ______ 度,可以得到图形.(3 )综上,如图 3 ,直线和所夹锐角为,如果图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕____ 点(用坐标表示)顺时针旋转 _____ 度(用表示),可以得到图形.知识点:画轴对称图形【答案】(1 )O,180 ;(2 )图见解析,,90 ;(3 ),【分析】(1 )根据图形可以直接得到答案;(2 )根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3 )从(1 )(2 )问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【详解】解:(1 )由图象可得,图形与图形关于原点成中心对称,则将图形绕O点顺时针旋转180 度,可以得到图形;故答案为:O,180 ;(2 ),如图;由图形可得,将图形绕点(用坐标表示)顺时针旋转90 度,可以得到图形,故答案为:,90 ;(3 )∵ 当G关于y轴的对称图形为,关于轴的对称图形为时,与关于原点(0,0 )对称,即图形绕O点顺时针旋转180 度,可以得到图形;当G关于y轴和直线的对称图形,时,图形绕点(用坐标表示)顺时针旋转90 度,可以得到图形,点(0,1 )为直线与y轴的交点,90 度角为直线与y轴夹角的两倍;又∵ 直线和的交点为,夹角为,∴ 当直线和所夹锐角为,图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕点(用坐标表示)顺时针旋转度(用表示),可以得到图形.故答案为:,.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.5、如图,已知线段,其垂直平分线的作法如下:① 分别以点和点为圆心,长为半径画弧,两弧相交于,两点;② 作直线.上述作法中满足的条作为___1. (填“” ,“” 或“” )知识点:画轴对称图形【答案】>【分析】作图方法为:以,为圆心,大于长度画弧交于,两点,由此得出答案.【详解】解:∵,∴ 半径长度,即.故答案为:.【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.6、下面是小石设计的“ 过直线上一点作这条直线的垂线” 的尺规作图过程.已知:如图1 ,直线l及直线l上一点P.求作:直线PQ,使得PQ ⊥l.作法:如图2 :① 以点P为圆心,任意长为半径作弧,交直线l于点A,B;② 分别以点A,B为圆心,以大于AB的同样长为半径作弧,两弧在直线l上方交于点Q;③ 作直线PQ.所以直线PQ就是所求作的直线.根据小石设计的尺规作图过程:(1 )使用直尺和圆规,补全图形(保留作图痕迹);(2 )完成下面的证明.证明:连接QA,QB.∵QA=,PA=,∴PQ ⊥l()(填推理的依据).知识点:画轴对称图形【答案】(1 )见解析;(2 )QB,PB,等腰三角形底边上的中线与底边上的高互相重合.【分析】(1 )根据作图过程即可补全图形;(2 )根据等腰三角形的性质即可完成证明.【详解】解:(1 )补全的图形如图 2 所示:(2 )证明:连接QA,QB.∵QA=QB,PA=PB,∴PQ ⊥l(等腰三角形底边上的中线与底边上的高互相重合).故答案为:QB;PB;等腰三角形底边上的中线与底边上的高互相重合.【点睛】本题考查了作图- 基本作图、等腰三角形的性质,解决本题的关键掌握等腰三角形的性质.7、以图(一)的右边缘所在的直线为轴将该图形向右翻转后,再按顺时针方向旋转,所得到的图形是()知识点:画轴对称图形【答案】A8、如图,△ABC和△A’B’C’关于直线MN对称,△A’B’C’和△A’’B’’C’’关于直线EF对称。
轴对称图形习题及详细解答一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):,这条性质可用符号表示为:;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.28.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.29.(2016春•西藏校级期末)如图,在△ABC 中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=20°,求∠BOF的度数.30.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.参考答案与试题解析一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT △DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C 重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D 的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF 为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F 与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)由(1)得四边形CEGD是菱形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.【分析】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG 即可.【解答】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【点评】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.【点评】本题主要考查了全等三角形的判定和性质、角平分线的性质,解题的关键在于找到对应角相等、公共边.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【分析】由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt △CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.【分析】根据线段垂直平分线的性质得出AE=BE,再由直角三角形的性质即可得出结论.【解答】证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用.11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE,【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.【分析】由三角形的中位线定理得到DE=CF,DE∥CF,证得四边形DEFC是平行四边形,即可证得S△ECF=S△DEC=S△ADE,即可证得S四边形DEFB=S△ABC,求得△ABC的面积即可.【解答】解:∵点D、E分别是AB、AC的中点,∴DE=BC,DE∥BF,∵CF=,∴DE=CF,DE∥CF,∴四边形DEFC是平行四边形,∴S△ECF=S△DEC=S△ADE,∵△ABC是等边三角形,D是AB的中点,∴CD⊥AB,AD=BD=1,BC=2,∴DC==∴S 四边形DEFB=S△ABC=×2×=.【点评】本题考查了三角形中位线定理,平行四边形的判定和性质,勾股定理的应用,证得S△ECF=S△DEC=S△ADE是本题的关键.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.【分析】根据直角三角形的性质得出AE=BE=CE=AB,即可得出答案.【解答】证明:∵∠BAC=90°,∠C=30°,∴AB=BC,∵AE为BC边上的中线,∴AE=BE=CE,∴AB=AE=BE,∴△ABE是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.【分析】(1)根据折叠的性质以及平行线的性质可以证明∠B'FE=∠B'EF,根据等角对等边证明B'E=B'F,然后根据折叠的性质可证得;(2)直角△A'B'E中利用勾股定理求得B'E的长,然后根据(1)的结论即可求解.【解答】(1)证明:∵矩形ABCD中,AD∥BC,∴∠B'EF=∠EFB,又∵∠B'FE=∠EFB,∴∠B'FE=∠B'EF,∴B'E=B'F,又∵BF=B'F,∴B'E=BF;(2)解:∵直角△A'B'E中,A'B'=AB=4,∴B'E===5,∴BF=N'E=5.【点评】本题考查了折叠的性质以及勾股定理,在折叠的过程中认识到相等的角和相等的边是关键.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.【分析】(1)根据筝形的定义可以证明△BAC ≌△DAC,依据全等三角形的性质即可证得边和对角线的关系;(2)利用△BAC≌△DAC,根据边、角、对角线的性质证得.【解答】解:(1)筝形的性质:两组邻边分别相等;对角线互相垂直,即已知四边形ABCD是筝形,则AC⊥BD;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形.(写出一条即可);故答案是:对角线互相垂直;已知四边形ABCD 是筝形,则AC⊥BD;(2)筝形的判定方法:有一条对角线平分一组对角的四边形是筝形.已知:四边形ABCD中,AC是一条对角线,∠BAC=∠DAC,∠BCA=∠DCA.求证:四边形ABCD是筝形.证明:在△BAC和△DAC中,,∴△BAC≌△DAC,∴AB=AD,BC=CD,即四边形ABCD是筝形.其他正确的判定方法:有一条对角线垂直平分令一条对角线的四边形是筝形;有一组邻边相等且互相垂直的四边形是筝形.【点评】本题考查了图形的对称以及全等三角形的判定,正确证明△BAC≌△DAC是解决本题的关键.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.【分析】(1)利用尺规作出∠ABC的平分线BD 即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A 1DC的面积=•A1C•A1D计算即可.【解答】解:(1)∠ABC的平分线BD,交AC 于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A 1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴=.【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC 和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.【分析】(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠BAE=∠DCF,∴∠EAM=∠FCM,∴AE∥CF;(2)证明:∵AM平分∠FAE,∴∠FAM=∠EAM,又∵∠EAM=∠FCM,∴∠FAM=∠FCM,∴△FAC是等腰三角形,又∵AM=CM,∴FM⊥AC,即EF垂直平分AC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC﹣60°=∠C﹣60°,最后根据三角形内角和定理得出关系式∠C﹣60°+∠C=90°解出即可.【解答】解:∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°解得∠C=75°.【点评】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A 处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.【分析】(1)直接利用加减消元法,即可求得a,b的值;(2)分别从若7为腰长,2为底边长与若2为腰长,7为底边长,去分析求解即可求得答案.【解答】解:(1),①+3②得:10a=70,解得:a=7,把a=7代入2a+b=16,得:b=2,∴;(2)①若7为腰长,2为底边长,则周长为:7×2+2=16;②若2为腰长,7为底边长,∵2+2<7,∴不能组成三角形,舍去;∴这个等腰三角形的周长为16.【点评】此题考查了等腰三角形的性质以及二元一次方程组的解法.注意掌握分类讨论思想的应用是解此题的关键.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a 的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y 的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.【分析】先根据勾股定理求得AC的长,根据条件可知DE是△ABC的中位线,所以利用中位线定理可知DE的长.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∴CD=BC=5,∵AD=12,∴在Rt△ADC中,AC==13,。
轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。
下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。
练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。
练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。
练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。
答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。
因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。
练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。
对于任何点(x,y)在图形上,其对称点是(y,x)。
因此,图形的中心点是对称轴与原点的交点,即(0,0)。
练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。
由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。
通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。
画轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 圆形B. 正方形C. 三角形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 点D. 面3. 如果一个图形沿着一条直线对折,两侧的图形完全重合,这条直线叫做什么?A. 对称线B. 折线C. 直线D. 平行线二、填空题4. 轴对称图形的特点是,当图形沿对称轴对折时,图形的两侧能够________。
5. 一个轴对称图形可以有一条或多条________。
三、判断题6. 所有的圆形都是轴对称图形。
()7. 一个轴对称图形只能有一个对称轴。
()四、简答题8. 描述如何判断一个图形是否是轴对称图形。
9. 解释轴对称图形的对称轴可以是图形内部的线段吗?五、操作题10. 给出一个轴对称图形的一半,画出另一半以完成整个图形。
11. 画出一个具有两条对称轴的图形,并说明这两条对称轴的位置。
六、应用题12. 在一张纸上画一个轴对称图形,然后沿着对称轴对折,说明为什么两侧的图形能够完全重合。
13. 如果你想设计一个轴对称的徽章,你会考虑哪些因素来确定对称轴的位置?七、拓展题14. 研究并解释为什么自然界中的许多物体和生物体都是轴对称的。
15. 举例说明在艺术和建筑设计中,轴对称图形是如何被应用的。
八、创新题16. 设计一个自己的轴对称图形,并解释其设计思路和可能的应用场景。
九、综合题17. 给定一个复杂的轴对称图形,分析其对称轴的数量和位置,并讨论其在实际生活中的应用。
18. 描述如何使用计算机软件来创建和编辑轴对称图形,并给出一个具体的操作步骤。
通过这些练习题,学生可以更好地理解和掌握轴对称图形的概念、特性以及在不同领域的应用。
这些题目旨在提高学生的观察能力、空间想象能力和创新思维能力。
三年级轴对称图形练习题三年级数学下册轴对称图形练题一、填空。
1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。
2、圆的对称轴有()条,半圆形的对称轴有()条。
3、在对称图形中,对称轴两侧相对的点到对称轴的()相等。
4、()三角形有三条对称轴,()三角形有一条对称轴。
5、正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。
6、如果把一个图形沿着一条直线折过来,直线两侧部分能够完全重合,那么这个图形就叫做___________,这条直线叫做________.7、对称轴_______连结两个对称点之间的线段.8、宋体的汉字“王”、“中”、“田”等都是轴对称图形,•请再写出三个这样的汉字:_________.9、长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.10、如图是一种常见的图案,这个图案有_____条对称轴,请在图上画出对称轴.11、右图是从镜中看到的一串数字,这串数字应为.8题)12、下列图形中是轴对称图形的在括号里画“√”。
二、选择题。
1、下列英文字母中,是轴对称图形的是()A、SB、HC、PD、Q2、下列各种图形中,不是轴对称图形的是()3、下图是一些国度的国旗,其中是轴对称图形的有()A、4个B、3个C、2个D、1个4、下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有()A、2个B、3个C、4个D、5个5、下列图形中,对称轴最多的是()。
A、等边三角形B、正方形C、圆D、长方形6、下面不是轴对称图形的是()。
A、长方形B、平行四边形C、圆D、半圆7、要使大小两个圆有无数条对称轴,应采用第()种画法。
A、B、c8、图中的图形中是常见的安全标记,其中是轴对称图形的是()9、找出下面图形中是轴对称图形,并且有两条对称轴的是()XXX.3、操作题:1、下列图形是轴对称图形吗?如果是,分别画出它们的对称轴。
六年级轴对称图形练习题轴对称图形是六年级数学学科中的重要概念,掌握轴对称图形的性质和特点对于学生的数学发展至关重要。
本文将为同学们提供一些轴对称图形的练习题,帮助学生加深对该概念的理解和应用。
练习题一:轴对称图形判断判断下列图形是否具有轴对称性,并在答题纸上标明对称轴的位置。
1. 正方形2. 矩形3. 正三角形4. 等腰梯形5. 长方形6. 椭圆7. 菱形8. 长方形9. 圆形练习题二:轴对称图形的完善在下列图形中完成对称图形的绘制,并标出对称轴。
1. 给定一条对称轴,画出一个与给定图形关于该对称轴完全对称的图形。
2. 给定一个点作为对称轴的起点,绘制一个与给定图形关于该点对称的图形。
练习题三:轴对称图形的构造1. 已知一张图片,找出该图片中的轴对称图形,并将其标记出来。
2. 给定某个点,利用直尺和画圆工具构造以该点为轴对称轴的图形。
练习题四:轴对称图形的特性回答下列问题,并说明理由。
1. 一个图形是否可以同时具备多个轴对称轴?2. 一个非对称图形是否可能存在对称轴?3. 轴对称图形具有哪些特点?请举例说明。
练习题五:轴对称图形的应用1. 举例说明轴对称图形在日常生活中的应用,并附上相关图片。
2. 利用轴对称图形的性质,设计一个寓教于乐的游戏或者谜题,描述规则并给出解答。
以上是一些针对六年级轴对称图形的练习题,希望能够帮助同学们提高对轴对称性的理解和应用能力。
通过不断练习和思考,相信同学们能够在数学学科中取得更好的成绩,并在日常生活中灵活运用轴对称图形的知识。
加油!。
一、采用题之阳早格格创做1.下列命题中:①二个齐等三角形合正在所有是一个轴对于称图形;②等腰三角形的对于称轴是底边上的中线;③等边三角形一边上的下便是那边的笔曲仄分线;④一条线段不妨瞅着是以它的笔曲仄分线为对于称轴的轴对于称图形. 精确的道法有( )个 A .1个B .2个C .3个D .4个2.下列图形中:①仄止四边形;②有一个角是30°的曲角三角形;③少圆形;④等腰三角形. 其中是轴对于称图形有( )个 A .1个B .2个C .3个D .4个3.已知∠AOB =30°,面P 正在∠AOB 的里里,P1与P 闭于OA 对于称,P2与P 闭于OB 对于称,则△P1OP2是( )A .含30°角的曲角三角形;B .顶角是30的等腰三角形;C .等边三角形D .等腰曲角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相接于面P ,则PAECBD∠APE的度数是()A.45°B.55°C.60°D.75°5. 等腰梯形二底少为4cm战10cm,里积为21cm2,则那个梯形较小的底角是()度.A.45°B.30°C.60°D.90°6.已知面P正在线段AB的中垂线上,面Q正在线段AB 的中垂线中,则()A.PA+PB>QA+QB B.PA+PB<QA+QBD.PA+PB=QA+QB D.没有克没有及决定7.已知△ABC与△A1B1C1闭于曲线MN对于称,且BC 与B1C1接与曲线MN上一面O,则()A.面O是BC的中面B.面O是B1C1的中面C.线段OA与OA1闭于曲线MN对于称8.如图:已知OA∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.19.∠AOB的仄分线上一面P到OA的距离为5,Q是OB上任一面,则()A.PQ>5 B.PQ≥5C.PQ<5 D.PQ≤510.等腰三角形的周少为15cm,其中一边少为3cm.则该等腰三角形的底少为()A.3cm或者5cm B.3cm或者7cm C.3cmD.5cm二.挖空题11.线段轴是对于称图形,它有_______条对于称轴.12.等腰△ABC中,若∠A=30°,则∠B=________.13.正在Rt△ABC中,∠C=90°,AD仄分∠BAC接BC于D,若CD=4,则面D到AB的距离是__________.14.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的下等于___________.15.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC的周少是____________.16.等腰梯形的腰少为2,上、下底之战为10且有一底角为60°,则它的二底少分别为____________.17.若D为△ABC的边BC上一面,且AD=BD,AB=AC=CD,则∠BAC=____________.18.△ABC中,AB、AC的笔曲仄分线分别接BC于面E、F,若∠BAC=115°,则∠EAF=___________.三.解问题19.如图:已知∠AOB战C、D二面,供做一面P,使PC=PD,且P到∠AOB二边的距离相等.20.如图:AD为△ABC的下,∠B=2∠C,用轴对于称图形证明:CD=AB+BD.21.有一原书籍合了其中一页的一角,如图:测得O BAD=30cm,BE=20cm ,∠BEG=60°,供合痕EF 的少.22.如图:△ABC 中,AB=AC=5,AB 的笔曲仄分线DE 接AB 、AC 于E 、D ,①若△BCD 的周少为8,供BC 的少; ②若BC=4,供△BCD 的周少.23.等边△ABC 中,面P 正在△ABC中,且∠ABP=∠ACQ ,BP=CQ ,问状的三角形?试证明您的论断.参 考 问 案第一章 轴对于称图形1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C11.2 12.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:做CD 的中垂线战∠AOB 的仄分线,二线的接面即为所做的面P ;20.提示:正在CD 上与一面E 使DE =BD ,连结AE ; 21.EF =20㎝; 22.①BC =3,②9;23.提示:△APQ 为等边三角形,先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°即可.。
轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
1.已知点P关于y轴的对称点1P的坐标是(2,3),则点P坐标是A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)2.点M关于y轴对称点M1的坐标为(2,-4),则M关于x轴对称点M2的坐标为A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有A.2种B.3种C.4种D.5种4.△ABC的三个顶点的横坐标都乘以-1,纵坐标不变,则所得三角形与原三角形的位置关系是A.关于x轴对称B.关于y轴对称C.关于原点对称D.将△ABC向右平移了1个单位长度5.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C6.如图,点A的坐标(-1,2),点A关于y轴的对称点的坐标为A .(1,2)B .(-1,-2)C .(1,-2)D .(2,-1)7.若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是 A .-5B .-3C .3D .18.点A (-5,-6)与点B (5,-6)关于__________对称.9.如图,在方格纸上建立的平面直角坐标系中,Rt △ABC 关于y 轴对称的图形为Rt △DEF ,则点A 的对应点D 的坐标是__________.10.把如图中所示的某两个空白小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.11.已知(2)A a ,,(4)B b ,,分别根据下列条件求a b ,的值. (1)A B ,关于y 轴对称; (2)A B ,关于x 轴对称.12.如图,按要求完成下列问题:作出这个小红旗图案关于y轴对称的轴对称图形,写出所得到图形相应各点的坐标.13.下列关于A、B两点的说法中,正确的个数是(1)如果点A与点B关于y轴对称,则它们的纵坐标相同;(2)如果点A与点B的纵坐标相同,则它们关于y轴对称;(3)如果点A与点B的横坐标相同,则它们关于x轴对称;(4)如果点A与点B关于x轴对称,则它们的横坐标相同.A.1个B.2个C.3个D.4个14.如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴对称的图形△A2B2C2,则顶点A2的坐标是A.(-3,2)B.(2,-3)C.(1,-2)D.(3,-l)15.如图所示,是用笔尖扎重叠的纸得到成轴对称的图案,请根据图形写出:(1)两组对应点__________和__________;(2)两组对应线段__________和__________;(3)两组对应角__________和__________.16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1,B1,C1的坐标(直接写出答案);(3)△A1B1C1的面积为__________.17.下面两个轴对称图形分别只画出一半,请画出它的另一半(直线l为对称轴).18.如图,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.19.(2018·四川甘孜州)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B 的坐标为A.(-2,3)B.(-2,-3)C.(2,-3)D.(-3,-2)20.(2018·辽宁沈阳)在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)21.(2018·吉林长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.3.【答案】A【解析】如图,.有2种方法.故选A.4.【答案】B【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.横坐标都乘以−1,即横坐标变为相反数,纵坐标不变,符合关于y轴对称,故选B.5.【答案】A【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.故点A与C,B与D关于y轴对称.故选A.6.【答案】A【解析】点A的坐标(-1,2),点A关于y轴的对称点的坐标为:(1,2).故选A.10.【解析】所作图形如图:11.【解析】(1)若点A,B关于y轴对称,则a=4,−b=−2,b=2.(2)若点A,B关于x轴对称,则a=−4,−b=2,b=−2.12.【解析】小红旗关于y轴的轴对称图形如图所示:A'B'C',,,,,.(89)(85)(25)13.【答案】B【解析】正确的是:①如果点A与点B关于y轴对称,则它们的纵坐标相同;④如果点A与点B关于x轴对称,则它们的横坐标相同.故正确的有两个.故选B.16.【答案】(1)图见解析;(2)A 1(-1,2);B 1(-3,1);C 1(2,1);(3)4.5.【解析】(1)如图所示:(2)A 1(-1,2),B 1(-3,1),C 1(2,-1). (3)△A 1B 1C 1的面积=5×3-1×2÷2-5×2÷2-3×3÷2=4.5. 17.【解析】所作图形如下:18.【解析】画出的图形如下所示,其中1111(11)(51)(54)(24)A B C D ----,,,,,,,.2222(11)(51)(54)(24)A B C D ----,,,,,,,.19.【答案】A【解析】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.20.【答案】A【解析】∵点B的坐标是(4,-1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.21.【解析】如图所示:。
一、单选题1、已知直角三角形中30°角所对的直角边为2 cm,则斜边的长为()A. 2 cmB. 4 cmC. 6 cmD. 8 cm参考答案: B【思路分析】根据直角三角形的性质,结合题意,斜边为所给边的二倍【解题过程】解:∵直角三角形中30°角所对的直角边为2 cm,∴斜边的长为2×2=4 cm。
故选B。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A. 1种B. 2种C. 3种D. 4种参考答案: C【思路分析】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
任意多边形能进行镶嵌,说明它的内角和应能整除360°。
【解题过程】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④;故选:C。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案: C【思路分析】本题考查的是已知一个点的坐标求其关于某坐标轴对称的点的坐标。
13.2.3画轴对称图形习题课
知识点:
1.画轴对称图形:连接特殊点与它的对应点的线段,做出线段的垂直平分线即可
2.画对称轴:画出任意一对对应点所连线段的垂直平分线
3.点(x,y)关于x轴对称点的坐标为(x,-y)
点(x,y)关于y轴对称点的坐标为(-x,y)
同步练习:
一、选择
1.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:
①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )
A.1个B.2个C.3个D.4个
2.已知A(4,3)和B是坐标平面内的两个点,且它们关于直线x=-3轴对称,则平面内点B的坐标是()
A.(1,3)B.(-10,3)
C.(4,3)D.(4,1)
3.点(4,5)关于x=1的对称点的坐标是()
A.(-4,5)B.(4,-5)
C.(-2,5)D.(5,5)
4.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()
A.关于x轴对称B.关于y轴对称
C.关于直线x=-1对称D.无对称关系
二、填空。
1.已知点P(2a+b,-3a)与点P’(8,b+2).若点p与点p’关于x轴对称,则a=_____ b=_______.若点p与点p’关于y轴对称,则a=_____ b=_______.
2.已知点A(-2,4),B(2,4),C(-1,2),D(1,2),E(-3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y轴对称,就称为一组对称三角形,那么,坐标系中可找出_______组对称三角形.
3.在同一直角坐标系中,A(a+1,8)与B(-5,b-3)关于x轴对称,则a=_______,b=_______.
4.分别写出下列各点关于x轴和y轴对称的点的坐标:
(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).
______________________________________________________
5.已知P1,P2关于y轴对称,P2,P3关于x轴对称,P3(-2,3),求P1的坐标_______..三、画图。
1.把下列图形补成关于L对称的图形。
l
2.如图,已知△ABC 和直线l ,你能作出△ABC 关于直线l 对称的图形。
3.如图所示,作出△ABC 关于直线l 的对称
三角形A'B'C'。
4.(1)请画出ABC △关于y 轴对称的A B C '''△并写出各顶点坐标
(2)请画出ABC △关于X 轴对称的△A//B//C//并写出各顶点坐标
5.四边形ABCD 的顶点坐标为A (-5,1),B (-1,1),
C (-1,6),
D (-5,4),请作出四边形ABCD 关于x 轴
及y 轴的对称图形。
并写出各顶点坐标
6.(1)如图所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 .
(2)在图中,画出与△ABC 关于x 轴对称的△111C B A . l A B
C y
x
7.如图,四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴及原点对称的图形
8.如图,请写出△ABC 中各顶点的坐标.在同一坐标系中画出直线m :x =-1,并作出△ABC 关于直线m 对称的△A′B′C′.若P (a ,b )是△ABC 中AC 边上一点,请表示其在△A′B′C′中对应点的坐标.
9.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B•是桌面上
的两个球,怎样击打A 球,才能使A 球撞击桌面边缘CF 后反弹能够撞
击B 球?请画出A•球经过的路线,并写出作法.
E D C A B F。