常用中规模时序逻辑电路
- 格式:ppt
- 大小:596.50 KB
- 文档页数:44
时序逻辑电路分类介绍时序逻辑电路是一种用于处理时序信号的电路,它由逻辑门和存储元件组成。
时序逻辑电路按照其功能和结构的不同,可以分为多种类型。
本文将对时序逻辑电路的分类进行全面、详细、完整和深入的探讨。
一、根据功能分类1. 同步时序逻辑电路同步时序逻辑电路是指其数据在同一个时钟上升沿或下降沿进行传递和存储的电路。
这类电路广泛应用于计算机中的寄存器、时钟驱动器和状态机等。
同步时序逻辑电路具有可靠性高、稳定性强的特点。
2. 异步时序逻辑电路异步时序逻辑电路是指其数据不依赖时钟信号而进行传递和存储的电路。
这种电路在通信系统中常用于数据传输和处理,如异步串行通信接口(UART)。
异步时序逻辑电路具有处理速度快和实时性强的特点。
二、根据结构分类1. 寄存器寄存器是一种时序逻辑电路,用于存储和传递数据。
寄存器通常采用D触发器作为存储元件,可以实现数据的暂存和移位操作。
寄存器广泛应用于计算机的数据存储和寄存器阵列逻辑器件(RALU)等。
2. 计数器计数器是一种时序逻辑电路,用于生成特定的计数序列。
计数器可以按照时钟信号对计数进行增加或减少,并可以在达到指定计数值时触发其他操作。
计数器被广泛应用于时钟发生器、频率分频器和时序控制等电路中。
3. 时序控制器时序控制器是一种时序逻辑电路,用于控制其他电路的时序和操作。
时序控制器根据输入的控制信号和当前的状态,通过逻辑运算和状态转移进行运算和控制。
时序控制器被广泛应用于计算机的指令译码和状态机的设计中。
三、根据存储方式分类1. 同步存储器同步存储器是一种时序逻辑电路,用于存储和读取数据。
同步存储器是在时钟信号作用下进行数据存取的,并且数据的读取和写入操作都在时钟的上升沿或下降沿进行。
同步存储器主要包括静态随机存储器(SRAM)和动态随机存储器(DRAM)等。
2. 异步存储器异步存储器是一种时序逻辑电路,用于存储和读取数据。
与同步存储器不同的是,异步存储器的读取和写入操作不依赖时钟信号,而是由数据访问信号和存储器内部的同步电路进行控制。
从集成度来说,数字集成电路的分类(一)
数字集成电路的分类
按功能分类
•组合逻辑电路:由门电路组成,根据输入信号的组合产生输出信号。
•时序逻辑电路:根据时钟信号的变化产生输出信号,具有状态和记忆功能。
•存储器:用于存储和读取数据的电路,例如RAM和ROM。
•控制电路:用于控制其他电路或系统的运行的电路。
按规模分类
•大规模集成电路(LSI):集成度较高的电路,通常包含数千个逻辑门。
•中等规模集成电路(MSI):集成度适中的电路,包含数十到数百个逻辑门。
•小规模集成电路(SSI):集成度较低的电路,通常只包含几个逻辑门。
按工艺分类
•PMOS:使用p型MOSFET器件制造的电路,适用于工艺落后。
•NMOS:使用n型MOSFET器件制造的电路,速度较快但功耗较高。
•CMOS:使用p型MOSFET和n型MOSFET器件制造的电路,兼具速度和功耗优势。
按应用领域分类
•通信集成电路:用于无线通信和有线通信等领域,如手机芯片和光通信芯片。
•测量与控制集成电路:用于仪器仪表、自动化控制等领域。
•计算机集成电路:包括中央处理器(CPU)、图形处理器(GPU)等用于计算机内部的电路。
•模拟与混合信号集成电路:用于音频、视频、模拟信号处理等领域。
按硬件级别分类
•数字电路:采用离散的数值进行处理和传输的电路。
•模拟电路:采用连续的信号进行处理和传输的电路。
•模拟-数字混合电路:同时包含模拟和数字电路的混合电路。
以上是数字集成电路的一些常见分类,不同的分类方式可以帮助
我们更好地理解和应用数字集成电路。
时序逻辑电路设计
时序电路设计又称时序电路综合,它是时序电路分析的逆过程,即依据给定的规律功能要求,选择适当的规律器件,设计出符合要求的时序规律电路,对时序电路的设计除了设计方法的问题还应留意时序协作的问题。
时序规律电路可用触发器及门电路设计,也可用时序的中规模的集成器件构成,以下我们分别介绍它们的设计步骤。
1.用SSI器件设计时序规律电路
用触发器及门电路设计时序规律电路的一般步骤如图所示。
(1)由给定的规律功能求出原始状态图:首先分析给定的规律功能,从而求出对应的状态转换图。
这种直接由要求实现的规律功能求得的状态转换图叫做原始状态图。
(2)状态化简:依据给定要求得到的原始状态图很可能包含有多余的状态,需要进行状态化简或状态合并。
状态化简是建立在状态等价这个概念的基础上的。
(3)状态编码、并画出编码形式的状态图及状态表:在得到简化的状态图后,要对每一个状态指定1个二进制代码,这就是状态编码(或称状态安排)。
(4)选择触发器的类型及个数:
(5)求电路的输出方程及各触发器的驱动方程:依据编码后的状态表及触发器的驱动表可求得电路的输出方程和各触发器的驱动方程。
(6)画规律电路,并检查自启动力量。
2.用MSI中规模时序规律器件构成时序规律电路
用中规模时序规律器件构成的时序功能电路主要是指用集成计数器构成任意进制计数器。
构成任意进制计数器的方法有两种:一种是置数法,另一种是归零法。
时序逻辑电路实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。
2.掌握常用中规模集成计数器的逻辑功能和使用方法。
二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。
三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。
在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。
2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。
74LSl63是同步置数、同步清零的4位二进制加法计数器。
除清零为同步外,其他功能与74LSl61相同。
二者的外部引脚图也相同,如图5.1所示。
表5.1 74LSl61(74LS163)的功能表3.集成计数器的应用——实现任意M进制计数器一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。
第二类是由集成二进制计数器构成计数器。
第三类是由移位寄存器构成的移位寄存型计数器。
第一类,可利用时序逻辑电路的设计方法步骤进行设计。
第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。
两种实现方法:反馈置数法和反馈清零法。
第三类,是由移位寄存器构成的移位寄存型计数器。
4.实验电路:十进制计数器同步清零法同步置数法六进制扭环计数器具有方波输出的六分频电路四、实验内容及步骤1.集成计数器实验(1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。
然后使用单次脉冲作为触发输入,观察数码管或发光二极管的变化,记录得到电路计数过程和状态的转换规律。
(2)根据电路图,首先用D触发器74LS7474构成一个不能自启的六进制扭环形计数器,同样将输出连接至数码管或发光二极管。
【电⼯基础知识】时序逻辑电路时序逻辑电路定义时序逻辑电路主要由触发器构成。
在理论中,时序逻辑电路是指电路任何时刻的稳态输出不仅取决于当前的输⼊,还与前⼀时刻输⼊形成的状态有关。
这跟相反,组合逻辑的输出只会跟⽬前的输⼊成⼀种函数关系。
换句话说,时序逻辑拥有储存器件()来存储信息,⽽组合逻辑则没有。
从时序逻辑电路中,可以建出两种形式的::输出只跟内部的状态有关。
(因为内部的状态只会在时脉触发边缘的时候改变,输出的值只会在时脉边缘有改变):输出不只跟⽬前内部状态有关,也跟现在的输⼊有关系。
时序逻辑因此被⽤来建构某些形式的的,延迟跟储存单元,以及有限状态⾃动机。
⼤部分现实的电脑电路都是混⽤组合逻辑跟时序逻辑。
按“功能、⽤途”分为:1. 寄存器;2. 计数(分频)器;3. 顺序(序列)脉冲发⽣器;4. 顺序脉冲检测器;5. 码组变换器;寄存器定义寄存器:能够暂时存放数码、指令、运算结果的数字逻辑部件,称为寄存器。
寄存器的功能是存储,它是由具有存储功能的组合起来构成的。
⼀个触发器可以存储1位⼆进制代码,故存放n位⼆进制代码的寄存器,需⽤n个触发器来构成。
[1]按照功能的不同,可将寄存器分为基本寄存器和两⼤类。
基本寄存器只能并⾏送⼊数据,也只能并⾏输出。
移位寄存器中的数据可以在移位脉冲作⽤下依次逐位右移或左移,数据既可以并⾏输⼊、并⾏输出,也可以串⾏输⼊、串⾏输出,还可以并⾏输⼊、串⾏输出,或串⾏输⼊、并⾏输出,⼗分灵活,⽤途也很⼴。
[1]知识点概述:1、寄存器,就是能够记忆或存储0和1数码的基本部件。
通常都是由各种触发器和门电路来构成的。
2、寄存器分为仅能存储0和1数码的数码寄存器,和既能存储数码同时也能实现数码的左移或右移的寄位移寄存器。
3、在实际中,通常使⽤集成寄存器。
本节讲解了寄存器的电路构成、⼯作原理、对74LS194双向移位寄存器的使⽤进⾏了介绍。
4、有点寄存器具有左移右移的功能寄存器电路如下:(1)由四个D触发器构成,因为每⼀个D触发器可以存放1位⼆进制信息,所以上述电路的寄存器可存放⼀个4位⼆进制数码,⼀般也把这种寄存器称为数码寄存器。
时序逻辑电路摩尔型和米利型时序逻辑电路是数字电路中一种重要的电路类型,用于实现各种复杂的计算和控制功能。
在时序逻辑电路中,电路的输出不仅取决于当前输入信号,还取决于该信号的先前状态。
本文将重点介绍时序逻辑电路中的两种常见类型:摩尔型和米利型。
一、摩尔型时序逻辑电路摩尔型时序逻辑电路是一种常见的时序逻辑电路类型,其设计基于摩尔触发器。
摩尔触发器是一种具有存储功能的电路元件,可以存储一位二进制数字,并在时钟信号的控制下改变其状态。
基于摩尔触发器,我们可以构建各种复杂的时序逻辑电路。
在摩尔型时序逻辑电路中,时钟信号起着非常重要的作用。
时钟信号会定期触发摩尔触发器的状态改变,从而使得整个电路按照一定的时间序列工作。
通过合理地设置时钟频率和时序逻辑电路的设计,我们可以实现各种时序逻辑功能,如计数器、时序比较器等。
摩尔型时序逻辑电路有许多优点。
它具有较高的抗噪声能力。
由于时钟信号的存在,摩尔型时序逻辑电路对输入信号的抖动和噪声具有一定的容忍度。
由于时钟信号的同步约束,摩尔型时序逻辑电路可以更容易地进行时序分析和验证。
摩尔型时序逻辑电路在面积和功耗方面通常比米利型时序逻辑电路更优秀。
然而,摩尔型时序逻辑电路也存在一些限制。
由于时钟信号的存在,摩尔型时序逻辑电路的工作速度较慢。
在大规模集成电路中,时钟分布和时钟抖动可能会导致时序逻辑电路的性能问题。
摩尔型时序逻辑电路在一些特殊应用场景下可能无法满足需求,如高速数据传输等。
二、米利型时序逻辑电路米利型时序逻辑电路是一种相对较新的时序逻辑电路类型,其设计基于米利触发器。
米利触发器是一种时序逻辑电路元件,可以将输入信号的状态变化保存在存储单元中,并在时钟信号的控制下改变输出信号的状态。
与摩尔型时序逻辑电路相比,米利型时序逻辑电路具有更高的速度和更低的功耗。
在米利型时序逻辑电路中,存储单元采用动态存储器或双稳态存储器,能够在非时钟边沿时实现状态的改变,从而提高了时序逻辑电路的工作速度。
第6章时序逻辑电路本章的主要知识点时序逻辑电路的基本知识、时序逻辑电路的分析和设计、关于自启动的修正问题、常用的中规模时序电路。
1.参考学时10学时(总学时32学时,课时为48课时可分配12学时)。
2.教学目标(能力要求)●掌握同步时序逻辑电路的分析和设计方法;●掌握电路挂起的修正方法;●掌握常用的中规模时序逻辑电路(计数器、寄存器)的外部特性及使用方法;●掌握脉冲异步时序逻辑电路的分析和设计方法;●掌握中规模时序逻辑电路的分析和设计方法。
3.教学重点●同步时序逻辑电路的设计:包括设计中的原始状态图、状态表、状态化简、状态编码、确定激励函数和输出函数等;●同步时序逻辑电路的自启动的分析:能根据设计好的电路分析电路是否存在自启动的问题,并学会修正它。
●脉冲异步时序逻辑电路的分析和设计方法:了解和同步时序逻辑电路的分析和设计方法的差异性,并熟练掌握脉冲异步时序逻辑电路的分析和设计方法●中规模时序逻辑电路的外部特性及使用方法:通过理论分析来学习常用中规模时序逻辑电路的外部特性及使用方法,通过具体实例来学习中规模时序逻辑电路的分析和设计方法4.教学难点●原始状态图:学生开始不知道如何增加状态,什么时候增加状态●自启动的修正:学生能分析出挂起,但是对于修正比较困难●脉冲异步时序逻辑电路的分析:当脉冲异步时序逻辑电路的存储电路是没用统一时钟端的钟控触发器时,如何分步找到每个触发器的时钟的跳变时刻对学生来说是一大挑战●计数器的使用方法:掌握置数法、清零法、级联法实现任意模的计数器5.教学主要内容(1)时序逻辑电路概述(15分钟)(2)小规模时序逻辑电路分析(120分钟)➢小规模时序逻辑电路的分析方法和步骤➢小规模同步时序逻辑电路的分析➢小规模异步时序逻辑电路的分析(3)小规模时序逻辑电路设计(180分钟)➢小规模时序逻辑电路的设计方法和步骤➢小规模同步时序逻辑电路的设计➢小规模异步时序逻辑电路的设计(4)常用中规模时序逻辑电路(45分钟)➢集成计数器➢寄存器(5)中规模时序逻辑电路的分析和设计(90分钟)➢中规模时序逻辑电路的分析➢中规模时序逻辑电路的设计6.教学过程与方法(1)时序逻辑电路概述(15分钟)简要介绍时序逻辑电路的结构、特点、分类和描述方法等。